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Abstract 

In this paper, we mention the concepts of one of the most important 

statistical distributions Lomax, Lomax distribution has vast results in may 

area.   Simulation studies are conducted to evaluate the performances of 

the proposed method.  Here the estimation methods used are MLE LSE 

and these methods compare with the MSE and TD methods.  
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Introduction 

The Lomax (1954) has developed in the Lomax distribution and it is conditionally also 

called as Pareto type-II distribution.  Pareto type-II is a main come of probability distribution.  It is 

essentially a Pareto distribution that support begins at zero. 

 It has many uses in solving the problems on statistical into which are mainly used for the 

lifetime data, medical, Business, Biological Scenarios etc. for finding out the originality and 

justifying the issues faced. 

 Lomax distribution consists of two parameters which are denoted by Lomax(𝛼, 𝛽), 𝛼 is a 

shape parameter and 𝛽 is the scale parameter. 
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Mathematical model of Lomax distribution 

The Lomax distribution, the properties are presenting here.  Cumulative distribution function (c.d.f):  
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The survival function or reliability function: 

  

( ) = 1
x

S x







 
 

         

(3)

 

 

The hazard function: 
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Mean and variance of Lomax distribution: 
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Inverse Transformation method to generate a sample data for given parameters’ 
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(7) 

where u ~ uniform(0,1), and the parameters α, β are known. 

Parameter estimation methods: 

Maximum Likelihood Estimation Method 
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Estimation for the parameters 
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Least Square Estimation Method:  

 The Estimation method used for this technique is a least square method.  The least square 

method is the statistical process to find the best possible result for a set of values.  It is mostly 

useful in solving and identifying the issues in DRDO, Medical, Engineering relate problem etc.  In 

this we take the linear relation between scale and shape.  We use the Least square method for the 

estimation of Lomax parameters.  

 Good and Kao had developed the graphical procedure used for Lomax distribution.  The 

perseverance of parameters of the Lomax distribution is achieving well-defined or analytically. 
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The essential and enough conditions for the function  ,S A B  to get the utmost result are given by: 
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from where a system of linear algebraic equations for determination of coefficients A  and B  is 

gained: 
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By determination of determinants of equation systems above equations: 
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values of required coefficients are gained: 
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Depending on the association with the distribution parameters (α, β) and the coefficients of the 

straight line equation, is giving below: 
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Computational Results: 

The open minded result of our work is to compare the LSE method, and MLE method.  We had 

taken the occasional samples by the known parameters.  For every sample, we have taken the 

change of size from  5 to 100.  To calculate the variations and find the total deviations (TD) for 

each method is in order: -   and   are parameters, ̂  and ̂  are the estimated parameters 

 To compare, we calculated the total deviation (TD) for each method as follows: 
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In order to understand the accuracy of the Lomax estimation method, most of the studies address 

the question as a statistical error and calculate the mean square error (MSE) based on the measured 

data. 
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where  ˆ
iF x  is the measured value and  iF x  is the Lomax parameters based calculated value. 

Simulation Study: 

 Two know the behavior of the shape and scale parameter.  We find the values try using the 

Lomax distribution.  In this paper, we had discussed about the results of the simulations study 

which has been done in different methods.  The main course of the paper is to compare the values or 

results in the two different methods used for the estimation of shape.  ( ) = 0.5 (0.5) 3 and scale (

 ) = 0.5 (0.5) 3 parameters of two parameter Lomax distribution and  used to generated 10,000 

samples of sizes n= 5,10,20,30,50,75,100,200,250,300,400,500, and 1,000.  The estimates are 

comparing using the values of MSE and TD.   Here we used the R programming with version 4.0.5 

for doing this process in finding out the statistical values. 
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Table: 

