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Abstract 

This manuscript deals with the existence and uniqueness results of a class 

of boundary value problems for a generalized Hilfer-type 

integrodifferential equation. We apply Schauder’s and Banach’s fixed 

point theorems to obtain our main results. Also, we establish the stability 

results of the given problem by applying some mathematical methods. In 

the end, we give two concrete examples illustrating our main results. 

Keywords.ς-Hilfer fractional integrodifferential equation; Boundary 
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1 Introduction: 

The idea of fractional differential equations (FDEs) is majorly very important because of its 

nonlocal property. This is the main reason that FDEs have always been looked to be the most 

reasonable ones to survey different facts and figures in applications of numerous emerging research 

fields such as biological sciences, economics, polarization, physics, engineering, and traffic 

modeling. As a result, we can call the recent decade the age of fractional calculus (FC) as this 

theory is drawing more and more notice from well-renowned mathematicians, for more details, you 

can see the series of books and research papers [1–8]. Nevertheless, FDEs of fractional order have 

extensively been deliberated by many investigators. Very briefly, interesting subjects in this scope 

are the investigation of some qualitative properties of solutions e.g., uniqueness, existence, and 

stability, through fixed point techniques and many single kinds and numerical solutions for different 

types of FDEs using diverse classes of FDs have been established (see [9–15]). In the last decades, 

some investigators presented definitions of FC, involving definitions of Riemann-Liouville (RL), 

Caputo, Erdelyi-Kober and Hadamard. 

We will concentrate our attention on the more general problem so-called here the Hilfer FD (HFD) 

of order ζ1 and a type ζ2∈ [0, 1], (see [16]), where applications of the aforesaid area have been 
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presented (see [17, 18]). Sousa and de Oliveira in [19] introduce a new type of the HFD with 

respect to another function ψ . 

Bashir.et al. [20], they studied the following boundary value problem (BVP) for a nonlinear 

fractional integrodifferential equation with integral boundary conditions 

 2
2

1 1

2 1 2 2
0 0

( ) ( , ( ), ( )), 0 1,1 2,
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 (1.1) 

where 2c D  is the Caputo FD a multivalued map, ϖ: [0,1] × ℝ × ℝ → ℝfor :[0,1] [0,1] [0, ),     and 

0

( ) ( , )( ( )) ,s s ds


       

𝑞1, 𝑞2  : ℝ → ℝandα> 0, ζ2 ≥ 0, are real numbers. 

Newly, the study of various specific properties of solutions to different FDEs including generalized 

FDs has become the basic theme of applied mathematics surveys. Many studies in connection with 

the existence and stability of solutions through different kinds of FPTs were formulated, we refer 

the researcher to some studied work [21–23]. Also, in [24, 25], the authors study some problems of 

Nonlocal fractional BVPs with ς-HFDs. 

In the present manuscript, We will consider the class of BVPs for a generalized Hilfer-type 

integrodifferential equation: 
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J
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 (1.2) 

where 1 2, ;H

a
  D  is the ς-HFD of order ζ1 and type ζ2, and 1 ;

a
   is ς-RL fractional integral of order ζ1. 

The Study here in this manuscript is new and adds to the literature, especially in the field of ς-Hilfer 

kind with nonlinear problems. 

In generic, our newly results keep useful for different values of the function ς and a lot of 

corresponding problems, for example (For ( ) log ,     we get Hilfer-Hadamard type problem ), ( for 

ς(ν) = ν
μ
,μ> 0, we get Hilfer-Katugampola type problem), (for ς(ν) = ν, and ζ2 = 1, we get Caputo-

type problem), and (for ς(ν) = ν, and ζ2 = 0, we get RL-type problem ). 

This manuscript is marshaled as follows: Sect. 2, is devoted to some needful definitions and results 

which are related to our study. The main results related to linear problems correspond to the 

proposed problems (1.2) are addressed in Sect. 3 and 4. this work is strengthened by providing 

examples and a short conclusion 

2 Preliminaries 
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In this segment, some necessary definitions, lemmas, properties, and important estimations needed 

onward for our analysis are given bellow. 

Let ( , )J L  and ( , )J C  are the Lebesgueintegrable functions and Banach space from J into   with 

the norms 

sup{ : },


   J  

and 

( ) ,
b

a

d    L
 

respectively. 

