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Abstract 

In this article, we propose test statistics based on so-called residual 

extropy to test the conformity of a random sample with a two-parameter 

gamma distribution. First, we characterize the gamma distribution based 

on residual extropy. Then we form tests as the integrated deviation (or 

square deviation) between the sample and population residual extropies. 

Finally, Monte Carlo simulations will be conducted to calculate critical 

values and powers of the proposed tests and as well as the classical EDF 

tests; namely, Kolmogorov-Smirnov (KS), Cramer-von Mises (CvM), and 

Anderson-Darling (AD) tests. Power comparisons show that the proposed 

tests outperform the classical tests for a broad spectrum of alternative 

distributions.  

 

Keywords: -Gamma distributiont; residual extropy; power; goodness-of-

fit. 

 

 

1. Introduction 

A random variable X has a two-parameter gamma distribution if its probability density function 

is of the form 

𝑓(𝑥; 𝛼, 𝛽) =
𝛽−𝛼

Γ(𝛼)
𝑥𝛼−1𝑒−𝑥/𝛽 , 0 < 𝑥; 𝛼 > 0, 𝛽 > 0, (1) 

𝛼and𝛽 are, respectively, the shape and scale parameters. 

 The gamma family of distributions, type III of the Pearson system, has attracted the attention of 

researchers from both theoretical and applied perspectives. The gamma distribution is also related 

to the normal distribution; the sum of the squares of independent standard normal variables is 

distributed gamma. In addition, the gamma distributions have been used to model data from 

different fields of applications. Besides including the exponential distribution, which is widely 

used in lifetime analysis, the gamma distribution can make necessary adjustments to account for 

lifetime cases that the exponential distribution falls short of. 

 Among other applications, the gamma distribution has been fitted to personal income data [Salem 

& Mount [1]]; medical data [Robson [2], Belikov [3] and Belikov et al. [4]], and communication 

systems, Al-Zubi et al. [5]. Furthermore, the gamma distribution has also been extensively applied 

in hydrological data, including rainfall precipitations and river flows[Markovic [6], Sen and Eljadid 

[7], Bobee&Ashkar [8], and Aksoy [9]], to mention some. Furthermore, the reproductive property 

of the gamma distribution (the sum of independent gamma variables with a common scale 
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parameter is also distributed gamma) leads to the appearance of gamma distributions in the theoryof 

counting processes such as the insurance claims process, Boland [10], and meteorological 

precipitation process, Kotz and Neumann [11]. 

An essential aspect of data analysis is the problem of fitting given data to a particular probability 

distribution model. In this sense, the gamma distribution has received the attention of many 

researchers. Classical tests such as Kolmogorov-Smirnov, Cramer-von-Mises, and Anderson-

Darling tests may be naturally applied to test for the gamma distribution. These tests based on the 

empirical distribution function (EDF) are distribution-free. However, if one or more of the 

distribution parameters is unknown and must be estimated from the sample, then the distribution of 

these tests will depend on the method of estimation used and are not distribution-free anymore. 

In addition to the EDF tests, we find some other tests introduced based on different aspects or 

characterizations of the gamma distribution; Dahiya and Gurland [12] used a generalized minimum
2 method to develop a goodness-of-fit test for the gamma and exponential distributions. To 

discriminate between three families of distributions: lognormal, gamma, and Weibull, Kubler [13] 

used the likelihood ratio tests. Wodruff et al. [14] modified KS, CvM, and AD tests. Stephen 

(D’Agostino and Stephens, [15]) used regression and correlation methods to test for gamma 

distribution. Based on Kullback-Leibler divergence as a measure of the proportionate reduction of 

uncertainty, Cameron and Windmeijer [16] developed an R-squared goodness-of-fit test for the 

exponential family regression models, including the gamma distribution. Zhang [17] modified old-

nonparametric tests and proposed new ones through a specific parameterization process. Raschke 

[18] proposed a goodness-of-fit test using the biased transformation. Wilding and Mudholkar [19] 

utilized a characterization of the gamma distribution that the sample mean and the sample 

coefficient of variation are independent to produce a new gamma test. Finally, Henze et al. [20]  

introduced a test based on the empirical Laplace transform. 

