Secondaryk-Kernel Symmetric Intuitionistic Fuzzy Matrices

G. Punithavalli ${ }^{1, a)}$ and M.Anandhkumar ${ }^{2, b)}$
${ }^{1}$ Assistant Professor,Department of Mathematics Annamalai University (Deputed to Government Arts College, Chidambaram)
${ }^{\text {a }}$ punithavarman78@gmail.com
${ }^{2}$ Assistant Professor,Department of Mathematics, IFET College of Engineering((Autonomous), Villupuram, Tamilnadu, India.
${ }^{\text {b) }}$ anandhkumarmm@mail.com

Article Info

Page Number: 4519-4530
Publication Issue:
Vol 71 No. 4 (2022)

Article History
Article Received: 25 March 2022
Revised: 30 April 2022
Accepted: 15 June 2022
Publication: 19 August 2022

Abstract

The secondary k- kernel symmetric Intuitionistic fuzzy matrices are described in this studyas well as examples.Discussion is held regarding the relationships among s- k- kernel symmetric Intuitionistic fuzzy matrix, s- kernel symmetric Intuitionistic fuzzy matrix, k- kernel symmetric intuitionistic fuzzy matrix and kernel symmetric intuitionistic fuzzy matrix.For a matrix to be an Intuitionistic fuzzy matrix with an s-k kernel symmetric, necessary and sufficient conditions are established.

Keywords:Intuitionisticfuzzymatrix,kernelsymmetric Intuitionisticfuzzymatrix,s-k-kernelsymmetric Intuitionistic fuzzymatrix.

1. Introduction

We deal withIntuitionistic fuzzy matrices, concluded a fuzzy algebra F with finding $[0,1]$ under maximum and minimum operations, are the only matrix taken into consideration in this study. If $R(A)=R\left(A^{T}\right)$, then a Intuitionistic fuzzy matrix A is range symmetric Intuitionistic fuzzy matric, and if $N(A)=N\left(A^{T}\right)$, then it is kernel symmetric Intuitionistic fuzzy matrix. It is commonly known that the concepts of range and kernel symmetry apply to complex matrices. For an Intuitionistic fuzzy matrix, this fails.This inspired us to research s-k kernel symmetric Intuitionistic fuzzy matrices. The study of secondary symmetric Intuitionistic fuzzy matrices whose elements are symmetric about the secondary diagonal, was started by Lee [1].Communication theory applications of persymmetric fuzzy matrices, or matrices that are symmetric about both the diagonals, have been examined by

Cantoni and Paul [2]. As a generalization of s-real and s- hermitian matrices, Hill and Waters [3] created a theory of k-real and k-hermitian matrices.Meenakshi and Jayashree [5] build k- kernel symmetric fuzzy matrices in a manner similar to how k-real and k-hermitian of a complex matrix [3] are developed.

As a generalization of secondary hermitian and hermitian matrices, Meenakshi and Krishnamoorthy[6] introduced the idea of s-k hermitian matrices.In this study, as a special instance of the findings on complex matrices discovered in [7][8].we extend [9] the notion of s-k kernel symmetric intuitionistic fuzzy matrix and Equivalent conditions for various g-inverses of secondary k- kernel Intuitionistic fuzzy matricesto be secondary K-Kernel symmetric are determined.

2. Preliminaries

Let K be the related permutation matrix, and let ' k ' be a fixed product of disjoint transpositions in $S_{n}=\{1,2, \ldots n\}$. Throughout, let v be the permutation intuitionistic fuzzy matrix with units in its secondary diagonal.

Let the function is defined $\kappa(x)=\left(x_{k[1]}, x_{k[2]}, x_{k[3], \ldots,}, x_{k[n]} \in F_{n \times 1}\right.$ for $x=x_{1}, x_{2}, \ldots, x_{n}$ $\in \mathrm{F}_{[1 \times n]}$, where K is involuntary, the following are satisfied the associated permutation matrix where $\quad \mathrm{K}$ is a permutation matrix. $\left(\mathrm{P}_{.2 .1}\right) K K^{T} \square K^{T} K \square I_{n}, K \square K^{T}, K^{2} \square I \quad$ and $\square(x) \square K x$

Bythedefinitionof V,
($\mathrm{P} \cdot 2.2$) $\quad V \square V^{T}, V V^{T} \square V^{T} V \square I_{n}$ and $V^{2} \square I$
$(\mathrm{P} \cdot 2.3) N(A) \square N(A V), N(A) \square N(A K)$
$(\mathrm{P} \cdot 2.4) \quad(A V)^{T} \square V A^{T},(V A)^{T} \square A^{T} V$
If A^{+}exists,then
$(\mathrm{P} \cdot 2.5) \quad(A V) \square V A^{\square},(V A) \square A^{\square} V$
Definition2.1.Intuitionistic fuzzymatrix
AiskernelsymmetricIntuitionistic fuzzymatrixiff $N(A) \square N\left(A^{T}\right)$.

