
Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 

4673 

 

 

Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

 

 

 
Article Info 

Page Number: 4673 - 4679 

Publication Issue: 

Vol 71 No. 4 (2022) 

 

 

Article History 

Article Received: 25 March 2022 

Revised: 30 April 2022 

Accepted: 15 June 2022 

Publication: 19 August 2022 

Abstract 

In recent years the amount of secure transactions taking place over the 

internet has increased exponentially. The security of these transactions 

depends on the strength of the encryption and decryption techniques, and 

what lies at the heart of these techniques is sharing keys in a secure fashion. 

The primary goal of key exchange methods is to provide inherit security to 

the techniques and not depends on the security of the communication 

channels. In this work, we propose novel methods for generating keys for 

multi-party communication using the nth order of Quasi Group of numbers 

with arrangement and rearrangement. After extensive experimentation it 

was found that the proposed method have improved performance in 

comparison to benchmark tests in terms of time complexity and better 

security against standard attacks. 

 

Index Terms— Cryptography, Quasi Group, Multiparty Authentication, 

Key Generation, Key Regeneration.  

 

 

 

 
 

I. INTRODUCTION 

A Key Exchange Protocol (KEP) deals with generation, sharing and authentication of keys between 

two parties. However, with the ever growing landscape of communication and the morphing of the 

usage of the internet multi-party key exchange and authentication are becoming more and more 

critical.  

         In a physical setting, when multiple parties are involved in a transaction, authentication and 

authorization of each party is required for the transaction to succeed. For example, clearing of fund 

from a joint account, Issuance of order across a chain of command and many more. However, in case 

of electronic representation of such transactions only one person is entrusted to carry out the 

transaction. This create a inherent lack of transparency in electronic mode of transaction. To the 

extent of addressing this issue, the problem of multi-party authentication and authorization problem is 

formed by us. Over the last decades, key exchange between two parties have been the major focus of 

research. Most of the work done in the domain of key exchange inherently base their security on the 

Hardness of Arithmetic and Geometric Problems. To the best of our knowledge our work is among 

the first few to adapt the Hardness of combinatorics problems into a key exchange protocol. In this 

work we propose a method that exploits the nth order of Quasi Group of numbers with arrangement 

and rearrangement and same non-overlapping block of cells. From Generalized Quasi-group, a 

quasi-group with unique solution is generated and the values of the empty places are transformed in a 

row priority fashion so as to generate a master key. Form this master key we generate multiple child 

keys for multi-party authentication. From the child keys the generating transformation are applied in 

Creating a Framework to Strengthen Cryptographic Security for 

Group Communication by Distributing Processed Keys 
                 [1] 

Bilas Haldar, 
[2] 

Rohit Sinha, 
[3] 

Pranam Paul * (Corresponding Author)  

        
[1]

 CSE, The Neotia University,  
[2]

 AI Engineer, Ailabs, 
[3]

 CSE, The Neotia 

University 
[1]

 bilasphd2020@gmail.com, 
[2]

 rohit123sinha456@gmail.com, 
[3] 

pranam.paul@gmail.com 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 

4674 

 

 

Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

 

 

reverse for authentication. To summarize our contribution, we formalize the problem of nth order of 

Quasi Group of numbers as a bijective function so as can be used for key generation and validation. 

We propose a row priority algorithm for generation of a master key from an unordered hole values of 

a balanced nth order Quasi Group of numbers. We formalize and propose the algorithm for generation 

and regeneration multiple child keys from a master key and vice-versa respectively.  

 

II. LITERATURE REVIEW 

B. Indrani et al. provided an efficient and fast key pool generation algorithm using the QG solving 

mechanisms for generating the cipher keys [1]. The work done by T. Sivakumar presented a novel 

method to generate random keys using a word grid puzzle which is a novel idea for generating random 

key streams [2]. A new key generation approach is presented by C. Manikandan et al. using values 

produced from QG matrices and synthetic colour images [3]. Evolutionary computation can be 

successfully applied in cryptography, as demonstrated by K. Knezevi et al. using asymmetric key 

cryptography, symmetric key cryptography, and pseudo-random number generator [4]. The key 

chains constructed in the work of K. G. Srinivasa et al. were based on multiple key spaces instead of a 

single key-space. [5]. An analysis of deterministic, probabilistic, and hybrid key distribution 1 

algorithms for signaling pair-wise, group-wise, and network-wise keys was conducted by S. Khalid et 

al. that improves network resiliency and provides sufficient security [6]. The work done by C. 

