Derivation on β_1 Near-Ring

¹Rakeshwar Purohit, ²Bhumika Shrimali, ³Khemraj Meena, and ⁴Hrishikesh Paliwal

¹Assistant Professor, University College of Science, MLSU, Udaipur
²Research Scholar, University College of Science, MLSU, Udaipur
³Research Scholar, University College of Science, MLSU, Udaipur
⁴Research Scholar, University College of Science, MLSU, Udaipur

Email: ¹rakeshwarpurohit@gmail.com, ²bhumi658@gmail.com, ³khemrajmeena21@yahoo.com, ⁴hrishikeshramji@gmail.com Contact: ¹9799297052, ²9571221344, ³9782062996, ⁴7891122210

Article Info	Abstract						
Page Number: 4665 - 4672	In this paper, A particular type of Near-Ring called β_1 Near-Ring is taken						
Publication Issue:	and existence of derivation on it, is described. Moreover, some results						
Vol 71 No. 4 (2022)	regarding derivation on β_1 Near-Ring are discussed.						
Article History	<i>Indexterms</i> : β_1 Near-Ring, Derivation, commutative, Zero-symmetric.						
Article Received: 25 March 2022							
Revised: 30 April 2022							
Accepted: 15 June 2022							
Publication : 19 August 2022							

I. INTRODUCTION

This present paper is inspired by work of G.Sugantha and R.Balakrishna who have introduced the notion of β_1 Near-Ring. A non-void set N_r together with additive and multiplicative operation is called a Near-Ring if N_r is additive group, multiplicative semi group and possesses one sided distributive law [4]. A Right Near-Ring N_r is known as β_1 Near-Ring if any a,b in N_r it satisfies aN_rb = N_rab [1]. A Near-Ring is zero-symmetric if $\forall x_1 \in N_r$, $0x_1 = 0$. An additive mapping d from N_r to N_r is a derivation if $\forall \alpha, \beta \in N_r$

 $d(\alpha\beta) = \alpha d(\beta) + \beta d(\alpha)$ or $d(\alpha\beta) = d(\alpha)\beta + \alpha d(\beta)$

Vol. 71 No. 4 (2022) http://philstat.org.ph ForanyaandbinNear-Ring

N_rthesymbol[p,q]represents

the

 $commutatorpq-qp, and the symbol p^\circ qrepresents\ the skew commutatorpq+qp.$

A Derivation dis known as commuting if

 $[d(x), x]=0, \forall x \in N_r$. A Derivation d iscalledskewcommutingifd $(x) \circ x = 0, \forall x \in N_r$ [5]. This paper moves in direction of extending some results on β_1 Near-Ring admitting derivation.

Throughout this paper N_r represents a β_1 Near-Ring with identity, d is derivation and Z represents centre of N_r.

II. PRELIMINARIES

Definition 2.1 \rightarrow A Near-Ring N_r is known as pseudo commutative Near-Ring if $\forall x_1, y_1, z_1 \in N$, $x_1, y_1, z_1 = z_1, y_1, x_1$ [Definition 2.1 of (2)].

Proposition 2.2 \rightarrow Every β_1 Near-Ring which has identity is always zero-symmetric Near-Ring. [Prop. 5.1 of (1)]

Proposition 2.3 \rightarrow Every Near-Ring possesses derivation iff it is zero-symmetric Near-Ring. [Theorem 2.7 of (3)]

Proposition 2.4 \rightarrow Every pseudo commutative Near-Ring which has identity is a β_1 Near-Ring. [Prop. 5.5 of (1)]

Lemma 2.5 \rightarrow For a Near-Ring N_r and its ideal*X*, if $x_1x_2 \in X \implies x_1 \text{ n } x_2 \in I \forall x_1x_2 \in N$ rthen N_rhas strong I.F.P. [Prop. 9.2 of (4)]

Lemma 2.6 \rightarrow For a Near-Ring N_r which admits derivation d, (a₁, a₂) is constant where a₁ in A is commuting or skew commuting elements and a₂ \in N_r. Here A is additive non-zero N_r -subgroup of N_r [Lemma 2.5 of (5)]

III.	Examples	on		β_1	Near-Ring
3.1		β_1 Near-Ring	which	admits	derivation:
Vol. 7	'1 No. 4 (2022)				4666

Example 1 \rightarrow (Nr = {0,2,4,6,8}, +10) is a β_1 Near-Ring which is defined on cyclic group of order 5, where second composition is defined according to Pilz [4], Scheme 'F', p.410 and example 10.

