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Abstract 

The smoothing parameter has a complete bearing on curve 

estimation in the context of kernel nonparametric 

regression.Meta-heuristic algorithm implementation has 

grown in popularity among researchers.In this study, a 

multivariate Nadaraya-Watson kernel nonparametric 

regression bandwidth matrix selection approach based on a 

pigeon optimization algorithm is given.The suggested 

approach will effectively assist in identifying the appropriate 

bandwidth matrix with a strong forecast.The proposed 

approach is contrasted with two well-known approaches.The 

thorough demonstration of the suggested method's superiority 

in terms of prediction ability is provided by the experimental 

results. 

Keywords: kernel estimator; smoothing matrix, Nadaraya-

Watson estimator, meta-heuristic algorithm.  
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1.Introduction 

Nonparametric kernel estimation method is the most popular nonparametric 

estimationmethod(Härdle, 1990). Nonparametric approaches to the smoothing of noisy regression 

data sets have been demonstrated to be effective for many applications. “For detailed expositions 

see Eubank (1988)Eubank , Müller (1988)and Härdle (1990). An important component of all 

nonparametric regression estimators is the choice of the smoothing parameter . The nonparametric 

regression model, often estimated by estimators of the Nadaraya–Watson type (Nadaraya (1964), 

Watson (1964)) . The estimation resulte, however, depend crucially on the choice of bandwidth . In 

a univariate case  these estimates depend on a bandwidth (h), which is a smoothing parameter 

controlling smoothness of an estimated curve and a kernel (k) which is considered as a weight 

function . 

The choice of the smoothing parameter is a crucial problem in the kernel regression. The 

literature on bandwidth selection is quite extensive, such as (Ali, 2019; Chen, 2015; C.-K. Chu & 

Marron, 1991; C. Chu, 1995; Dobrovidov & Ruds‟ko, 2010; Feng & Heiler, 2009; Francisco-

Fernández & Vilar-Fernández, 2005; Gao & Gijbels, 2012; Kauermann & Opsomer, 2004; Koláček 

& Horová, 2017; Lee & Solo, 1999; Leungi, Marriott, & Wu, 1993; Mustafa & Algamal, 2021; 

Nychka, 1991; Opsomer & Miller, 2007; Rice, 1984; Schucany, 1995; Zhang, Chan, Ho, & Ho, 

2008; Zhou & Huang, 2018; Żychaluk, 2014). For the multivariate case (d-dimemsional), these 

estimates depend on a bandwidth matrix H  and ( )K  is a multivariate kernel function”. 

In this paper, meta-heuristic optimization algorithms method proposed to choose smoothing 

parameter in multivariate Nadaraya-Watson kernel nonparametric regression. The proposed method 

will efficiently help to findsuperiority of the proposed method in different simulated examples and a 

real data application is proved. the best smoothing parameter with a high prediction.  

2. Multivariate Nadaraya-Watson estimator (MNW) 

Consider  the multivariate  nonparametric regression model MNR defined as (Schafer & 

Wasserman, 2013) 

 
  1,2,...,i n

i i
y = m X + ε       

 (1) 
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where y is a scalar dependent variable,   2i1i di
X = x ,x ,…,x  is a matrix of independent d-variables, 

i
ε is independent of , X   0 E ε and   2var ε and  m x is the function of unknown regression 

estimated by Multivariate Nadaraya-Watson estimator (Multivariate local constant( is defined as the 

following : 
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Where ( )K   is a multivariate kernel function and H is a symmetric positive definite matrix called 

the bandwidth matrix,where  1 2 dh h h h  , 1 d d d H = h I , then 
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The multivariate Nadaraya-Watson estimator (MNW) depend crucially on the optimal bandwidth 

matrix choice .There are many methods to choice bandwidth matrix H , Cross validation (CV), 

General cross validation(GCV), Kullback-Leibler cross validation (KLCV) and Least –Squares 

cross validation (LSCV), we measure the performance of  m̂ x  by mean integrated squared error 

(MISE). 

3. The proposed method 

The efficiency of MNW kernel estimator largely depends on an appropriately choosing the 

smoothing parameter matrix , H . “As a result, it is of crucial importance selecting a suitable value 

of the H  . In literature, the most widely used method for selecting H is the cross-validation (CV) 

and General cross validation(GCV) .  
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Where 1
ˆ ( )m i

X ;k  is multivariate Nadaraya-Watson estimator (MNW)  and n represent the size of 

sample. In this paper, a meta-heuristic optimization algorithms method is proposed to determine the 

smoothing parameter matrix in the MNW kernel estimator. The proposed method will efficiently 

help to find the best value with high prediction performance. The parameter configurations for our 

proposed method are presented as follows. 

Nature has been an inspiration for the introduction of many meta-heuristic algorithms. Swarm 

intelligence is an important tool for solving many complex problems in scientific research 

(Algamal, 2018; Kahya, Altamir, & Algamal, 2020). Swarm intelligence algorithms have been 

widely studied and successfully applied to a variety of complex optimization problems. 