The extropy is an information measure recently introduced by Lad et al. [21] as the complement 

dual of Shannon [22]. This article will build goodness of fit tests based on the extropy measure for 

the gamma distribution.  The differential extropy of a continuous random variable (r.v.) 𝑋 with a 

probability density function (pdf) 𝑓 was defined by Lad et al. as 

 𝐽 𝑋 =
−1

2
 𝑓2 𝑥 𝑑𝑥

∞

−∞

, (2) 

If X~gamma(𝛼,1) with pdf given in (1),  then 

𝐽 𝑋 =
−1

2
 𝑓2(𝑥; 𝛼)𝑑𝑥

∞

−∞

 

=
−1

2Γ2(𝛼)
 𝑥2𝛼−2𝑒−2𝑥𝑑𝑥

∞

0

 

= −
Γ 2𝛼 − 1 

4𝛼Γ2 𝛼 
, 𝛼 >

1

2
. 

Residual extropy was defined by Qiu and Jia [23] as a measure of residual uncertainty of a non-

negative continuous random variable X as  
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 𝐽 𝑋, 𝑡 =
−1

2𝐹 2(𝑡)
 𝑓2(𝑥)𝑑𝑥

∞

𝑡

, 𝑡 > 0, (3) 

 

where 𝐹 (𝑡) = 1 − 𝐹(𝑡), is the survival of X. 𝐹 (𝑡; 𝛼) = 1 − 𝐹(𝑡; 𝛼) 

For the gamma case with scale parameter 𝛽 = 1, we have  

𝐽 𝑋, 𝑡 =
−1

2𝐹 2(𝑡; 𝛼)
 𝑓2(𝑥; 𝛼)𝑑𝑥

∞

𝑡

 

=
−1

2Γ2 𝛼 𝐹 2 𝑡 
 𝑥2𝛼−2𝑒−2𝑥𝑑𝑥

∞

𝑡

 

 =
−Γ 2𝛼 − 1 𝐹(2𝑡; 2𝛼 − 1)

4𝛼Γ2 𝛼 𝐹 2 𝑡; 𝛼 
, 𝛼 >

1

2
, 𝑡 > 0. (4) 

 

We will utilize the residual extropy measure to form new tests for the gamma distribution. The 

remainder of this article is structured as follows. Section 2 will prove a characterization based on 

the gamma residual extropy given in (4) and then use this characterization to propose new tests. In 

Section 3, using Monte Carlo simulations, critical values will be calculated and then used to 

compute the powers of the proposed tests.  

Comparisons to the classical EDF tests will be conducted in Section 4. Finally, discussions of the 

results will be given in Section 5. 

2. Characterization and Derivation of Tests 

In this section, we will prove a characterization of the gamma distribution based on residual 

extropy, and then we will utilize this characterization to derive tests for gamma.  

Theorem: Let𝑋 be a non-negative random variable with pdf 𝑓 and cdf 𝐹. Then ~ ( ,1)X gamma  iff 

 2𝐸𝑡[𝑋𝑓(𝑋) + (2𝛼 − 1)𝐽(𝑋, 𝑡)𝐹
¯

2(𝑡)] = 𝑡𝑓2(𝑡), 𝑡 > 0, (5) 

 

Where 

 𝐸𝑡[𝑋𝑓(𝑋)] =  𝑥𝑓2(𝑥)𝑑𝑥
∞

𝑡

, (6) 

 

Proof: Assume ~ ( ,1)X gamma  , then 

2𝐸𝑡 𝑋 𝑓(𝑋) + (2𝛼 − 1)𝐽(𝑋, 𝑡)𝐹 2(𝑡) = 2  𝑥𝑓2(𝑥) ⅆ𝑥
∞

𝑡

− (2𝛼 − 1)  𝑓2(𝑥) ⅆ𝑥
∞

𝑡
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 =
2

Γ2(𝛼)
 𝑥2𝛼−1ⅇ−2𝑥 ⅆ𝑥

∞

𝑡

−
2𝛼 − 1

Γ2(𝛼)
 𝑥2𝛼−2ⅇ−2𝑥 ⅆ𝑥

∞

𝑡

 (7) 

   

Integrating the first term of the right-hand side of equation (7) by parts, we get 

2

Γ2(𝛼)
 𝑥2𝛼−1ⅇ−2𝑥 ⅆ𝑥

∞

𝑡

= 𝑡2𝛼−1ⅇ−2𝑡 +
2𝛼 − 1

Γ2(𝛼)
 𝑥2𝛼−2ⅇ−2𝑥 ⅆ𝑥

∞

𝑡

 

Replacing this in equation (5), we get 

2𝐸𝑡 𝑋 𝑓(𝑋)] + (2𝛼 − 1)𝐽(𝑋, 𝑡)𝐹 2(𝑡) =
𝑡2𝛼−1ⅇ−2𝑡

Γ2(𝛼)
= 𝑡𝑓2 𝑡 . 