Lemma2.1.For Intuitionistic fuzzymatrix A belongs to F_{n} andapermutationIntuitionistic
fuzzymatrix P, null space of A equal to null space of B iff $N\left(P A P^{T}\right) \square N\left(P B P^{T}\right)$.
Lemma2.2.Intuitionistic fuzzymatrix $\mathrm{A}=\mathrm{KA}^{\mathrm{T}} \quad \mathrm{K} \square K A=(K A)(K A)^{T}(K A)$, Intuitionistic fuzzymatrix $\square \square A K=(A K)(A K)^{T}(A K)$ Intuitionistic fuzzymatrix.

3. Secondaryk-kernelsymmetricIntuitionistic fuzzy matrices

Definition3.1.ForIntuitionistic fuzzymatrixA belongs to
F_{n} iss -symmetric Intuitionistic fuzzymatrixiff $A \square V A^{T} V$
Definition3.2.ForIntuitionistic fuzzymatrixA belongs to F_{n} iss-kernelsymmetricIntuitionistic fuzzymatrix if $N(A) \square N\left(V A^{T} V\right)$.

Definition3.3.ForIntuitionistic fuzzymatrixA belongs to F_{n} iss-k-kernelsymmetric Intuitionistic fuzzymatrixif $N(A) \square N\left(K V A^{T} V K\right)$.

Lemma3.1.AIntuitionistic fuzzymatrixA belongs to F_{n} iss-kernelsymmetric Intuitionistic fuzzymatrix $\square \square \square$ iskernelsymmetric Intuitionistic fuzzymatrix $\square V A$ is kernel symmetric Intuitionistic fuzzymatrix.

Proof.

A iss-kernelsymmetric Intuitionistic fuzzymatrix [ByDefinition3.2][ByP.2.2]

$$
\square N(A) \square N\left(V A^{T} V\right)
$$

$\square N(A V) \square N\left((A V)^{T}\right)$
$\square N\left(V A V V^{T}\right) \square N\left(V V A^{T} V\right)$
$\square N(V A) \square N\left((V A)^{T}\right)$
$\square V A$ iskernelsymmetric.

Remark 3.1.To be more specific , when $\kappa(i)=i$ for $i=1,2, \ldots, n$ then the corresponding Intuitionistic fuzzy permutation matrix K reduces to the identity Intuitionistic fuzzy matrix and Definition (3.3) reduces to $\mathrm{N}(\mathrm{A})=\mathrm{N}\left(\mathrm{VA}^{\mathrm{T}} \mathrm{V}\right)$ implying that the matrix is s kernel symmetric.

Remark3.2. The equivalent permutation intuitionistic fuzzy matrix K simplifies to V for $\mathrm{k}(\mathrm{i})=\mathrm{n}$ $\mathrm{i}+1 . \mathrm{N}(\mathrm{A})=\mathrm{N}\left(\mathrm{A}^{\mathrm{T}}\right)$ in definition (3.3) implies that A is a kernel symmetric intuitionistic fuzzy matrix.

Remark3.3.We observe that $s-k$-symmetric Intuitionistic fuzzy matrix is s-k-kernel symmetric Intuitionistic fuzzy matrix because if A is $s-k$-symmetric then $A=K V A T V K$, which means that A is s-k-kernel symmetric Intuitionistic fuzzy matrix, then $N(A)=N\left(K V A^{T} V K\right)$.

The reverse, however, is not always true. This V isdemonstrated in the example that follows.
Example3.1.Fork=(1,2), $A=\left[\begin{array}{cc}\langle 1,0\rangle & \langle 0.2,0.3\rangle \\ \langle 0.2,0.3\rangle & \langle 0.4,0.3\rangle\end{array}\right]$,
$K V A^{T} V K=\left[\begin{array}{ll}\langle 1,0\rangle & \langle 0,0\rangle \\ \langle 0,0\rangle & \langle 1,0\rangle\end{array}\right]\left[\begin{array}{ll}\langle 0,0\rangle & \langle 1,0\rangle \\ \langle 1,0\rangle & \langle 0,0\rangle\end{array}\right]\left[\begin{array}{cc}\langle 1,0\rangle & \langle 0.2,0.3\rangle \\ \langle 0.2,0.3\rangle & \langle 0.4,0.3\rangle\end{array}\right]$

$$
\left[\begin{array}{cc}
<0,0\rangle & <1,0\rangle \\
\langle 1,0\rangle & \langle 0,0\rangle
\end{array}\right]\left[\begin{array}{cc}
<1,0\rangle & <0,0\rangle \\
<0,0\rangle & <1,0\rangle
\end{array}\right],
$$

$K V A^{T} V K=\left[\begin{array}{cc}<0.4,0> & <0.2,0\rangle \\ <0.2,0> & <1,0.2>\end{array}\right] \neq A$
Here $A \square K A^{T} K$
Therefore A issymmetric IFM, κ-symmetric IFM,s-к-kernelsymmetricIFM butnots- κ-symmetric IFM.