Ansotegui et al. addresses QG problems using two techniques, namely Constraint Satisfaction 

Problems (CSPs) and Satisfiability Problems (SATs) [7]. 

 

III. METHODOLOGY  

Key exchange forms an integral part of secure communication. The existing literature in the key 

generation and key exchange are mostly based on using mathematical Hard problems. In this 

proposed work we put forward a novel method that uses Hard problems in conjunction with 

exponential number based combinatorial problems for key generation. 

A. Generating a nth order Quasi Group 

     The brute force approach to generate a nth order of Quasi Group of numbers is to create n×n grid 

following the constraints of a solved QG, followed by randomly removing values from the grid and 

leaving the space blank. However, one critical problem that such method induces is the existence of a 

non-unique solution of the puzzle. Even if a nth order of Quasi Group of numbers with unique 

solution is generated by multiple repetition of the brute-force method, it does not guarantee that the 

generated puzzle is balances and is Hard.  

   

     The work done by Ansotegui et al. [7] defines a Latin Square (LS), or Quasigroup, of order n, is an 

matrix, with each of its n 2 cells filled with one of n symbols, such that no symbol is repeated in a row 

or column with the additional restriction that each symbol occurs exactly once in each contiguous set 

of n non-overlapping pre-defined cells henceforth referred as a block region. There are exactly s block 

regions in a QG of order s. With respect to the worst-case complexity, they prove that QG with block 

regions of m rows and n columns with m = n is NP-Hard. In our proposed method we follow the work 

done by Ans´otegui et al. [7] with minor modifications to generate. So to generate a generalized nth 

order of Quasi Group of numbers with arrangement and Rearrangement with holes (empty spaces). 

We start by generating a valid and complete Quasi Group (QG) [8]. To generate a QG as described by 

[8] an initial n × n Latin Square (LS) is taken. By following a uniform distribution with some random 

moves defined between the visited LS, all the n
2
 spaces of LS is visited. These moves define a chain of 

states, and transition from one state to another is independent, thus making a Markov Chain (MC). 

    

     Once a valid QG is generated, a nth order Quasi Group with Holes can be generated by removing 

values from random cells of the QG [9]. However, this creates an imbalance and makes it easier to 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 

4675 

 

 

Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

 

 

solve. To resolve this a balanced QG needs to be created (i.e. number of empty spaces in rows and 

columns and block region). 

 

     To generate balanced hole in QG that has a unique solution [7], the set total number of holes H is 

taken in the range H = {1…81}. Iterating over the set H, the total number of holes can be distributed 

over every row, every column, every block region using a regular bipartite graph generation algorithm 

based on Markov Chain Algorithm [10].  

     The algorithm 1 is used to generate a QG with h holes S for which there exists a unique solution. 

The functions used in Algorithm 1 are deterministic in nature. 

 

Algorithm 1 Generating QG with Unique Solution  

H ← {1 · · · 81}  

S ← generateQG()  

for H as h do  

      X ← createQGwithEmpties(S, h)  

      if existsUniqueSolution(X) is True then  

          return(X,h)  

      end if  

end for 

B. Generating the Master Key 

Once the QG S is generated and the number of holes h for which an unique solution exists is 

determined, now the master key is created.  

     To create the master key, holes h are included in the QG S and the values of the QG that were 

replaced are appended together to form a list referred to as the masker keys.  

     The method createQGwithEmpties() in Algorithm 1 returns two things. First, the original QG S 

itself. Secondly, a list of tuples of the indices of the holes LH = {(i1, j1),(i2, j2), · · ·(ik, jk)}. Let’s say 

we have sequence M known as master keys, where the ith element is denoted as mi . The Equation 1 

can be used to compute the master key for our proposed key generation method.  

                                 mi = Sa,b∀1 ≤ i ≤ |LH|                              (1) 

 

Where, a is the 0th element and b is the 1st element of the ith tuple of LH respectively. 