Now, assume 𝐹(𝑡) is absolutely continuous, and equation (5) is satisfied. From equation (3), we 

have  

2𝐹 2(𝑡)𝐽(𝑋, 𝑡)] = − 𝑓2 𝑥 𝑑𝑥
∞

𝑡

, 

so equation (5) can be written as 

 2  𝑥𝑓2 𝑥 𝑑𝑥
∞

𝑡

− (2𝛼 − 1)  𝑓2 𝑥 𝑑𝑥
∞

𝑡

= 𝑡𝑓2(𝑡) (8) 

 

Differentiation of both sides of equation (8) gives, 

 2𝑡𝑓2 𝑡 +  2𝛼 − 1 𝑓2 𝑡 = 2𝑡𝑓 𝑡 𝑓 ′ 𝑡 + 𝑓2 𝑡  (9) 

 

which, when simplified, reduces to 

  𝑡𝑓2 𝑡 +  𝛼 − 1 𝑓2 𝑡 = 𝑡𝑓 𝑡 𝑓 ′ 𝑡  (10) 

 

Dividing both sides of equation (10) by 𝑡𝑓2 𝑡 , it simplified to  

 
(𝛼 − 1)

𝑡
− 1 =

𝑓 ′(𝑡)

𝑓(𝑡)
 (11) 

Solving equation (11) for t, we get 

1( ) tf t ct e  . 

For ( )f t to be a 𝑝𝑑𝑓, 1/ ( )c   . 

3.  Proposed Tests 

In this section, we construct test statistics based on the above characterization. Let 1, , nX X be 

a random sample from an absolutely continuous distribution with density function 𝑓 and 
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distribution function 𝐹, then the empirical counterpart of the left-hand side of equation (5), say 

( ,t)n X , is 

1

1
( , ) ( )

j

n

n j X t

j

t X I
n

 



  X  

where 

𝜓(𝑥) = 2𝑥𝑓(x) − (2𝛼 − 1)𝑓2(𝑥) 

By the laws of large numbers, ( , )n t X converges almost surely to its mean, 

  2( ,t) ( ,t) ( )n

n nE tf t   X X . 

Thus ( ,t)n X approximates 
2 ( )tf t . Measures of deviation of ( ,t)n X from its limit, 

2 ( )tf t , will be 

employed to form our test statistics. Examples of such deviance measures are: 

 𝐷1,𝑛(𝐗, 𝑡) =  (𝛹𝑛(𝐗,t) − 𝑡𝑓2(𝑡))𝜔1(𝑡)𝑑𝑡
∞

0

 (12) 

and 

 𝐷2,𝑛(𝐗,t)= (𝛹𝑛(𝐗,t) − 𝑡𝑓2(𝑡))2𝜔2(𝑡)𝑑𝑡
∞

0

 (13) 

 

where ( )j t , 𝑗 = 1,2, are properly chosen weight functions such that 
1, ( ,t)nD X and 

2, ( ,t)nD X exist 

and have conveniently computationally closed forms.  

When 𝜔1 𝑡 = 𝜔2 𝑡 = exp(−𝑎𝑡), 𝑎 > 0, we have  

𝐷1,𝑛 𝐗, 𝑡 =  (𝛹𝑛(𝐗,t) − 𝑡𝑓2(𝑡))𝜔1(𝑡)𝑑𝑡
∞

0

 

=  
1

𝑛
 [𝜓(𝑋𝑗 )

𝑛

𝑗=1

𝐼𝑋𝑗 >𝑡 − 𝑡𝑓2(𝑡)]𝑒−𝑎𝑡𝑑𝑡

∞

0

 

=   
1

𝑛
  2𝑋𝑗𝑓 𝑋𝑗  −  2𝛼 − 1 𝑓2 𝑋𝑗  𝐼𝑋𝑗 >𝑡

𝑛

𝑗=1

− 𝑡𝑓2(𝑡)) 𝑒−𝑎𝑡𝑑𝑡

∞

0

 