Definition 2.1 [4] Let ζ1> 0and 1( , ). J L Theς −RL fractional integral of order ζ1 defined by 
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Definition 2.2 [19] Let n − 1 <ζ1<n, 0 ≤ ζ2 ≤ 1. The ς −HFD of order ζ1 and type ζ2 is given by 

   2 1 2 11 2 ; (1 ) ;, ; 1
( ) ( )  ( ),

( )

n nn
H a

d

d


       


      

  
D  

whereν>a. 

Lemma 2.1 [4, 19] Let ζ1, η, and δ> 0. Then 
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Lemma 2.3 Let λ = ζ1 + ζ2(1 − ζ1), where 0 <ζ1< 1, 0 ≤ ζ2 ≤ 1, and ( , ) J C . Then, the following ς 

−Hilfer type of BVP 

1 2, ; ( ) ( ),  , 

( ) ( ) ,   , , ,

H
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A a B b C A B C


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
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D F
 (2.1) 

has a solution given by 
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 
 (2.3) 

Proof. Set ϑ be a solution of the problem (2.1). Applying 1 ;

a
   on the first equation (2.1) with 

Lemma 2.2, and setting 1 ;
0( )

a
a c
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For determining c0, we use the boundary value condition Aϑ(a) + Bϑ(b) = C, and from (2.4) we have 
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End the proof. □ 

In this following section, we pay attention to proving the uniqueness and existence of solutions to 

problem (1.2) via Banach’s fixed point theorem (FPT) [26] and Schauder’s FPT [27]. 
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According to Lemma 2.3, Now, we introduce : ( , ) ( , )J J T C C  as operator define by 
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It should be observed that the Integrodifferential-type problem (1.2 ) has a solution ϑ if and only if 

T  has fixed points. Hence, for suitability purpose, we are setting the constant: 
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3 Integrodifferential-type problem (1.2) 

Some essential assumptions are presented as follows: 
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 First, we prove that , TS S  where 
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This means that  TS S . i. e . TS S  

Next, For each , ( , )   J å C  and ν∈J, we have 
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( ( ) ( ))

( 1)

( ( ) ( )) ( (b)- (a))

( ) ( +1)

a

b a

a
B

a

a
B




 

 



 

 
 
 

   
    

   

         
               

   
 

  

      
         

å

å

å

1

1

1

( (b)- (a))
+

( +1)

.

    
  

    

   

å

å

 

which leads us to 1 .     T T å å  By (3.1), T  is a contraction. Then, a unique solution 

exists on J for (1.2) due of the Banach’s FPT [26]. Hence, end the proof. □ 

The following theorem relies to Schauder’s fixed point technique [27]. 

Theorem 3.2 Suppose that (H2) holds. Then the ς-Hilfer problem (1.2) has at least one solution in 

( , ).J C  

Proof. We will complete the proof in three stages. 

Stage1: We prove that , TS S  where S  is defined in (3.2), which proved in Theorem 3.1. 

Stage 2: We have to prove the continuity of T . Assume that {ϑn} is a sequence such that ϑn 

 in S  as n  . Then, for each ν∈J, we have 
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               

 

                

      
  
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B

b

 

 

 

   


   

 
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     
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        

  

     
        

    

  


1

1 1

1 1

1 1

; ;

1

1

1 1

; ;
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a
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   

       
  

            
     

            

        

 

By continuity of function ϖ , we achieve that 

( ) ( ) 0 at 0,n n    T T  

which means that, T  is continuous on .S  

Stage 3: We have to show the relatively compact of T . From stage 1, we have  TS S , which 

gives that TS  is uniformly bounded. 

To prove the equicontinuous of T in S  , let S  and ν1, ν2 

∈J with ν1<ν2. Then, 

 

   

1
1 1 1

2
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1 11
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1 1 ;
2 1
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  

                 
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  





T T

   1 11
2 1 2 1

1

2(( ( ) ( )) ( ) ( ) ( ) ( ) .
( 1)

a a
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
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As ν2 − ν1 0,  we obtain 

2 1( )( ) ( )( ) 0,  for any .      T T S  (3.3) 

Note that the right-hand side of the inequality (3.3) lead to zero as 2 1  and independent of ϑ . 