Example3.2 .For $\mathrm{k}=(1,2) V=\left[\begin{array}{ll}\langle 0,0\rangle & \langle 1,0\rangle \\ \langle 1,0\rangle & \langle 0,0\rangle\end{array}\right], A=\left[\begin{array}{ll}\langle 0.5,0.2\rangle & \langle 0.4,0.2\rangle \\ \langle 0.4,0.2\rangle & \langle 0.5,0.2\rangle\end{array}\right]$
$K V A^{T} V K=\left[\begin{array}{cc}<1,0\rangle & <0,0\rangle \\ \langle 0,0\rangle & <1,0\rangle\end{array}\right]\left[\begin{array}{cc}<0,0\rangle & <1,0\rangle \\ <1,0\rangle & <0,0\rangle\end{array}\right]\left[\begin{array}{ll}<0.5,0.2\rangle & <0.4,0.2\rangle \\ <0.4,0.2> & <0.5,0.2>\end{array}\right]$
$\left[\begin{array}{cc}\langle 0,0\rangle & \langle 1,0\rangle \\ \langle 1,0\rangle & \langle 0,0\rangle\end{array}\right]\left[\begin{array}{ll}\langle 1,0\rangle & \langle 0,0\rangle \\ \langle 0,0\rangle & \langle 1,0\rangle\end{array}\right]$
$K V A^{T} V K=\left[\begin{array}{ll}<0.5,0.2> & <0.4,0.2\rangle \\ <0.4,0.2> & <0.5,0.2>\end{array}\right]=A$

A issymmetric,s-к-symmetricandhencetherefores-k-kernelsymmetric.

Example3.3.Fork=(1,2)(3)
$K=\left[\begin{array}{ccc}\langle 0,0\rangle & \langle 1,0\rangle & <0,0\rangle \\ \langle 1,0\rangle & \langle 0,0\rangle & \langle 0,0\rangle \\ \langle 0,0\rangle & \langle 0,0\rangle & \langle 1,0\rangle\end{array}\right], V=\left[\begin{array}{ccc}\langle 0,0\rangle & \langle 0,0\rangle & \langle 1,0\rangle \\ \langle 0,0\rangle & \langle 1,0\rangle & \langle 0,0\rangle \\ \langle 1,0\rangle & \langle 0,0\rangle & \langle 0,0\rangle\end{array}\right]$
$K \neq V, K \neq I$ and $K V \neq V K$
$A=\left[\begin{array}{ccc}\langle 0,0\rangle & \langle 0,0\rangle & \langle 1,0\rangle \\ \langle 0.2,0.3\rangle & \langle 1,0\rangle & \langle 0,0\rangle \\ \langle 0.2,0.3\rangle & <0.4,0.5\rangle & \langle 0,0\rangle\end{array}\right]$
$K V=\left[\begin{array}{ccc}\langle 0,0\rangle & \langle 1,0\rangle & <0,0\rangle \\ \langle 1,0\rangle & \langle 0,0\rangle & \langle 0,0\rangle \\ \langle 0,0\rangle & \langle 0,0\rangle & \langle 1,0\rangle\end{array}\right]\left[\begin{array}{ccc}\langle 0,0\rangle & \langle 0,0\rangle & \langle 1,0\rangle \\ \langle 0,0\rangle & \langle 1,0\rangle & \langle 0,0\rangle \\ \langle 1,0\rangle & \langle 0,0\rangle & \langle 0,0\rangle\end{array}\right]$
$K V=\left[\begin{array}{ccc}\langle 0,0\rangle & <1,0\rangle & <0,0\rangle \\ \langle 0,0\rangle & \langle 0,0\rangle & <1,0\rangle \\ \langle 1,0\rangle & \langle 0,0\rangle & <0,0\rangle\end{array}\right]$
$V K=\left[\begin{array}{ccc}\langle 0,0\rangle & <0,0\rangle & <1,0\rangle \\ \langle 0,0\rangle & <1,0\rangle & \langle 0,0\rangle \\ \langle 1,0\rangle & <0,0\rangle & <0,0\rangle\end{array}\right]\left[\begin{array}{ccc}\langle 0,0\rangle & \langle 1,0\rangle & <0,0\rangle \\ \langle 1,0\rangle & \langle 0,0\rangle & <0,0\rangle \\ \langle 0,0\rangle & <0,0\rangle & <1,0\rangle\end{array}\right]$
$V K=\left[\begin{array}{ccc}\langle 0,0\rangle & \langle 0,0\rangle & <1,0\rangle \\ \langle 1,0\rangle & <0,0\rangle & <0,0\rangle \\ \langle 0,0\rangle & <1,0\rangle & <0,0\rangle\end{array}\right]$
$K V A^{T} V K=\left[\begin{array}{ccc}\langle 0,0\rangle & \langle 1,0\rangle & \langle 0,0\rangle \\ \langle 0,0\rangle & \langle 0,0\rangle & \langle 1,0\rangle \\ \langle 1,0\rangle & \langle 0,0\rangle & \langle 0,0\rangle\end{array}\right]\left[\begin{array}{ccc}\langle 0,0\rangle & \langle 0.2,0.3\rangle & \langle 0.2,0.3\rangle \\ \langle 0,0\rangle & \langle 1,0\rangle & \langle 0.4,0.5\rangle \\ \langle 1,0\rangle & \langle 0,0\rangle & \langle 0,0\rangle\end{array}\right]\left[\begin{array}{ccc}\langle 0,0\rangle & \langle 0,0\rangle & \langle 1,0\rangle \\ \langle 1,0\rangle & \langle 0,0\rangle & \langle 0,0\rangle \\ \langle 0,0\rangle & \langle 1,0\rangle & \langle 0,0\rangle\end{array}\right]$
$K V A^{T} V K=\left[\begin{array}{ccc}\langle 1,0\rangle & \langle 0.4,0\rangle & \langle 0,0\rangle \\ \langle 0,0\rangle & \langle 0,0\rangle & \langle 1,0\rangle \\ \langle 0.2,0\rangle & <1,0\rangle & \langle 0,0\rangle\end{array}\right] \neq A$
$A \neq K V A^{T} V K$
Hence A isnots-k-symmetric.But s-k- kernel symmetric.
i.e) $N(A) \square N\left(K V A^{T} V K\right)=<0,0>$