 

Algorithm 2 Generating the Master Keys 

Require: M[]  

     H ← {1 · · · 81}  

     Se, LH ← createQGwithEmpties(S, h)  

     for Each LH do  

           a = LH[0]  

           b = LH[1]  

           M[i] = S[a][b]  

     end for 

 

In Algorithm 2, the sequence of master keys are generated. It’s an implementation of the Equation 1. 

The elements of the QG are taken in a row priority fashion for generating the Master Key M. 

C. Generating the Keys 

After the master keys are generated, now we generate the keys for the preferred number of users. 

Since, the proposed method is multi party key generation and authentication technique, we select a 

minimum number of users required to pass the authorization. Let’s say that the minimum number of 

user is u. 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 

4676 

 

 

Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

 

 

 

Algorithm 3 Generating the Keys 

   u ← Minimum Number of Users  

    indices[]  

    for 1 · · · u as i do  

        rindices = RandomNumberofLength(u)  

        if rindices not in indices[] then  

             OTP Useri = M − {M[rindices]}  

              indices[] = rindices  

          end if  

      end for 

 

To expand Algorithm 3, for every number of minimum users |u| number of random numbers are 

chosen. If the chosen random number are distinct and are unique compared to previously chosen 

random numbers, then these indices are removed from the Master key list M and the remaining of the 

Master list is appended together to form one single string OTP User. The constraint of the random 

numbers rn has to follow is 1 ≤ rn ≤ |M|. 

D. Regenerating the Keys 

For Authentication of the OTPs that the users input and authorization, the master key is regenerated 

from the OTPs entered by the user. Let’s say u users enters the OTP. For representation let’s consider 

i
th

 user enters OTPi 

 

Algorithm 4 Generating the Keys 

   Require: M  

      for all OTPi do  

           for 1 · · · |OTPi | as k do  

                if OTPi [k] == M[k] then  

                       Regen[k] ← OT Pi [k]  

                end if  

            end for  

        end for 

 

     For Regenerating the Master Key the Algorithm 4 is defined. In 4 we are iterating over all the 

OTPs entered by the user and performing a index wise check with the master key. If the value matches 

we are entering the value. On completion of this Algorithm we have a list Regen that would be exactly 

similar to the Master Key M if all of the user enter their correct OTP. 

 
Figure 1: An Example of Key Generation 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 

4677 

 

 

Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

 

 

E. Authentication 

For Authentication we fill up the Generalised QG Se as per Algorithm 2 with the Regnerated keys 

Regen in a row priority order, as we did while generating the Master Key M in Section III.B. If the 

original Generalised QG S and the regenerated QG are element-wise similar then only the 

Authentication succeeds. 

 

 
 

 

Figure 2: An Example of Key Authentication 

IV. RESULTS 

In this section, we present the results of our proposed algorithm. In addition to demonstrating the 

feasibility of the proposed algorithm, that has been implemented using Python to generate keys, 

distribute keys, and also validate keys. With the fewest possible users, we evaluate the performance of 

our method in terms of key generation and distribution timeframes. We also check how long it takes 

to regenerate the original key. Table 1 shows the important key generation time; distribution time, and 

original key regeneration time based on the minimum number of users. The first column from the left 

in this table shows the minimum number of users in the range of two to ten. In the same table, the key 

generation and distribution time is listed in the second column from the left. It has varying between 

0.0015534 and 0.0107373. The original key regeneration time is indicated in the third column from 

the left in Table 1. It has been varying from 0.0006566 to 0.0051109. 

 

Minimum 

Number of Users 

Key Generation and 

Distribution Time 

Original Key 

regeneration Time 

2 0.00198 0.00086 

3 0.00155 0.00066 

4 0.00242 0.00109 

5 0.00766 0.00487 

6 0.00354 0.00155 

7 0.00416 0.00091 

8 0.01074 0.00511 

9 0.00592 0.00412 

10 0.00462 0.00477 

 

Table 1: Relation between the minimum number of users   along with key generation, distribution 

time, and original key regeneration time. 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 

4678 

 

 

Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

 

 

V. ANALYSIS 

The experimental analysis of our proposed approach is presented in this section. We have analyzed all 

of the results of section IV with the minimum number of users. We use a graph to analyze the result of 

key generation time and key regeneration time. 