=
1

𝑛
  2𝑋𝑗𝑓 𝑋𝑗  −  2𝛼 − 1 𝑓2 𝑋𝑗  

𝑛

𝑗=1

 𝑒−𝑎𝑡𝑑𝑡
𝑋𝑗

0

−  𝑡𝑓2 𝑡 𝑒−𝑎𝑡𝑑𝑡
∞

0

 

=
1

𝑛
  2𝑋𝑗 f 𝑋𝑗  −  2𝛼 − 1 𝑓2 𝑋𝑗   

1 − 𝑒−𝑎𝑋𝑗

𝑎
 

𝑛

𝑗=1

−
1

𝛤2 𝛼 
 𝑡2𝛼−1𝑒− 𝑎+2 𝑡𝑑𝑡

∞

0
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      =
1

𝑎𝑛
  2𝑋𝑗 f 𝑋𝑗  −  2𝛼 − 1 𝑓2 𝑋𝑗    1 − 𝑒−𝑎𝑋𝑗  

𝑛

𝑗=1
−

𝛤 2𝛼 

 𝑎+2 2𝛼𝛤2 𝛼 
. (14) 

To derive a computational form for 𝐷2,𝑛 , we have 

𝐷2,𝑛 =  [𝛹𝑛(𝐗, 𝑡) − 𝑡𝑓2(𝑡)]2𝑒−𝑎𝑡
∞

0

𝑑𝑡 

=  𝛹𝑛
2(𝐗, 𝑡)𝑒−𝑎𝑡𝑑𝑡

∞

0             
I1

− 2  𝑡𝑓2(𝑡)𝛹𝑛(𝐗, 𝑡)𝑒−𝑎𝑡𝑑𝑡
∞

0                 
I2

+  𝑡2𝑓4(𝑡)𝑒−𝑎𝑡𝑑𝑡
∞

0             
I3

. 

 

I1 =  𝛹𝑛
2(𝐗, 𝑡)𝑒−𝑎𝑡𝑑𝑡

∞

0

 

=   
1

𝑛
 𝜓(𝑋𝑗 )

𝑛

𝑗=1

𝐼𝑋𝑗 >𝑡 

2

𝑒−𝑎𝑡𝑑𝑡

∞

0

 

=
1

𝑛2
 𝜓(𝑋𝑖)𝜓(𝑋𝑗 )

𝑛

𝑖,𝑗=1

 𝑒−𝑎𝑡 𝐼𝑋𝑗∧𝑋𝑗 >𝑡

∞

0

𝑑𝑡 

=
1

𝑛2
 𝜓(𝑋𝑖)𝜓(𝑋𝑗 )

𝑛

𝑖,𝑗=1

 𝑒−𝑎𝑡 𝐼𝑋𝑗∧𝑋𝑗 >𝑡

∞

0

𝑑𝑡 

=
1

𝑎𝑛2
 𝜓(𝑋𝑖)𝜓(𝑋𝑗 )

𝑛

𝑖,𝑗=1

(1 − 𝑒−𝑎(𝑋𝑗∧𝑋𝑗 )). (15) 

 

I2 = 2  𝑡𝑓2(𝑡)𝛹𝑛(𝐗, 𝑡)𝑒−𝑎𝑡𝑑𝑡
∞

0

 

=
2

𝑛
 𝜓(𝑋𝑗 )

𝑛

𝑖,𝑗=1

 𝑡𝑓2(𝑡)𝑒−𝑎𝑡
∞

0

𝐼𝑋𝑗 >𝑡𝑑𝑡 

=
2𝛤 2𝛼 

𝛤2 𝛼 

1

𝑛
 𝜓(𝑋𝑗 )

𝑛

𝑖,𝑗=1

 
𝑡2𝛼−1𝑒−(𝑎+2)𝑡

𝛤 2𝛼 

𝑋𝑗

0

𝑑𝑡 

=
2𝛤 2𝛼 

 𝑎 + 2 2𝛼𝛤2 𝛼 

1

𝑛
 𝜓 𝑋𝑗  

𝑛

𝑖,𝑗=1

𝐺((2 + 𝑎)𝑋𝑗 , 2𝛼), (16) 

where𝐺(𝑥, 2𝛼) is the cdf of the gamma(2𝛼, 1) random variable. 
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I3 =  𝑡2𝑓4(𝑡)𝑒−𝑎𝑡𝑑𝑡
∞

0

 