Theorem3.1.For Intuitionistic fuzzymatrix A belongs to F_{n} thefollowingareequivalent
(1) $\mathrm{N}(\mathrm{A})=\mathrm{N}\left(\mathrm{KVA}^{\mathrm{T}} \mathrm{VK}\right)$
(2) $\mathrm{N}(\mathrm{KVA})=\mathrm{N}\left(\left(\mathrm{KVA}^{\mathrm{T}}\right)\right.$
(3) $\mathrm{N}(\mathrm{AKV})=\mathrm{N}\left((A K V)^{\mathrm{T}}\right)$
(4) $\mathrm{N}(\mathrm{AVK})=\mathrm{N}\left((A V K)^{\mathrm{T}}\right)$
(5) $\mathrm{N}(\mathrm{VKA})=\mathrm{N}\left((\mathrm{VKA})^{\mathrm{T}}\right)$
(6) $\mathrm{N}(\mathrm{VA})=\mathrm{N}\left(\mathrm{K}(\mathrm{VA})^{\mathrm{T}} \mathrm{K}\right)$
(7) $\mathrm{N}(\mathrm{AV})=\mathrm{N}\left(\mathrm{K}(\mathrm{AV})^{\mathrm{T}} \mathrm{K}\right)$
(8) $\mathrm{N}(\mathrm{AK})=\mathrm{N}\left(\mathrm{V}(\mathrm{AK})^{\mathrm{T}} \mathrm{V}\right)$
(9) $\mathrm{N}(\mathrm{KA})=\mathrm{N}\left(\mathrm{V}(\mathrm{KA})^{\mathrm{T}} \mathrm{V}\right)$
(10) $\mathrm{N}\left(\mathrm{A}^{\mathrm{T}}\right)=\mathrm{N}(\mathrm{KVA})$
(11) $\mathrm{N}(\mathrm{A})=\mathrm{N}\left(\mathrm{KVA}^{\mathrm{T}}\right)$

Proof:

$\mathrm{N}(\mathrm{A})=\mathrm{N}\left(\mathrm{KVA}^{\mathrm{T}} \mathrm{VK}\right)$
$\square \mathrm{N}(\mathrm{A})=\mathrm{N}\left(\mathrm{KVA}^{\mathrm{T}}\right)$
(Definition 3.2)
$\square \mathrm{N}(\mathrm{AVK})=\mathrm{N}\left((\mathrm{AVK})^{\mathrm{T}}\right) \quad$ (by $\left.\mathrm{P}_{2.3}\right)$V \square is kernel symmetricVK)(AVK)(VK) (kernel symmetric Lemma 2.1)VKA is kernelsymmetric(s- kernel symmetric)
Therefore , (1)iff (4)iff (5) iff(9) holds
(2)iff(6)

```
N(KVA)=N((KVA)
N(K
N(VA)=N(VA)
N(VA)=N(K(VA)
```

Therefore , VA is K kernel symmetric
(2)iff(6) holds
(2) iff (10)
$\square \mathrm{N}(\mathrm{KVA})=\mathrm{N}\left((\mathrm{KVA})^{T}\right)$
$\square \mathrm{N}(\mathrm{KVA})=\mathrm{N}\left(\mathrm{A}^{\mathrm{T}}\right)$