 

 
Figure 3: Minimum Number of Users vs Key Generation and Regeneration time 

 

A graphical representation for Table 1 is shown in Figure 3 with a continuous solid line and dotted 

line. In this figure dotted line indicates the key generation and distribution time based on the number 

of users and the solid line indicates the key regeneration time. It has been observed that the two lines 

in the graph are almost the same in nature. According to the graph, there is a tendency that key 

generation and distribution time to fluctuate between 0.0015534 and 0.0107373 whereas key 

regeneration time varies between 0.0006566 to 0.0051109. Here, it generates master keys randomly 

that are also affected in the graph. It is analyzed that if the number of users increases then key 

generation time sometimes increases and also sometimes decreases that impact also effected in key 

regeneration time. because key generation time depends on the value of prime numbers but not the 

number of the prime numbers. It has been observed from the graph that both the curves are almost the 

same in nature based on the number of users. So, it takes the almost same time for key generation and 

also key regeneration time based on number of users. 

CONCLUSION 

In this work we have formalized the problem of multi-party authentication and authorization problem 

and proposed a method using the nth order of Quasi Group of numbers with arrangement and 

rearrangement to address the problem. Even though the proposed method performed quite well under 

performance testing, the domain of multi-party authentication and authorization have a lot of room for 

significant progress. The future direction of the work would be to include improved version of the 

proposed algorithms but optimizing performance and efficiency.                                           

 

 

    REFERENCES 

 

[1] B. Indrani and M. K. Veni, ―An efficient algorithm for key generation in advance encryption 

standard using sudoku solving method,‖ in 2017 International Conference on Inventive Systems 

and Control (ICISC), pp. 1–8, IEEE, 2017. 

[2] T. Sivakumar, S. Veeramani, and T. Anusha, ―Generation of random key stream using word grid 

puzzle for the applications of cryptography,‖ WSEAS Transactions on Computers, vol. 20, pp. 

1–9, 2021. 

[3] C. Manikandan, K. S. S. Satwik, T. Smarani, and P. Umamaheshwari, ―A combined sudoku and 

synthetic colour image techniques for cryptographic key generation,‖ in Journal of Physics: 

Conference Series, vol. 1767, p. 012050, IOP Publishing, 2021. 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 

4679 

 

 

Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

 

 

[4] K. Kneˇzevi´c, ―Combinatorial optimization in cryptography,‖ in 2017 40th International 

Convention on Information and Communication Technology, Electronics and Microelectronics 

(MIPRO), pp. 1324–1330, IEEE, 2017. 

[5] K. Srinivasa, V. Poornima, V. Archana, C. Reshma, K. Venugopal, and L. Patnaik, 

―Combinatorial ap�proach to key generation using multiple key spaces for wireless sensor 

networks,‖ in 2008 16th International Conference on Advanced Computing and Communications, 

pp. 279–284, IEEE, 2008. 

[6] F. A. Saba Khalid and M. R. Beg, ―Secure key pre-distribution in wireless sensor networks using 

combina�torial design and traversal design based key distribution,‖ 2012. 

[7] C. Ans´otegui, R. B´ejar, C. Fern´andez, C. Gomes, and C. Mateu, ―Generating highly balanced 

sudoku problems as hard problems,‖ Journal of Heuristics, vol. 17, no. 5, pp. 589–614, 2011. 

[8] M. T. Jacobson and P. Matthews, ―Generating uniformly distributed random latin squares,‖ 

Journal of Combinatorial Designs, vol. 4, no. 6, pp. 405–437, 1996. 

[9] R. Lewis, ―Metaheuristics can solve sudoku puzzles,‖ Journal of heuristics, vol. 13, no. 4, pp. 

387–401, 2007. 

[10] R. Kannan, P. Tetali, and S. Vempala, ―Simple markov-chain algorithms for generating 

bipartite graphs and tournaments,‖ Random Structures & Algorithms, vol. 14, no. 4, pp. 293–308, 

1999. 

 

 

 

 

 

 

 