=
1

𝛤4(𝛼)
 𝑡4𝛼−2𝑒−(𝑎+4)𝑡𝑑𝑡

∞

0

 

   =
𝛤(4𝛼 − 1)

(𝑎 + 4)(4𝛼−1)𝛤4(𝛼)
. (17) 

 

Combining (15)-(17), we obtain the following computation form for 
2, ( ,t)nD X  

𝐷2,𝑛(𝐗,t) =
1

𝑎𝑛2
 𝜓(𝑋𝑖)𝜓(𝑋𝑗 )

𝑛

𝑖,𝑗=1

(1 − 𝑒−𝑎(𝑋𝑗∧𝑋𝑗 ))

−
2𝛤(2𝛼)

(𝑎 + 2)2𝛼𝛤2(𝛼)

1

𝑛
 𝜓(𝑋𝑗 )

𝑛

𝑖,𝑗=1

𝐺(𝑋𝑗 , 2𝛼) +
𝛤(4𝛼 − 1)

(𝑎 + 4)(4𝛼−1)𝛤4(𝛼)
 

(18) 

In the above analysis, we have assumed, without loss of generality, that 𝛽 = 1; otherwise, we 

divide 𝑋𝑗 by 𝛽 to rescale. If 𝛼 and 𝛽 are unknown, which is the practical case, then 𝛼 and 𝛽 must be 

estimated from the sample. In this case, 𝛼 is replaced by 𝛼,  and 𝑋𝑗  is replaced by  𝑋𝑗/𝛽 , 𝑗 = 1, … , 𝑛, 

where 𝛼 and𝛽  are estimates of 𝛼 and 𝛽. Studies have shown that the power of the tests can vary 

depending on the estimation method used. This paper assumes that the parameters 𝛼 and 𝛽 are 
unknown, and we will use the maximum likelihood method to estimate both parameters. 

4. Simulation of critical values and powers 

Monte Carlo simulation is commonly used to handle non-analytically tractable statistical issues. 

In particular, the method generates random samples from a given distribution and utilizes that 

sample to evaluate some measurements of interest. We employ this procedure to calculate specified 

quantiles for the introduced tests and then calculate the powers of the tests. 

The simulation proceeds as follows: We generate a random sample of specified size from 

gamma(𝛼, 𝛽)for a given value of the shape parameter 𝛼 and, without loss of generality, for𝛽 = 1. 

We compute the MLEs for 𝛼 and 𝛽, then calculate the underlined tests' values based on this sample. 

To find a simulated percentile of a given test, we repeat this process 10,000 times, then sort the 

computed test values in increasing order. The 100 (1 ) th
 percentile, 0 1  ,  is the

10000 (1 ) 
th

 ordered value. Our power computations will be for the nominal value 0.05  .  

Critical values for the proposed tests D1 and D2 and the three EDF-based tests; Kolmogorov-

Smirnov (KS), Cramer-von Mises (CM), and Anderson-Darling tests, are simulated and displayed 

in Table 1. The simulation is carried out for samples of sizes n = 10, 20, and 50 and shape 

parameters of values 𝛼 = 0.5 to5.0with increments of length 0.5. 
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Table 1.Critical values for KS, AD, CvM, D1 and D2 tests based on nominal value 0.05. 