Thus(2)iff(10)hold.
(4)iff(11)
$\square \mathrm{N}(\mathrm{AVK})=\mathrm{N}\left((\mathrm{AVK})^{\mathrm{T}}\right)$
$\square \mathrm{N}(\mathrm{A})=\mathrm{N}\left(\mathrm{KVA}^{\mathrm{T}}\right)$
(By P. 2.3)
(4)iff(11) hold
(1) iff (4) iff (7)
$\square \mathrm{N}(\mathrm{A})=\mathrm{N}\left(\mathrm{KVA}^{\mathrm{T}} \mathrm{VK}\right)$$\mathrm{N}(\mathrm{A})=\mathrm{N}\left((\mathrm{AVK})^{\mathrm{T}}\right)$$\mathrm{N}(\mathrm{AVK})=\mathrm{N}\left((\mathrm{AVK})^{\mathrm{T}}\right) \quad($ AVK is kernel symmetric $)$$\mathrm{N}\left(\mathrm{AVKK}^{\mathrm{T}}\right)=\mathrm{N}\left(\left(\mathrm{AVKK}^{\mathrm{T}}\right)^{\mathrm{T}}\right)$
$\square \mathrm{N}(\mathrm{AV})=\mathrm{N}\left((A V)^{\mathrm{T}}\right)$
$\square \mathrm{N}(\mathrm{AV})=\mathrm{N}\left(\mathrm{K}(\mathrm{AV})^{\mathrm{T}} \mathrm{K}\right) \quad$ (AV is k - kernel symmetric)
(1) iff (4) iff (7) hold
(3)iff(8)

$$
\begin{aligned}
& \mathrm{N}(\mathrm{AKV})=\mathrm{N}\left((A K \mathrm{~V})^{\mathrm{T}}\right) \\
& \mathrm{N}(\mathrm{AK})=\mathrm{N}\left(\mathrm{~V}(\mathrm{AK})^{\mathrm{T}} \mathrm{~V}\right)
\end{aligned}
$$

$\square \square \mathrm{iff}(8)$ holds
HencetheTheorem
Corollary3.1.For Intuitionistic fuzzymatrix A belongs to F_{n} thefollowingareequivalent
(1) $\mathrm{N}(\mathrm{A})=\mathrm{N}\left(\mathrm{VA}^{\mathrm{T}} \mathrm{V}\right)$
(2) $\mathrm{N}(\mathrm{VA})=\mathrm{N}\left((\mathrm{VA})^{\mathrm{T}}\right)$
(3) $\mathrm{N}(\mathrm{AV})=\mathrm{N}\left((A V)^{\mathrm{T}}\right.$
(4) $N\left(A^{T}\right)=N(V A)$
(5) $\mathrm{N}(\mathrm{A})=\mathrm{N}\left(\mathrm{VA}^{\mathrm{T}}\right)$

Proof: (1) implies (2)
$\mathrm{N}(\mathrm{A})=\mathrm{N}\left(\mathrm{VA}^{\mathrm{T}} \mathrm{V}\right)$
$\mathrm{N}(\mathrm{VA})=\mathrm{N}\left(\mathrm{VVA}{ }^{\mathrm{T}} \mathrm{V}\right)$$N(V A)=N\left(V^{2} A^{T} V\right)$
$N(V A)=N\left((V A)^{T}\right)$
(1) implies (2)hold
(1) implies (3)
$\square \mathrm{N}(\mathrm{A})=\mathrm{N}\left(\mathrm{VA}^{\mathrm{T}} \mathrm{V}\right)$
$\square \square \square \square \square \square \mathrm{N}(\mathrm{AV})=\mathrm{N}\left(\mathrm{VA}^{\mathrm{T}} \mathrm{VV}\right)$
$\square \square \square \square \square \square \square \mathrm{N}(\mathrm{AV})=\mathrm{N}\left(\mathrm{VA}^{\mathrm{T}} \mathrm{V}^{2}\right)$
$\square \square \square \square \square \square \square \mathrm{N}(\mathrm{AV})=\mathrm{N}\left(\mathrm{AV}^{\text { }}\right)$
(1)

> implies (3) holds
(1) implies (4)
$\mathrm{N}\left(\mathrm{A}^{\mathrm{T}}\right)=\mathrm{N}\left(\left(\mathrm{VA} \mathrm{V}^{\mathrm{T}}\right)^{\mathrm{T}}\right)$
$N\left(A^{T}\right)=N\left(\left(V A^{T} V\right)^{T}\right)$
$\mathrm{N}\left(\mathrm{A}^{\mathrm{T}}\right)=\mathrm{N}(\mathrm{VA})$
(1) implies (4) holds
(1) implies (5) easily verified
(5) implies (1) easily
verified
HencetheTheorem
Lemma3.2.For Intuitionistic fuzzymatrix A belongs to F_{n}, if $(V K A)^{+}$exists $\square(\mathrm{KA})^{+}$exists $\square \mathrm{A}^{+}$exists.