n ALPHA BETA 
LSE MLE 

Results 
ALPHA BETA TD MSE ALPHA BETA TD MSE 

5 0.5 0.5 -0.0148 0.3466 1.3364 0.0521 0.0093 0.5 0.9954 0.0025 MLE 

10 0.5 0.5 -0.0257 0.3466 1.3583 0.0704 0.0038 0.5001 0.9926 0.8993 LSE 

15 0.5 0.5 -0.0289 0.3466 1.3646 0.0756 0.0049 0.5001 0.9905 0.8794 LSE 

20 0.5 0.5 -0.0278 0.3466 1.3625 0.0726 0.0058 0.5002 0.9888 0.8655 LSE 

25 0.5 0.5 -0.0378 0.3466 1.3825 0.0895 0.0087 0.5 0.9965 0.0024 MLE 

30 0.5 0.5 -0.037 0.3466 1.3808 0.0872 0.0053 0.5 0.9965 0.0025 MLE 

50 0.5 0.5 -0.0489 0.3466 1.4046 0.1033 0.0085 0.5001 0.9968 0.0025 MLE 

75 0.5 0.5 -0.0582 0.3466 1.4233 0.1143 0.0037 0.5 0.9964 0.0026 MLE 

100 0.5 0.5 -0.0605 0.3466 1.4279 0.1161 0.0157 0.5001 0.9688 0.0027 MLE 

5 1 0.5 -0.0403 0.6931 1.3875 0.0027 0.0077 0.5001 0.9963 0.0025 MLE 

5 1.5 0.5 -0.0353 1.0397 1.3775 0.021 0.0063 0.5001 0.9969 0.0025 MLE 

10 1 0.5 -0.112 0.6931 1.5309 0.0294 0.0064 0.5003 0.9941 0.7629 LSE 

15 1 0.5 -0.1507 0.6931 1.6083 0.0548 0.0041 0.5 0.9959 0.0026 LSE 

20 1 0.5 -0.1788 0.6931 1.6645 0.0783 0.0083 0.5005 0.9928 0.7474 LSE 

25 1 0.5 -0.1857 0.6931 1.6782 0.0851 0.0091 0.5007 0.9922 0.737 MLE 

30 1 0.5 -0.2407 0.6931 1.7883 0.1536 0.0037 0.5 0.9975 0.0025 MLE 

50 1 0.5 -0.2867 0.6931 1.8803 0.236 0.0037 0.5 0.9963 0.0026 MLE 

10 1.5 0.5 -0.1405 1.0397 1.5879 0.00060 0.0064 0.5003 0.9962 0.6274 LSE 

15 1.5 0.5 -0.2358 1.0397 1.7784 0.0435 0.0037 0.5 0.9975 0.0025 LSE 

20 1.5 0.5 -0.3134 1.0397 1.9337 0.1905 0.0071 0.5006 0.9966 0.6244 LSE 

5 2.5 0.5 -0.0142 1.7329 1.3353 0.0752 0.0075 0.5001 0.9965 0.0025 MLE 

10 2.5 0.5 -0.0445 1.7329 1.3958 0.0714 0.0087 0.5 0.9965 0.0024 MLE 

15 2.5 0.5 -0.1034 1.7329 1.5137 0.0542 0.0059 0.5001 0.9978 0.0025 LSE 

20 2.5 0.5 -0.1185 1.7329 1.5439 0.0476 0.0066 0.5 0.9974 0.0025 LSE 

25 2.5 0.5 -0.1835 1.7329 1.6739 0.0151 0.0091 0.4999 0.9965 0.0024 MLE 

30 2.5 0.5 -0.2351 1.7329 1.777 0.00010 0.005 0.5 0.9967 0.0025 MLE 

 

 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 
4319 

 
 

Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

 

 

Results and Discussion: 

 The outcome of this simulations is indicated in the above table.  In the table, it has been 

noticed that, when the size increases, MSE decrease and respectively TD increases.  Considerably, 

the tiny size, the execution of the models will vary from simultaneously. 

 In the above examination, of the content in the content in the table, MLE is far better than 

the method of LSE.  It hasn’t been any consistency in the executions of estimates by the LSE 

method.  MLE method is much more better than the LSE method, MLE method is very much 

available to use by the practitioners. 

Conclusion: 

Here we had done an observation and recommended from LSE method to Lomax 

distribution.  Most of the simulations have been modified and tested to the different verities. 

MLE method is mostly unique for the estimation of the model parameters.  This method is 

very helpful and it is most attractive method in different areas of lifetime data, execution of 

machine, engineering area, etc., 
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