n 𝜶 KS AD CvM D1 D2 

2.5% 

D2 

97.5% 95% 

10 0.5 0.280 0.781 0.139 -0.054 0.052 0.011 

10 1.0 0.273 0.740 0.130 -0.085 0.084 0.009 

10 1.5 0.270 0.736 0.126 -0.113 0.115 0.014 

10 2.0 0.271 0.737 0.127 -0.112 0.115 0.014 

10 2.5 0.269 0.736 0.126 -0.119 0.120 0.015 

10 3 0.269 0.742 0.127 -0.121 0.127 0.016 

10 3.5 0.267 0.723 0.125 -0.123 0.125 0.016 

10 4 0.267 0.726 0.123 -0.126 0.128 0.016 

10 4.5 0.267 0.722 0.123 -0.127 0.131 0.017 

10 5.0 0.268 0.723 0.124 -0.127 0.129 0.016 

20 0.5 0.205 0.803 0.144 -0.031 0.032 0.003 

20 1.0 0.197 0.754 0.131 -0.054 0.053 0.004 

20 1.5 0.197 0.761 0.130 -0.068 0.068 0.005 

20 2.0 0.196 0.750 0.128 -0.076 0.076 0.006 

20 2.5 0.195 0.746 0.127 -0.082 0.082 0.007 

20 3 0.194 0.750 0.127 -0.084 0.085 0.007 

20 3.5 0.194 0.756 0.128 -0.087 0.090 0.008 

20 4 0.195 0.740 0.126 -0.089 0.089 0.008 

20 4.5 0.194 0.746 0.125 -0.090 0.090 0.008 

20 5.0 0.195 0.746 0.127 -0.091 0.091 0.008 

50 0.5 0.132 0.811 0.144 -0.018 0.018 0.0008 

50 1.0 0.129 0.771 0.133 -0.031 0.031 0.001 

50 1.5 0.127 0.766 0.131 -0.039 0.040 0.002 

50 2.0 0.127 0.769 0.130 -0.047 0.046 0.002 

50 2.5 0.124 0.749 0.127 -0.051 0.050 0.002 

50 3 0.126 0.740 0.125 -0.055 0.052 0.003 

50 3.5 0.126 0.763 0.128 -0.055 0.054 0.003 

50 4 0.126 0.751 0.127 -0.055 0.057 0.003 

50 4.5 0.125 0.752 0.128 -0.057 0.056 0.003 

50 5.0 0.125 0.748 0.126 -0.056 0.057 0.003 

 

We notice little variations with𝛼 in the critical values of K, CM, AD, and D2 tests; however, D1 

has more variations, yet small ones. All tests, except CM, show a noticeable effect of the sample 

size on the critical values. 

5. Simulated Powers 

To assess the performance of the proposed tests compared to other gamma tests, we will use 

Monte Carlo simulation to compute the powers of these tests against a set of alternatives. First, we 

will apply these tests to test the gamma distribution against three competitive families of 

distributions; the gamma family, G(𝛼, 𝛽), the lognormal family, LN(𝛼, 𝛽), the Weibull family, 

W(𝛼, 𝛽), and the half-normal family, HN(𝛼). The first parameter (𝛼 ) in the two-parameter families 
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is the shape parameter and the second parameter (𝛽) is the scale parameter. We will simulate 

gamma samples with the shape parameters 𝛼 = 0.5,1, 1.5, 2.5,  and 4 and all with the scale 

parameter, without loss of generality, 𝛽 = 1. Before evaluating the underlined tests based on the 

simulated sample, we will use the maximum likelihood method to estimate the gamma parameters. 

Then, we will apply the tests under the null hypothesis that the given sample comes from a gamma 

population with unknown parameters. The powers will be computed for a nominal value of 0.05 and 

samples of sizes 10, 20, and 50. The power computation procedure follows the following steps: 

First, simulate a random sample of size n, say 𝑥1 , … , 𝑥𝑛 , from G(𝛼, 𝛽) with a specific value of 𝛼 and 

with 𝛽 = 1. Second, use the MLE method to estimate each of 𝛼 and 𝛽 as if they are unknown. 

Third, evaluate each underlined test at the sample values and the estimated parameters. Fourth, 

reject the null hypothesis if the computed value of a test lies in the critical region of the 

corresponding test given in Table1; otherwise, the hypothesis is not rejected. Then, repeat these four 

steps 10,000 times to calculate the approximate power as the proportion of rejections.  

Table2 displays the simulated powers when testing gamma distributions against gamma 

alternatives with different shape parameters. Notice that the diagonal blocks represent testing 

gamma(𝛼, 𝛽) against itself. We see that EDF as well as the proposed tests recover the nominal 

value 𝛼 = 0.05. 

Table2. Power of the underlined tests when tested against gamma alternatives at the nominal 

value of 0.05 and n=20. 

Test 

Alt. 