•	0	2	4	6	8
0	0	0	0	0	0
2	0	2	4	6	8
4	0	4	8	2	6
6	0	6	2	8	4
8	0	8	6	4	2

Example 2 \rightarrow (Nr = {0,2,4,6,8,10,12},+14) is a β_1 Near-Ring which is defined on cyclic group of order 7, where second operation is defined according to Pilz [4], Scheme 'I', p.411 and example 23.

	0	0	4	6	0	10	10
•	0	2	4	6	8	10	12
0	0	0	0	0	0	0	0
2	0	2	4	6	8	10	12
4	0	4	8	12	2	6	10
6	0	6	12	4	10	2	8
8	0	8	2	10	4	12	6
10	0	10	6	2	12	8	4
12	0	12	10	8	6	4	2
which are not							not

Near-Ring

 β_1

Example 1 \rightarrow (Nr = {0,2,4,6,8,10,12},+14) is a Near-Ring defined on cyclic group of order 7, where second operation is defined according to Pilz [4] Scheme 'I', p.412 and example 19.

•	0	2	4	6	8	10	12
0	0	0	0	0	0	0	0
2	2	2	2	2	2	2	2
4	4	4	4	4	4	4	4

3.2

Near-Ring

6	6	6	6	6	6	6	6
8	8	8	8	8	8	8	8
10	10	10	10	10	10	10	10
12	12	12	12	12	12	12	12

Example 2 \rightarrow (Nr = {0,2,4,6,8,10,12,14},+16) is a Near-Ring defined on cyclic group of order 8, where second operation is defined according to Pilz [4], Scheme 'J', p.414 and example 118.

•	0	2	4	6	8	10	12	14
0	0	0	0	0	0	0	0	0
2	2	2	2	2	2	2	2	2
4	4	4	4	4	4	4	4	4
6	6	6	6	6	6	6	6	6
8	8	8	8	8	8	8	8	8
10	10	10	10	10	10	10	10	10
12	12	12	12	12	12	12	12	12
14	14	14	14	14	14	14	14	14

IV. MAIN

RESULTS

Proposition 4.1 \rightarrow Every β_1 Near-RingN_rwith identity element '1' always admits derivation.

Proof:Let N_r be a β_1 Near-Ring which has identity element one then by proposition 2.2, it will be zero-symmetric also. Again, using proposition 2.3 it can be easily proven that it must admit derivation. Hence N_r always admits a derivation.

Theorem 4.2 \rightarrow For any pseudo commutative Near-Ring N_r with identity one, the following results are true: (i) N_r β_1 is Near-Ring. a (ii) Nr admits derivation. (iii) Nr satisfies partial distributive law which is:x(d(yz))=x(d(y)z+yd(z))= $xd(y)z+xyd(z), \forall x, y, z \in N_r.$

Vol. 71 No. 4 (2022) http://philstat.org.ph

(iv)	N _r	has	strong	I.F.P.
()	- 1			

V.	Proof:Let	N_{r}	be	a	pseudo	commutative	Near-Ring	with	identity	one	then,
(i)	Proof			is	S	traight	forward	((by	Pro	op.2.4)

(ii) Since every pseudo commutative Near-Ring is β_1 Near-Ring and every β_1 Near-Ring admits derivation (by Proposition 4.1). Combining both yield to the result that every pseudo commutative Near-Ring with identity one also admits derivation.

(iii)Take x,y,z \in N_r, then we have

d((xy)z) = xyd(z) + (xd(y) + d(x)y)z(1) and also d(x(yz)) = xd(yz) + d(x)yz = x(yd(z) + d(y)z) + d(x)yz = xyd(z) + xd(y)z + d(x)yz(2)by (1) and (2), we will get the required result.

