IoT in Practice: IoT in Astro Turf Industry

¹Anil Pradyumna Chakicherla, ²K. Kiran Kumar

¹M.Tech Student, Dept of Computer Science Engineering

²Professor & HOD

Dept of Computer Science Engineering

Chalapati Institute of Engineering and Technology, LAM, A.P, India.

Article Info Page Number: 4697 - 4705 Publication Issue: Vol 71 No. 4 (2022)

Article History Article Received: 25 March 2022 Revised: 30 April 2022 Accepted: 15 June 2022 Publication: 19 August 2022

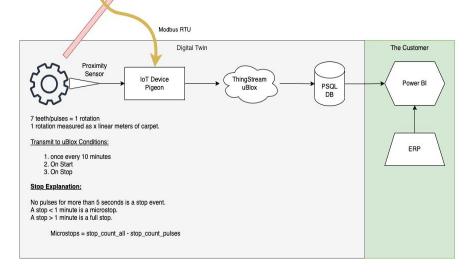
Abstract

Astroturf or artificial grass is a growing component in landscape management projects like, housing complexes, sports complexes, etc. This increased the manufacturers to increase production, but the process is a very time taking and energy consuming process. This paper discusses how the manufacturing process can be optimised technologies such as IoT, data analytics to make the manufacturing process more streamlined and increase the operational efficiency.

1. Introduction

Many market researchers forcast that the synthetic grass market is going to reach approximately upto \$4038,64 Millions, this estimate is based on the necessity to conserve water by growing natural grass. This forecast in the business has made manufacturers to make sure increase in the production to reach the demand. But increasing the manufacturing has increased the utilisation of electricity, water and material wastage. But as we all know we are in middle of a climate change, there is an essential need to optimise the process of manufacturing artificial grass.

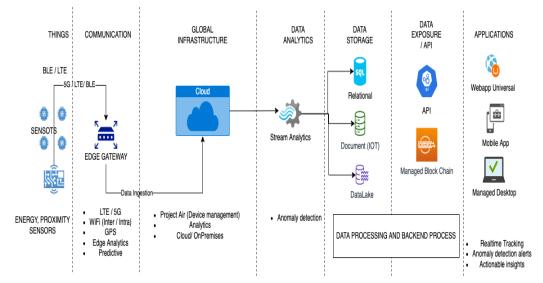
The above problems can be mitigated and optimised by utilising IoT, Iot or Internet of Things is a technology which is considered as a network of devices interacting with each other As part of the industry 4.0, Industrial IoT or IIOT is considered to create an amalgamation of Production systems with internet technologies. IIOT can also be considered a mixture or overlap or Information Technology(IT) and Operational Technologies(OT)


The scope of this paper focuses on the extent of IIoT in artificial grass manufacturing industry. The complexities and challenges faced in this industry are: Energy consumption /

Electricity consumption, cost to manufacture to cost to maintenance of equipment etc. This study is motivated for addressing the increase in need and how manufacturing units can cope up with them by implementing IIoT.

2. Research methodology

By creating a SOC using Raspberry Pi to collect the Power Output and rotations for the spindle rotor using a pulse actuator as shown in the picture below, we can calibrate the necessary tracking on rotations and energy consumed by the man chine





In the above machine the ELECTRIC METER collects the power consumed and the rotor sensor connected with a proximity sensor, collects the length of the manufactured carpet area, and correlates it with the power consumed.

This proximity sensor allows us to capture the total stoppage time, or pulsed stoppage time based on raw material breakage (String corrosion, needle replacement etc.)

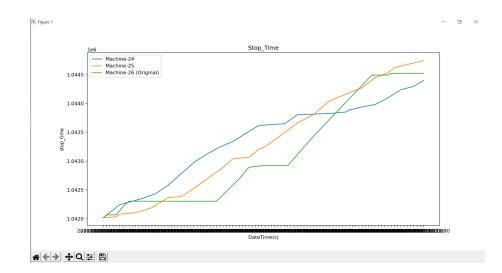
The above solution can be used for different types of material, which provide manufacturers on operational efficiency of the machine and alerts on complete digitalisation of the process using modern technologies.

4. Research Methodologies

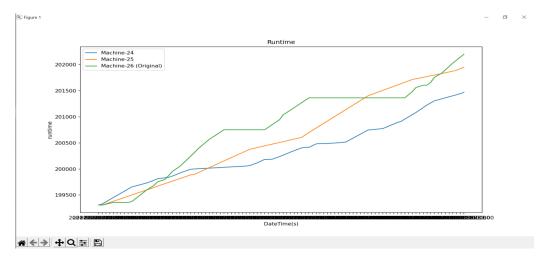
Major calculations for the measurement of various parameters calibrated in the result sets, are based on simple mathematics, ie. the amount of rolling or production on throughput for a carpet is based on the roll of the roller as part of the tufting machine.