Null G(0.5,1) G(1,1) G(1.5,1) G(2.5,1) G(4,1) 

K 

G(0.5,1) 

 

0.055 

0.055 

0.052 

0.049 

0.055 

0.033 0.039 0.028 0.030 

CM 0.030 0.028 0.024 0.032 

AD 0.036 0.032 0.034 0.041 

D1 0.225 0.336 0.432 0.496 

D2 0.093 0.160 0.218 0.262 

K 

G(1,1) 

 

0.071 0.047 

0.050 

0.049 

0.056 

0.054 

0.053 0.055 0.043 

CM 0.070 0.045 0.051 0.041 

AD 0.068 0.046 0.061 0.048 

D1 0.003 0.107 0.203 0.261 

D2 0.028 0.094 0.157 0.189 

K 

G(1.5,1) 

 

0.062 0.050 0.049 

0.053 

0.051 

0.046 

0.050 

0.036 0.037 

CM 0.056 0.045 0.039 0.038 

AD 0.049 0.042 0.041 0.037 

D1 0.000 0.009 0.095 0.119 

D2 0.018 0.013 0.080 0.086 

K 

G(2.5,1) 

 

0.070 0.051 0.056 0.051 

0.049 

0.052 

0.052 

0.051 

0.037 

CM 0.066 0.054 0.046 0.040 

AD 0.061 0.055 0.046 0.045 

D1 0.000 0.003 0.021 0.061 

D2 0.015 0.006 0.025 0.052 
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K 

G(4,1) 

 

0.063 0.062 0.054 0.043 0.037 

0.035 

0.053 

0.049 

0.046 

CM 0.072 0.060 0.060 0.046 

AD 0.070 0.062 0.060 0.052 

D1 0.000 0.004 0.016 0.030 

D2 0.014 0.006 0.021 0.030 

 

We can notice from Table3 that all considered EDF-based tests (K, CM, and AD) result in poor 

power when gamma distribution with a specific shape parameter is tested against another gamma 

with a different shape. Because as we noticed earlier in Section2, the EDF-based test quantiles, 

particularly the tests' critical values, are not noticeably affected by the value of the gamma shape 

parameter. Except for G[0.5,1], D1 and D2 tests also show low power values.  

 The power values of the tests when testing gamma against lognormal family members are 

displayed in Table3.  

Table 3. The underlined tests' power when testing gamma against lognormal alternatives at 

the nominal value of 0.05 and n=20. 

Test 

Alt. 

Null LN(0,0.5) LN(0,1) LN(0,1.5) LN(0,2) 

K 

G(0.5,1) 

 

0.051 0.154 0.290 0.443 

CM 0.048 0.178 0.351 0.505 

AD 0.070 0.207 0.388 0.524 

D1 0.589 0.594 0.421 0.144 

D2 0.346 0.347 0.201 0.318 

K G(1,1) 

 

0.079 0.194 0.366 0.488 

CM 0.080 0.218 0.417 0.556 

AD 0.099 0.236 0.416 0.562 

D1 0.347 0.217 0.037 0.001 

D2 0.268 0.225 0.095 0.240 

K G(1.5,1) 

 

0.073 0.175 0.342 0.464 

CM 0.081 0.197 0.395 0.547 

AD 0.091 0.208 0.391 0.538 

D1 0.219 0.064 0.006 0.000 

D2 0.168 0.075 0.030 0.146 

K G(2.5,1) 

 

0.078 0.208 0.370 0.481 

CM 0.079 0.225 0.415 0.554 

AD 0.087 0.239 0.421 0.547 

D1 0.131 0.027 0.001 0.000 

D2 0.111 0.046 0.013 0.137 

K G(4,1) 

 

0.066 0.192 0.354 0.480 

CM 0.083 0.246 0.436 0.570 

AD 0.094 0.255 0.426 0.567 

D1 0.098 0.013 0.000 0.000 
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D2 0.095 0.036 0.015 0.140 

 

The following can be mainly noticed in Table3: 

1) When testing against LN (0.5,1), D1 and D2 tests perform much better than K, CM, and AD 

tests. In fact, K, CM, and AD show poor power against LN (0,0.5). We also notice that the 

power of D1 and D2 declines when the gamma distribution shape parameter increases.  

2) Opposite to D1 and D2, the performance of  K, CM, and AD improves with the rise of the 

LN shape parameter. 

3) Compared to D1 and D2, the power of K, CM, and AD is higher when testing each of 

G(1.5,1), G(2.5,1), and G(4,1) against LN(0,1), LN(0,1.5), and LN(0,2.5).  

 

Table 4 shows the simulated powers of the underlined tests when testing gamma against members 

of the Weibull family. 

Table 4. The underlined tests' power when testing gamma against Weibull alternatives at the 

nominal value of 0.05 and n=20. 

Test 

Alt. 