Consequently, in view of the previous stages, so, by Arzela-Ascoli theorem, T  is relatively 

compact, and hence it is completely continuous. As a result of Schauder’s FPT [26], we deduce that 

our problem (1.2) has at least one solution ( , ). J C The proof is completed. □ 

4 UH Stability Analysis: 

In the following part, we will discuss two kinds of stability results of the problem (1.2), namely 

Ulam-Hyers (UH) and generalized Ulam-Hyers (GUH) stability. 

Definition 4.1 The problem (1.2) is UH stable if there exists a constant Kϖ> 0 such that for each ε> 

0 and every solution ( , ) J C  of the inequalities 

 

1 2 1, ; ;( ) ( , ( ), ( )) ,  for all ,H

a a 

                JD  (4.1) 

there exists a unique solution ϑ ( , ) J C  of the problem (1.2), which satisfies 

( ) ( ) .K       (4.2) 

Definition 4.2 The problem (1.2) is GUH stable if there exists ([0, ),[0, )),   Ψ(0) = 0, such that 

for every solution  ( , ) J C  of the inequality 

 

1 2 1, ; ;( ) ( , ( ), ( )) , ,H

a a 

                JD  (4.3) 

there exists a unique solution ( , ) J C  for the problem (1.2), such that 

( ) ( ) ( ), .        J  

Remark 4.1 ( , ) J C  satisfies the inequality (4.1) if and only if there exists a function ( , )h J C  

with 

 

(1) ( ) ,h    ν∈J , 

(2) For all ν∈J,  
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1 2 1, ; ;( ) ( , ( ), ( )) ( ) .H

a a
h 

              D  

Lemma 4.1 If ( , ) J C  is a solution to inequality (4.1), then ϑ satisfies the following inequality 

 

( ) ,      

 

where 

 

1 1

1 1

; ;

1
; ;

( , ( ), ( ))( )

( ( ) ( ))
( , ( ), ( ))( )) ,

( )

a a

a a

a
C B b

 

 

   




   

          

   
          
  

 

 

and 

 

1 11 1 1

1 1

( ( ) ( )) ( ( ) ( )) ( ( ) ( ))
.

( ) ( ) ( )

Cb a a b a
B

              
    

       
 

 

Proof. According to Remark 4.1, we get 

1 2 1, ; ;

2

( ) ( , ( ), ( )) ( )
.

( ) ( ) ,   , , , 0 1

H

a a
h

A a B b C A B C

 

                


        

D
 

Then, by Lemma 2.3, we get 

1 1

1 1

; ;

1
; ;

( , ( ), ( ))( )

( ( ) ( ))
( , ( ), ( ))( )) ,

( )

a a

a a

a
C B b

 

 
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


   
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   
          
  

 

1 1

1
; ;

( )

( ( ) ( ))
( ) ( )

( )a a

a
h C B h b 




   

   

   
     
  

 

which implies 
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1 1

1 1

1
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1 1 1
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( ( ) ( )) ( ( ) ( ))
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( ) ( )

( ( ) ( ))

( )

( ( ) ( )) ( ( ) ( )) ( ( ) ( ))

( ) ( ) ( )

.

a a

C b a
B

Cb a a b a
B

  



 

    

       
      

   

   
  

   

           
              

 

 

□ 

Theorem 4.1 Suppose that (H1)-(H2) hold. Under the Lemma 4.1 , the following equation 

1 2 1, ; ;( ) ( , ( ), ( )), ,H

a a 

             JD  (4.4) 

 

is UH as well as GUH stable provided that ζζ1Υ < 1. 

Proof. ( , ) J C be a function satisfies (4.1), let ( , ) J C  be a unique solution to the next problem 

1 2 1, ; ;

2

( ) ( , ( ), ( )) ,

.( ) ( ) ( ) ( ),

where , , , 0 1

H

a a

A a B b A a B b

A B C

 

               

       


   

J



D

 

Then, by Lemma 2.3, we get 

( ) .     

Now, by Theorem 3.1, we have 

1

sup ( ) sup ( ) sup

.