(vi) By (i), every pseudo commutative Near-Ring with identity '1' is a β_1 Near-Ring $\Rightarrow \forall p,q \in N_r$,

VI. $pN_rq = pN_rq$ (1)Now since N_r is zero-symmetric, so for any ideal X of N_r, $N_r X \subseteq X$ (2)Let $x_1, x_2 \in N_r$ and any $r \in N_r$ VII. Nr 1) $X_1 r X_2$ E X_1N_r X2 = \mathbf{X}_1 $x_2(by)$ ⊆N_r Х

$$\subseteq I$$
 (by 2)

Now if we use Lemma 2.5, it is clear that N_r has strong I.F.P.

Corollary 4.3: Let N_r be a β_1 Near-Ring which has derivation d then N_r has strong I.F.P. **Proof:** Since N_r has derivation $\Rightarrow N_r$ zero-symmetric then by above it is obvious that N_r has strong I.F.P.

Lemma 4.4: Let N_r be a β_1 Near-Ring with $1 \in N_r$ then d(0) = 0 where d is derivation on N_r.

Proof: Since every β_1 Near-Ring is zero-symmetric. Hence, $d(0) = d(00) = d(0)0 + 0d(0) \Rightarrow d(0) = 0$

Proposition 4.5 \rightarrow The necessary and sufficient conditions for a β_1 Near-Ring N_r with non-zero ʻd' derivation be abelian Near-Ring to an are-(i) $d(x_1)$ x_2) = d $d(x_2)$ x₁) X_2 E Nr \mathbf{X}_1 (ii) For multiplicative commutators in $N_r \exists \alpha \in N_r$ s.t. $d(\alpha)$ is not a left zero divisor.

 N_r be a β_1 Near-Ring and following condition suppose the **Proof:** Let holds. Now $d(x_1)$ x_2) = $d(x_2)$ x_1) (given) put $x_1 = x_2 x_1 \Rightarrow d(x_2 x_1 x_2) = d(x_2 x_2 x_1)$ Hence 0 $d(x_2)$ \mathbf{X}_1 x₂) $d(x_2)$ x₂) = _ \mathbf{X}_1 $\Rightarrow d(x_2(x_1x_2 - x_2x_1)) = 0$ $\Rightarrow x_2 d(x_1 x_2 - x_2 x_1) + d(x_2)(x_1 x_2 - x_2 x_1) = 0$ $\Rightarrow d(x_2)(x_1)$ 0 $\forall x_1$ ∈N_r \mathbf{X}_2 \mathbf{X}_2 x_1) = \mathbf{X}_2 [As $d(x_1)$ **x**₂) = $d(x_2)$ x₁)] Also $d(\alpha)$ is not a left zero divisor $\forall [x_1 x_2]$ ⇒ =0. $d(\alpha)(x_1)$ α _ αx_1) 0 \Rightarrow (x₁ α αx_1) = $\forall x_1 \in N_r$ Hence $\alpha \in Z(N_r)$. Again $d(\alpha(x_1 x_2)) = d((\alpha x_1) x_2) = d(x_2)(\alpha x_1) = d((x_2d(x_2\alpha)x_1) = d((\alpha x_2)x_1) = d(\alpha (x_2 x_1))$ d $[Asd(x_1)]$ x_1) 1 x₂) = (X_2) \Rightarrow $d(\alpha(x_1))$ x₂)) $d(\alpha(x_2))$ x₁)) $d(\alpha(x_1))$ x₁)) 0 = \mathbf{X}_2 — \mathbf{X}_2 = $\Rightarrow \alpha$ $d(x_1)$ X_2-X_2 $(x_1) + (x_1) + (x_1$ $d(\alpha)(x_1)$ $x_2 - x_2$ x_1) = $d(a)(x_1)$ \mathbf{X}_2 _ $x_2 x_1) =$ 0 0 Hence $\forall x_1 x_2 \in N_r$ \mathbf{X}_1 \mathbf{X}_2 X_2X_1 = , Nris commutative. Conversely if N_r is commutative then clearly $\forall x_1$ $d(x_1)$ x₂) = $d(x_2)$ and x_2] 0 ∈N_r. x_1) $[\mathbf{X}_{1}]$ = \mathbf{X}_2 which leads to the result.