Defect on outer race (Ball pass frequency outer)	$=rac{ extsf{n}}{2}-rac{ extsf{rpm}}{ extsf{60}}\Big(1-rac{ extsf{B}_{ extsf{d}}}{ extsf{P}_{ extsf{d}}} extsf{cos}\phi\Big)$
Defect on inner race (Ball pass frequency inner)	$= \mathrm{undefined} rac{\mathrm{n}}{2} rac{\mathrm{rpm}}{\mathrm{60}} \left(1 + rac{\mathrm{B}_{\mathrm{d}}}{\mathrm{P}_{\mathrm{d}}}\mathrm{cos}\phi ight)$
Ball spin frequency	$= \frac{\mathtt{P}_{d}}{\mathtt{2B}_{d}} \; \frac{\mathtt{rpm}}{\mathtt{60}} \bigg[1 - \left(\frac{\mathtt{B}_{d}}{\mathtt{P}_{d}} \right)^2 \mathtt{cos}^2 \phi \bigg]$
Fundamental train frequency	$=rac{1}{2}~rac{\mathrm{rpm}}{\mathrm{60}}\Big(1-rac{\mathrm{B}_{\mathrm{d}}}{\mathrm{P}_{\mathrm{d}}}\mathrm{cos}\phi\Big)$
P _d = Pitch Diameter	n = Number of Balls
B _d = Ball Diameter	ϕ = Contact Angle

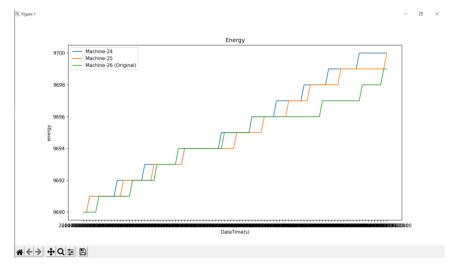
5.Results

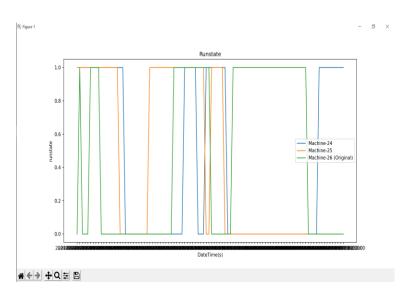

For example before the advent of IOT the machine metrics for rotations and thresholds wont be calibrated, for further analysis

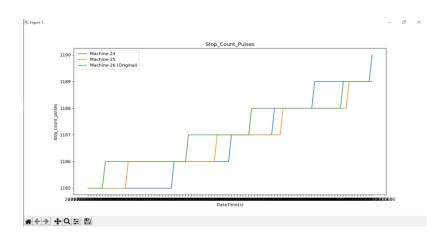
Some of the data presented is an extract of the data gathers from the IoT sensors

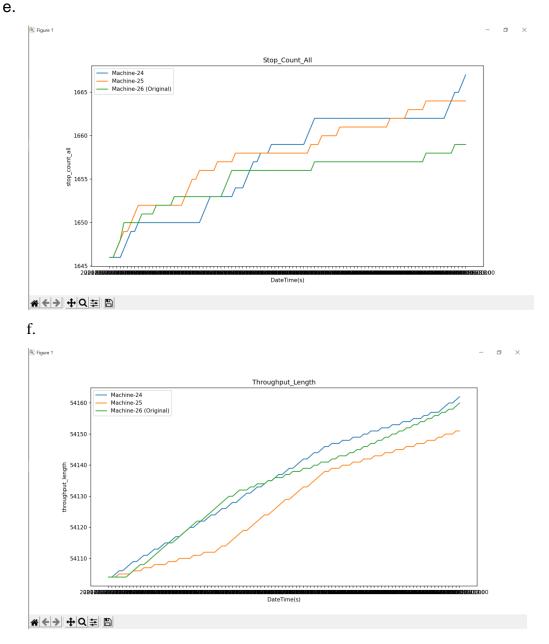

date	machi	runti	stop_	throughpu	throughpu	stop_count	stop_count	runs	energy
	ne_id	me	time	t_area	t_length	_all	_pulses	tate	
2021-10-01	T26	1993	1042	217498.968	54104.2216	1646.0	1185.0	0.0	9690.81
00:00:00		08.0	018.0	33333300	6666670				
2021-10-01	T26	1993	1042	217499.176	54104.2733	1646.0	1185.0	1.0	9690.8511
00:01:00		08.0	067.0	66666700	3333330				11111110
2021-10-01	T26	1993	1042	217499.385	54104.3250	1647.33333	1185.16666	0.0	9690.8922
00:02:00		25.0	067.0		00000000	33333300	66666700		22222220
2021-10-01	T26	1993	1042	217499.593	54104.3766	1648.66666	1185.33333	0.0	9690.9333
00:03:00		42.0	067.0	33333300	6666670	66666700	33333300		33333330
2021-10-01	T26	1993	1042	217499.801	54104.4283	1650.0	1185.5	0.0	9690.9744
00:04:00		59.0	067.0	66666700	3333330				4444440
2021-10-01	T26	1993	1042	217500.01	54104.48	1650.0	1185.75	1.0	9691.0155
00:05:00		59.0	137.5						55555560
2021-10-01	T26	1993	1042	217503.549	54105.3603	1650.0	1186.0	1.0	9691.0566
00:06:00		59.0	208.0	03225800	2258070				66666670
2021-10-01	T26	1993	1042	217507.088	54106.2406	1650.0	1186.0	1.0	9691.0977
00:07:00		59.0	256.5	06451600	4516130				77777780
2021-10-01	T26	1993	1042	217510.627	54107.1209	1650.0	1186.0	1.0	9691.1388
00:08:00		59.0	305.0	0967740	6774190				88888890
2021-10-01	T26	1993	1042	217514.166	54108.0012	1651.0	1186.0	0.0	9691.18
00:09:00		75.0	305.0	12903200	9032260				