 
  

    

           

     

J    

Thus, 

,K    

where 

1

0,
1

K


 

  
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which main that the problem (4.4) is UH stability. Now, by choosing Ψ(ε) = Kϖε such that Ψ(0) = 0, 

then the problem (4.4) is GUH stability. □ 

5 Examples 

Example 5.1 Forν∈ [0, 1], we consider the following problem of BVP for a generalized Hilfer-type 

integrodifferentialequation: 

 

1 1
;

2 2

0
11 1 1

, ;
2 2 2 1 1

;
0 2 2 2

0

2 ( ) ( )
1

, [0,1],
( ) .3

8 1 ( ) ( )

(0) (1) 0,

H
e

e







 



 
       
 

  
     

         
   

   

D  (5.1) 

Set: 

 
1 21 +

1 2 1 22
1 2

1 2
( , , ) , [0,1], , ,

3 8 1
e

e

 



  
          

   

  

 

with 1 2

1 1
,

2 2
     ,A = B = 1,C = 0, and 

1

2
  . Clearly, the function ([0,1]).C For each 

1 2 1 2, , ,         and ν∈ [0, 1] 

   

 

 

1 2 1 2
1 2 1 2 2 2

1 2 1 2

1 1 2 22

1 1 2 2

2 2
( , , ) ( , , )

8 1 8 1

1

8

1
.

8

e e

e

e

 
 

   

 



 

   
         

   

     

     

 

 

Hence, the condition (H1) is satisfied with 
1

.
8e

   It is easy to verify that ζζ1Υ = 0.13193 < 1, where 

ζ1 = 1.7979, Λ = 0.970 45, 
3

,
4

   and Υ = 1.5958. Since all the hypotheses of Theorem 3.1 are 

satisfied, therefore problem (5.1) has a unique solution. 

Example 5.2 Forν∈ [0, 1], we consider the following problem of BVP for a generalized Hilfer-type 

integrodifferential equation: 
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3
;1

2
1 1 3 0

, ;
3 2 2

0

( ) cos ( )

,( )
30( 2)(1 ( ) )

(0) (1) 0,

H






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
  

    
   

D  (5.2) 

 

whereA = B = 1, C = 0. 

Set: 

1 2 +
1 2 1 2

1

cos
( , , ) , [0,1], , ,

30( 2)(1 )

  
        

  
  

 

with 1 2

1 1
,

3 2
     and 

3
.

2
   Now, for each 1 2 1 2, , ,         and ν∈ [0, 1] 

 

1 2 1 2
1 2 1 2

1 1

1 1 2 2

cos cos
( , , ) ( , , )

30( 2)(1 ) 30( 2)(1 )

1
.

30

 
 



 

     
         

   

     

 

Hence, the condition (H1) is satisfied with 
1

.
30

   It is easy to check that ζζ1Υ ≈ 0.07835 < 1, where 

ζ1 = 1.8611, Λ = 1.3820, 
2

,
3

   Υ = 1.2631. It follows from Theorem 3.1 that problem (5.2 ) has a 

unique solution. 

We can observe that all the required conditions of Theorem 4.1 are satisfied. Hence, the proposed 

problem (5.1) is UH and GUH stable. 

In view of Theorem 4.1 , for ε> 0, any solution  ([0,1], ) C  satisfies the inequality 

 

1 1
;

2 2

1 1 1 0
, ;

12 2 2

0 1 1
;

2 2 2

0

2 ( ) ( )
1

( ) , [0,1],
3

8 1 ( ) ( )

H e

e







 



 
       
 

       
  
         
  

D  

 

there exists a solution ([0,1], ) C  for the problem (5.1) such that 
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( ) ( ) , [0,1],K        

where
1

1.5958
1.8383 1.

1 1 0.13193
K


   

  
 Moreover, if we set Kϖε = Ψ(ε), and Ψ(0) = 0, then 

( ) ( ) ( ), [0,1].         

6 Conclusions: 

ς-HFD a general fractional operator, is of large use because of its broad freedom to cover a lot of 

classic fractional operators. In this study, we considered the frame of ς-Hilfer for the problem (1.2). 

First, the uniqueness and existence of solutions for the proposed problem were examined. Next, the 

stability of the ς-Hilfer type BVP (1.2) has been obtained by applying some mathematical methods. 

Moreover, Schauder’s and Banach’s FPTs have been applied. Finally, we have presented some 

examples. Applying these examinations, other qualitative analyses of the solution like stability 

results can be discussed, and this is what we desire to think about in future studies. 
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