Corollary 4.6: For any β_1 Near-Ring N_r which admits derivation s.t.d(N_r) \subseteq Z(N_r), then N_r will be a commutative ring if $\exists \alpha N_r$ s.t. d(α) is not a left zero divisor in N_r.

Theorem 4.7: For a β_1 Near-Ring N_r admitting a derivation d s.t.d(d(r)s) = d(s d(r)), $\forall r, s \in N_r$, and if $d^2(\alpha)$ is not a left zero divisor in β_1 Near-Ring N_rfor some $\alpha \in N_r$ then N_r is an abelian Ring.

Proof:::d(d(r)s)d(sd(r))= Replace d(r)s then S = d(d(r))(d(r)s)d(r)) 0 S = \Rightarrow d²(r)(d(r)s-s d(r)) = 0 \forall r,s \in N_r (1) $\Rightarrow d(\alpha)s$ $d(\alpha)$ $\forall s \in N_r [:: d^2]$ divisor]. = S *(α)* is not left zero а Now $\forall r, s \in N_r$ $d((d(\alpha)r)d(s))$ $d(d(\alpha)(r))$ d(s))) d(d(s))(d *(α)* r)) = == $d((ds)d(\alpha))r)$ = $d((d(\alpha)d(s))r)$ = $d(d(\alpha))$ (d(s)r) d^2 d(s)r) (α) (rds) $d(\alpha)$ d(s) +d (s)r) 0 ⇒ d(r _ = d^2 $(\alpha)(\mathbf{r})$ d 0 ⇒ (s)) d(s)r) = r d(s) d(s) r = 0 ∀r, s \in N_r ⇒ Ζ $d(N_r)$ \subseteq (N_r) . \Rightarrow

Replacing $b = d(\alpha) \Rightarrow d(b) \neq 0$ is not a left zero divisor in $N_r \Rightarrow byCorollary 4.6 N_r$ is an abelian Ring.

Theorem4.8 \rightarrow For a β_1 Near-Ring N_r which has zero element is the only divisor of zero and also has a non-trivial commuting or skew commuting derivation d then N_r is a commutative Near-Ring.

Proof:Let N_r be $a\beta_1$ Near-Ring and c_1 be any additive commutator in N_r. \Rightarrow c₁ is constant (by Lemma 2.6 and Prop. 4.1) also c₁x₁ will also be an additive commutator \forall x₁ \in N_r $\Rightarrow c_1 x_1$ is also constant. Hence $d(c_1)$ x_1) = $d(c_1)x_1$ $d(x_1)$ 0 + C_1 = and c_1 $d(x_1)$ 0. = 0 Now Ξ $N_r s.t.d(y_1)$ (d is non-zero) y₁∈ ≠ d and by above (x₁) 0. c_1 = $:: N_r$ 0 has no non-zero divisors of zero \Rightarrow c_1 = Hence N_r is abelian.

REFERENCES

- [1] G. Sungantha, R. Balakrishna, "β1 Near-Ring,"*International Journal of Algebra*, vol. 8,1–7, 2014.
- [2] S.Uma, "Pseudo commutative Near-Rings," Scientia Magna An International Journal, vol. 6, no.2, pp.75-85, 2010.

Vol. 71 No. 4 (2022) http://philstat.org.ph

- [3] Ahmad A.M. Kamal, Khalid H. Al-Shaalan, "Commutativity of Near-Rings with derivations,"*AlgebraColloguium*, vol. 21, no. 2, pp. 215–230, 2014.
- [4] G. Pilz, "Near-Rings the theory and its applications," *Elsevier*, 2011.
- [5] Yong-UK CHO, "A Study of derivation in Near-Rings," Pusan Kyongnam Math. J., vol. 12, no.2, pp. 63–69.