2021-10-01	T26	1994	1042	217517.705	54108.8816	1651.25	1186.0	0.0	9691.3333
00:10:00		30.25	305.0	16129000	1290320				33333330
2021-10-01	T26	1994	1042	217521.244	54109.7619	1651.5	1186.0	0.0	9691.4866
00:11:00		85.5	305.0	1935480	35483900				66666670
2021-10-01	T26	1995	1042	217524.783	54110.6422	1651.75	1186.0	0.0	9691.64
00:12:00		40.75	305.0	22580600	58064500				
2021-10-01	T26	1995	1042	217528.322	54111.5225	1652.0	1186.0	0.0	9691.7512
00:13:00		96.0	305.0	25806500	8064520				5
2021-10-01	T26	1996	1042	217531.861	54112.4029	1652.0	1186.0	0.0	9691.8625
00:14:00		41.0	305.0	2903230	0322580				
2021-10-01	T26	1996	1042	217535.400	54113.2832	1652.0	1186.0	0.0	9691.9737
00:15:00		86.0	305.0	32258100	2580650				5
2021-10-01	T26	1997	1042	217538.939	54114.1635	1652.0	1186.0	0.0	9692.085
00:16:00		53.0	305.0	35483900	483871				
2021-10-01	T26	1997	1042	217542.478	54115.0438	1652.5	1186.0	0.0	9692.1962
00:17:00		76.0	305.0	38709700	7096770				5
2021-10-01	T26	1997	1042	217546.017	54115.9241	1653.0	1186.0	0.0	9692.3075
00:18:00		99.0	305.0	41935500	9354840				
2021-10-01	T26	1998	1042	217549.556	54116.8045	1653.0	1186.0	0.0	9692.4187
00:19:00		75.5	305.0	4516130	16129000				5
2021-10-01	T26	1999	1042	217553.095	54117.6848	1653.0	1186.0	0.0	9692.53
00:20:00		52.0	305.0	48387100	38709700				
2021-10-01	T26	2000	1042	217556.634	54118.5651	1653.0	1186.0	0.0	9692.6658
00:21:00		00.5	305.0	51612900	61290300				33333330
2021-10-01	T26	2000	1042	217560.173	54119.4454	1653.0	1186.0	0.0	9692.8016
00:22:00		49.0	305.0	5483870	83871000				66666670


2021-10-01	T26	2001	1042	217563.712	54120.3258	1653.0	1186.0	0.0	9692.9375
00:23:00		14.0	305.0	58064500	0645160				
2021-10-01	T26	2001	1042	217567.251	54121.2061	1653.0	1186.0	0.0	9693.0733
00:24:00		81.5	305.0	61290300	2903230				33333330
2021-10-01	T26	2002	1042	217570.790	54122.0864	1653.0	1186.0	0.0	9693.2091
00:25:00		49.0	305.0	6451610	516129				66666670


a.





g.

5. Conclusions

With the inclusion of the metrics that monitor the displacement of tufting rollers, energy meters, temperature regulators etc. We can calibrate a better understanding of the behavior of the tufting machine. This data collected will be helpful to the analyze and frame the times when the machine works optimal and to calibrate the stoppage times for various reasons to be viz. Needle breakage, thread malfunction, to be understood. But this process of digitalization of an age old process will help in making sure, there are very little downage times for increasing the productivity of the spinning machine

6.References

- Yu, Y., Wang, J., & Zhou, G. (2010). The exploration in the education of professionals in applied internet of things engineering. Paper presented at the 2010 4th International Conference on Distance Learning and Education, ICDLE 2010, October 3, 2010 – October 5, 74-77. Doi:10.1109/ICDLE.2010.5606038
- Accenture. (2015). Winning with the Industrial Internet of Things. Retrieved on 20th October 2018 from <u>https://www.accenture.com/us-en/insight-industrial-internet-of-things</u>
- Bartje, J. (2016). Top 10 IoT application areas based on real IoT projects. IoT Analytics. Retrieved on 10th October 2018 from <u>https://iot-analytics.com/top-10-iot-projectapplication-areas-q3-2016/</u>
- ISO 10782-1:1998. Definitions and attributes of data elements for control and monitoring of textile processes – Part 1: Spinning, spinning preparatory and related processes. ISO Standards.
- 5. Jammes, F., & Smit, H. (2005). Service-oriented paradigms in industrial automation. IEEE Transactions on industrial informatics, 1(1), 62-70.