Null Wei(0,0.5) Wei(0,1) Wei(0,1.5) Wei(0,2) 

K 

G(0.5,1) 

 

0.111 0.042 0.034 0.047 

CM 0.125 0.038 0.041 0.051 

AD 0.135 0.042 0.058 0.069 

D1 0.026 0.221 0.419 0.601 

D2 0.254 0.098 0.231 0.370 

K G(1,1) 

 

0.148 0.059 0.061 0.080 

CM 0.169 0.058 0.057 0.098 

AD 0.156 0.062 0.061 0.115 

D1 0.001 0.046 0.182 0.376 

D2 0.213 0.048 0.148 0.309 

K G(1.5,1) 

 

0.144 0.052 0.050 0.069 

CM 0.162 0.048 0.053 0.084 

AD 0.149 0.049 0.057 0.096 

D1 0.000 0.008 0.079 0.249 

D2 0.148 0.011 0.076 0.203 

K G(2.5,1) 

 

0.150 0.060 0.058 0.088 

CM 0.170 0.067 0.053 0.092 

AD 0.149 0.061 0.053 0.098 

D1 0.000 0.004 0.030 0.164 

D2 0.128 0.007 0.036 0.142 

K G(4,1) 

 

0.147 0.057 0.056 0.076 

CM 0.175 0.067 0.069 0.107 

AD 0.165 0.064 0.074 0.117 

D1 0.000 0.001 0.028 0.135 
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D2 0.122 0.004 0.039 0.133 

 

We can conclude the following from Table 4: 

1) The three EDF tests have low powers when testing gamma against almost all considered 

Weibull alternatives regardless of the gamma shape.  

2) The proposed D1 and D2 tests and the EDF tests show low performance when testing 

gamma against the considered  Weibull alternatives, except the case G(0.5,1), for which D1 

and D2 show reasonable power values, especially for Wei(1.5,1) and Wei(2,1) alternatives.  

The powers of the considered tests against Halfnormal family members are displayed in Table 5. 

Table 5. The underlined tests power when testing gamma against Halfnormal alternatives at 

the nominal value of 0.05 and n=20. 

Test 

Alt. 

Null HN(0.5) HN (1) HN (1.5) HN (5) 

K 

G(0.5,1) 

 

0.0635 0.0620 0.0735 0.0655 

CM 0.0610 0.0615 0.0760 0.0780 

AD 0.0780 0.0780 0.0985 0.0965 

D1 0.4195 0.4120 0.4020 0.4140 

D2 0.2335 0.2425 0.2420 0.2395 

K G(1,1) 

 

0.0955 0.0940 0.0825 0.0860 

CM 0.0980 0.1125 0.0940 0.0950 

AD 0.1115 0.1190 0.1045 0.1040 

D1 0.1670 0.1800 0.1500 0.1680 

D2 0.1525 0.1680 0.1380 0.1595 

K G(1.5,1) 

 

0.0860 0.0715 0.0845 0.0910 

CM 0.0915 0.0855 0.0935 0.0910 

AD 0.0935 0.0875 0.0945 0.0960 

D1 0.0615 0.0570 0.0630 0.0655 

D2 0.0665 0.0685 0.0655 0.0720 

K G(2.5,1) 

 

0.0980 0.0855 0.1020 0.0930 

CM 0.1045 0.0870 0.1070 0.0955 

AD 0.1075 0.0860 0.1105 0.0990 

D1 0.0305 0.0260 0.0320 0.0275 

D2 0.0465 0.0385 0.0450 0.0400 

K G(4,1) 

 

0.0940 0.0970 0.0790 0.0840 

CM 0.1140 0.1125 0.1000 0.0955 

AD 0.1175 0.1210 0.1095 0.1085 

D1 0.0160 0.0145 0.0125 0.0150 

D2 0.0340 0.0275 0.0280 0.0280 

 

Table5 shows that all the considered tests have low power against Halfnormal alternatives except 

for G(0.5,1) when D1 and D2 have reasonable power values. 
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6. Conclusions 

The proposed test shows higher power than EDF tests (K, CM, and AD) when testing against 

lognormal distributions with inrise shape parameters. Moreover, when testing against family of 

gamma distribution alternatives with shape parameter increases, we notice that the power of D1 and 

D2 declines. We also notice that the three EDF tests have low powers when testing gamma against 

almost all considered Weibull alternatives regardless of the gamma shape.  Finally, all considered 

tests have lowpower against Halfnormal alternatives except for G(0.5,1) when D1 and D2 have 

reasonable power values. 
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