Proof: $(\text { VKA })^{+}$existsiff $(V K A)^{T} \in(V K A)\{1\}$
iff $V K A=V K A(V K A)^{T} V K A$
iff $V K A=V K A(K A)^{T} V V(K A)$
iff $K A=K A(K A)^{T}(K A)$
iff $(K A)^{+}$exists iff A^{+}exists [Lemma3.4in[8]]

Lemma3.3 ForIntuitionistic fuzzymatrix A belongs to F_{n} if (KVA) ${ }^{+}$exists $\square \mathrm{A}^{+}$exists.
Proof:(A) ${ }^{+}$existsiff (VA) ${ }^{+}$exist
iff $\mathrm{VA}=(\mathrm{VA})(\mathrm{VA})^{+}(\mathrm{VA})$
$K V A=K(V A)(V A)^{+}(V A)$
$K V A=K(V A)(V A)^{+} K K(V A)$
$K V A=(K V A)(K V A)^{+}(K V A)$
$(K V A)^{T} \in(K V A)\{1\}$
Therefore, (KVA) ${ }^{+}$exist.
Theorem3.2.For Intuitionistic fuzzymatrix A belongs to F_{n} .Thenanytwoofthefollowingconditionsimply theotherone.
(1) $\mathrm{N}(\mathrm{A})=\mathrm{N}\left(\mathrm{KA}^{\mathrm{T}} \mathrm{K}\right)$
(2) $N(A) \square N\left(K V A^{T} V K\right)$.
(3) $\quad \mathrm{N}\left(\mathrm{A}^{\mathrm{T}}\right)=\mathrm{N}\left((\mathrm{KAV})^{\mathrm{T}}\right)$

Proof: A

(1) \& (2) $\square(3)$

ByTheorem3.1
$N(A) \square N\left(K V A^{T} V K\right)$ implies $\mathrm{N}(\mathrm{A})=\mathrm{N}\left((\mathrm{AVK})^{\mathrm{T}}\right)$
$N($ KAK $) \square N\left(V A^{T} K\right) \quad($ Lemma 2.1)
$N(\mathrm{~A}) \square N\left(K A^{T} K\right)$
$N(\mathrm{KAK}) \square N\left(A^{T}\right) \quad$ (Lemma 2.1)
$N\left(A^{T}\right)=\mathrm{N}\left((\mathrm{KAV})^{\mathrm{T}}\right)$
Therefore, (3) hold
(1) \& (3) $\Rightarrow(2)$
$\mathrm{N}(\mathrm{A})=\mathrm{N}\left(\mathrm{KA}^{\mathrm{T}} \mathrm{K}\right)$ implies $\mathrm{N}(\mathrm{KAK})=\mathrm{N}\left(\mathrm{A}^{\mathrm{T}}\right)$
Hence (1) and (3) $\mathrm{N}(\mathrm{KAK})=\mathrm{N}\left((\mathrm{KAV})^{\mathrm{T}}\right)$
$\mathrm{N}(\mathrm{A})=\mathrm{N}\left(\mathrm{KVA}^{\mathrm{T}}\right)$
(Lemma 2.1)
A is s-k kernel symmetric
Therefore (2) holds.
(2) $\&(3) \Rightarrow(1)$

A is s-k kernel symmetric
$\mathrm{N}(\mathrm{A})=\mathrm{N}\left(\mathrm{KVA}^{\mathrm{T}}\right)$
$\mathrm{N}(\mathrm{KAK})=\mathrm{N}\left(\left(\mathrm{VA}^{\mathrm{T}} \mathrm{K}\right)^{\mathrm{T}}\right)$
Hence (2) and (3)
$\mathrm{N}(\mathrm{KAK})=\mathrm{N}\left(\mathrm{A}^{\mathrm{T}}\right)$
$\mathrm{N}(\mathrm{A})=\mathrm{N}\left(\mathrm{KA}^{\mathrm{T}} \mathrm{K}\right)$
therefore (1) hold.
Hence the theorem.

4. s- k-Kernel Symmetric IFM Regular IFM

This section has established the existence of several generalized inverses of IFM in F_{n}. It is determined additional comparable conditions for different g-inverses of an s-k-kernel symmetric IFM to be s-k kernel symmetric IFM. Generalized inverses belonging to the sets $\mathrm{A}\{1,2\}, \mathrm{A}\{1,2$, $3\}$ and $\mathrm{A}\{1,2,4\}$ of s-k-kernel symmetric IFM A are characterized.

Definition:4.1The IFM $A \in F_{m \times n}$ is said to be regular (or g-inverse) if there exists another IFM, $\mathrm{X} \in \mathrm{F}_{\mathrm{n} \times \mathrm{m}}$ such that $\mathrm{AXA}=\mathrm{A}$. The generalized inverse of an IFM is not unique that is an IFM has many generalized inverses exists .

Definition:4.2 For IFM $A \in F_{m \times n}$ and another IFM, $X \in F_{n \times m}$ satisfies the given equation $A X A=A$ and $(A X)^{T}=A X$, then X is called least square generalized inverse of A which is called it as $\mathrm{A}\{1,3\}$ inverses.

Definition:4.3 For IFM A and another IFM, $X \in F_{n \times m}$ satisfies the given equation $A X A=A$ and $(X A)^{T}=X A$, then X is called minimum norm generalized inverse of A which is called it as $\mathrm{A}\{1,4\}$ inverses.
Definition:4.4 For IFM (XA) $\in \mathrm{F}_{\mathrm{m} \times \mathrm{n}}$ and another IFM, $(X A)^{T} \in F_{n \times m}$ is said to be Moore Penrose inverse of XA if $\mathrm{XA}(\mathrm{XA})^{\mathrm{T}} \mathrm{XA}=\mathrm{XA}$, $(\mathrm{XA})^{\mathrm{T}} \mathrm{XA}(\mathrm{XA})^{\mathrm{T}}=(\mathrm{XA})^{\mathrm{T}}$,
$\left[\mathrm{XA}(\mathrm{XA})^{\mathrm{T}}\right]^{\mathrm{T}}=\mathrm{XA}(\mathrm{XA})^{\mathrm{T}}$ and $\left[(X A)^{\mathrm{T}} \mathrm{XA}\right]^{\mathrm{T}}=(\mathrm{XA})^{\mathrm{T}} \mathrm{XA}$.
The Moore Penrose inverse of XA is denoted by (XA) ${ }^{+}$
Theorem 4.1: Let A belongs to F_{n}, X belongs to $A\{1,2\}$ and $A X, X A$, are $s-\kappa$-Kernelsymmetric IFM. Then A is s- κ-kernel symmetric IFM $\Leftrightarrow \mathrm{X}$ is $\mathrm{s}-\kappa-$ kernel symmetric IFM.

Proof: $\mathrm{N}(\mathrm{KVA})=\mathrm{N}(\mathrm{KVAXA}) \subseteq \mathrm{N}(\mathrm{XA})$ [since $\mathrm{A}=\mathrm{AXA}$]
$=\mathrm{N}(X V V A)=\mathrm{N}(X V K K V A) \subseteq \mathrm{N}($ KVA $)$
Hence, $\mathrm{N}(\mathrm{KVA})=\mathrm{N}(\mathrm{XA})$
$=\mathrm{N}\left(\mathrm{KV}(\mathrm{XA})^{\mathrm{T}} \mathrm{VK}\right)$ [XA is s- κ-kernel symmetric IFM]
$=N\left(A^{T} X^{T} V K\right)$
$=\mathrm{N}\left(\mathrm{X}^{\mathrm{T}} \mathrm{VK}\right)$
$=\mathrm{N}\left((\mathrm{KVX})^{\mathrm{T}}\right)$
$\mathrm{N}\left((\mathrm{KVA})^{\mathrm{T}}\right)=\mathrm{N}\left(\mathrm{A}^{\mathrm{T}} \mathrm{VK}\right)$
$=\mathrm{N}\left(\mathrm{X}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}} \mathrm{VK}\right)$
$=\mathrm{N}\left((\mathrm{KVAX})^{\mathrm{T}}\right)$
$=\mathrm{N}(\mathrm{KVAX})$ [is $\mathrm{s}-\kappa-$ kernel symmetric $]$
= N (KVX)
KVX is kernel symmetric $\Leftrightarrow \mathrm{N}(\mathrm{KVA})=\mathrm{N}\left((\mathrm{KVA})^{\mathrm{T}}\right)$
$\Leftrightarrow \mathrm{N}\left((\mathrm{KVX})^{\mathrm{T}}\right)=\mathrm{N}(\mathrm{KVX})$
$\Leftrightarrow K V X$ is kernel symmetric
$\Leftrightarrow X$ is s- κ-kernel symmetric.

Theorem 4.2: Let A belongs to $F_{n}, X \in A\{1,2,3\}, N(K V A)=N\left((K V X)^{T}\right)$.Then A is $s-\kappa$-Kernel symmetric IFM $\Leftrightarrow \mathrm{X}$ is s- κ-kernel symmetric IFM.
Proof: Since X belongs to $A\{1,2,3\}$ we have $A X A=A, X A X=X,(A X)^{T}=A X$
$\mathrm{N}\left((\mathrm{KVA})^{\mathrm{T}}\right)=\mathrm{N}\left(\mathrm{X}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}} \mathrm{VK}\right) \quad[$ By using $\mathrm{A}=\mathrm{AXA}]$
$=\mathrm{N}\left(\mathrm{KV}(\mathrm{AX})^{\mathrm{T}}\right)$
$=\mathrm{N}\left((\mathrm{AX})^{\mathrm{T}}\right) \quad\left[\right.$ By P $\left._{.2 .3}\right]$
$=\mathrm{N}(\mathrm{AX})\left[(\mathrm{AX})^{\mathrm{T}}=\mathrm{AX}\right]$
$=\mathrm{N}(\mathrm{X}) \quad[$ By using $\mathrm{X}=\mathrm{XAX}]$
$=\mathrm{N}(\mathrm{KVX}) \quad\left[\right.$ By P $\left.\mathrm{P}_{2.3}\right]$
KVA is kernel symmetric IFM $\Leftrightarrow \mathrm{N}(\mathrm{KVA})=\mathrm{N}\left((\mathrm{KVA})^{\mathrm{T}}\right)$
$\Leftrightarrow \mathrm{N}\left((\mathrm{KVX})^{\mathrm{T}}\right)=\mathrm{N}(\mathrm{KVX})$
$\Leftrightarrow K V X$ is kernel symmetric
$\Leftrightarrow X$ is s- κ-kernel symmetric.
Theorem 4.3: Let A belongs to $F_{n}, A\{1,2,4\} \quad N\left((K V A)^{T}\right)=N(K V X)$. Then A is s - κ-Kernel symmetric $\mathrm{IFM} \Leftrightarrow \mathrm{X}$ is $\mathrm{s}-\kappa$-kernel symmetric IFM.
Proof: Since $\mathrm{X} \in \mathrm{A}\{1,2,4\}$, we have $\mathrm{AXA}=\mathrm{A}, \mathrm{XAX}=\mathrm{X},(\mathrm{XA})^{\mathrm{T}}=\mathrm{XA}$

$$
\begin{aligned}
& \mathrm{N}(\mathrm{KVA})=\mathrm{N}(\mathrm{~A}) \quad[\text { By P. 2.3 }] \\
& =\mathrm{N}(\mathrm{XA})[\mathrm{XAX}=\mathrm{A}, \mathrm{AXA}=\mathrm{A}]=\mathrm{N}\left((\mathrm{XA})^{\mathrm{T}}\right)\left[(\mathrm{XA})^{\mathrm{T}}=\mathrm{XA}\right] \\
& =\mathrm{N}\left(\mathrm{~A}^{\mathrm{T}} \mathrm{X}^{\mathrm{T}}\right)
\end{aligned}
$$

$$
\begin{equation*}
=\mathrm{N}\left(\mathrm{X}^{\mathrm{T}}\right) \tag{P.2.3}
\end{equation*}
$$

$=\mathrm{N}\left((\mathrm{KVX})^{\mathrm{T}}\right)$.
KVA is kernel symmetric $\mathrm{IFM} \Leftrightarrow \mathrm{N}(\mathrm{KVA})=\mathrm{N}\left((\mathrm{KVA})^{\mathrm{T}}\right.$
$\Leftrightarrow \mathrm{N}\left((\mathrm{KVX}){ }^{\mathrm{T}}\right)=\mathrm{N}(\mathrm{KVX})$
$\Leftrightarrow K V X$ is kernel symmetric IFM
$\Leftrightarrow \mathrm{X}$ is $\mathrm{s}-\kappa$-kernel symmetric IFM.
In particular for $\mathrm{K}=\mathrm{I}$, the above Theorems reduces to equivalent conditions for various g -inverses of a s-kernel symmetric IFM to be secondary kernel symmetric IFM.
Corollary 4.1: Let A belongs to F_{n}, X belongs $\mathrm{A}\{1,2\}$ and AX, XA are s-kernel symmetric IFM. Then A is s- kernel symmetric IFM $\Leftrightarrow \mathrm{X}$ is s - kernel symmetric IFM.
Corollary 4.2: Let A belongs to F_{n}, X belongs toA $\{1,2,3\}, N(K V A)=N\left((V X){ }^{T}\right)$. Then A is skernel symmetric $\mathrm{IFM} \Leftrightarrow \mathrm{X}$ is s- kernel symmetric IFM.

Corollary 4.3: Let A belongs to F_{n}, X belongs to $A\{1,2,4\}, N\left((V A)^{T}\right)=N(V X)$. Then A is $s-$ kernel symmetric IFM $\Leftrightarrow X$ is s- kernel symmetric IFM.

REFERENCES

1. A.Lee,Secondary

Symmetric,Secondary
SkewSymmetric,Secondary OrthogonalMatrices,PeriodMath,Hungary,7(1976)63-76.
2. C.Antonio and B.Paul, Properties of the eigen vectors of persymmetric matrices withapplicationstocommunicationtheory,IEEETrans.Comm.,24(1976)804-809.
3. R.D.HillandS.R.Waters,Onk-RealandkHermitianmatrices,LinearAlgebraanditsApplications, 169(1992) 17-29.
4. AR.Meenakshi, Fuzzy Matrix: Theory and Applications, MJP Publishers, Chennai,2008.
5. AR.MeenakshiandD.JayaShree,Onk-
kernelsymmetricmatrices,InternationalJournalofMathematicsandMathematicalSciences,2009, ArticleID926217,8Pages.
6. AR.Meenakshi and S.Krishanmoorthy,On Secondary k-Hermitian matrices,Journalof ModernScience, 1(2009) 70-78.
7. AR. Meenakshi, S.Krishnamoorthy and G.Ramesh, On s-k-EP matrices, Journal ofIntelligent SystemResearch,2(2008)93-100.
8. AR.Meenakshi and D.JayaShree, On K -rangesymmetricmatrices, Proceedings ofthe National conference on Algebra and Graph Theory, MS University, (2009), 58-67.
9. D.Jayashree, Secondary к-Kernel Symmetric Fuzzy Matrices, Intern. J. Fuzzy Mathematical Archive Vol. 5, No. 2, 2014, 89-94 ISSN: 2320 -3242 (P), 2320 -3250 ,Published on 20 December 2014