The pigeon optimization algorithm (POA), which was proposed by Duan and Qiao (2014), has 

certain outstanding merits, such as a simple computational process, simple implementation, and 

easy understanding with only a few parameters for tuning. Due to its good properties, POA has 

become a useful tool for many real-world problems (Fu, Chan, Niu, Chung, & Qu, 2019; Qiu & 

Duan, 2020; Sushnigdha & Joshi, 2018; Yan, Qu, Zhu, Qiao, & Suganthan, 2019; Yang, Duan, Fan, 

& Deng, 2018; Zhong, Wang, Lin, & Zhang, 2019). The POA simulates the homing behavior of 

pigeons.  

The POA mainly consists of two operators: the map and compass operator and the landmark 

operator. In the map and compass operator, pigeons sense the geomagnetic field to shape the map 

for homing. Suppose that the search space is N-dimensional, and then the i-th pigeon of the swarm 

can be represented by a N-dimensional vector 
,1 ,2 ,N( , ,..., )i i i iX X X X . The velocity of this 

pigeon, which represents the position change of this pigeon, can be represented by another N-

dimensional vector 
,1 ,2 ,N( , ,..., )i i i iV V V V . The best previously visited position of the  i-th pigeon is 

denoted as ,1 ,2 ,N( , ,..., )i i i iP P P P .The global best position of the swarm is  1 2,  , ,  Ng g g g  . 

Each pigeon is flying according to the following two equations: 

          1        Rt

i gi it V t e rand X X tV        (8) 
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        1       1 ,i i iX t X t V t     (9) 

where R is a map and compass factor, while rand  is a uniform random number in the range  0,  1 , 

gX is the global best solution,    iX t  denotes the current position of a pigeon at instance t , and 

   iV t  denotes the current velocity of a pigeon at iteration t . 

In landmark operator, all the pigeons are ranked according to their fitness value. In each 

generation, the number of pigeons is updated by Eq. (9), where only half number of pigeons is 

considered to calculate the desired position of the centered pigeon, while all other pigeons adjust 

their destination by following the desirable destination position.  

 
( )

( 1) ,
2

p

p

N t
N t    (10) 

where pN  is the number of pigeons in the current iteration t . 

The position of the desired destination is calculated by Eq. (8), while all other pigeons update 

their position toward this position by Eq. (9) (Duan & Qiao, 2014). 

 
( 1) Fitness( ( 1))

( 1)
Fitness( ( 1))

i i

c

p i

X t X t
X t

N X t

  
 






 (11) 

           1       1 ,i i c iX t X t rand X t X t      (12) 

where  cX  is the position of the centered pigeon (desired destination).  

 

The efficiency of MNW kernel estimator largely depends on an appropriately choosing the 

smoothing parameter matrix, H . As a result, it is of crucial importance selecting a suitable value of 

the ih . In this paper, a POA is proposed to determine the smoothing parameter in the MNW kernel 

estimator. The proposed method will efficiently help to find the best value with high prediction 

performance”. The parameter configurations for our proposed method are presented as follows.  

(1) The number of pigeons, is set to 30 and the number of iterations is  maxt =250 . 
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(2) The positions of each pigeon are randomly determined. The position of a pigeon represents the 

smoothing parameter matrix, H . The initial positions of the pigeon s are generated from a 

uniform distribution within the range [0,15].  

(3) The fitness function is defined as  

 2

1

1
ˆfitness min ( ) ,

n

i i

i

y y
n 

   (13) 

(4) The positions are updated using Eq. (12). 

(5) Steps 3 and 4 are repeated until a maxt  is reached. 

 

4. Simulation results 

To test how well the proposed method performs for different possible mean functions the 

following study design was followed. “The comparisons with different used methods, CV, GCV, 

are also conducted. “Three sizes of samples are taken as: 50,100,250n    In addition, the type of 

kernel is setting as Epanechnikov kernel typ. 

Case 1:  In the case, we use the regression function(Koláček & Horová, 2017) 

 
3

1 2( 0.5) ( 0.5) (0,0.02)i iy x x N       (14) 

The independent  variables,  are generated from uniform distribution with the range 0 and 1. 

Case 2:  In the case, we use the regression function(Shang, Zhang, & Shang, 2014) 

 
     3,

1, 2, 2, 2

3,

2
2

sin 2 4 1 1 (0,0.09 )
1 0.8

i

i i i i i

i

x
y x x x

x
N      




 (15) 

The independent  variables,  are generated from uniform distribution with the range 0 and 1. 

Case 3:  In the case, we use the regression function(Lijian & Rolf, 1999) 

 
    

2 2

1 2 30.5 sin 2 )(0,0.25i iy x x Nx     
 (16) 

The independent  variables,  are generated from uniform distribution with the range 0 and 1. 

Case 4:  In the case, we use the regression function(Lijian & Rolf, 1999) 

 
  1 2 3 4sin 0.5 (0,0.25)2 0.5i iy x x x x N      

 (17) 

The independent  variables,  are generated from uniform distribution with the range 0 and 1. 
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Case 5:  In the case, we use the regression function(Goutte, Larsen, & technology, 2000) 

 
 

2

1 2 3 4 5 (0,1)
1

10sin 20 10 5
2

i iy x x x Nx x 
 

      
 


 (18) 

The independent  variables,  are generated from uniform distribution with the range 0 and 1. 

 

The generated data is repeated 500 times and the averaged integrated mean squared error 

(IMSE) is calculated.  The results of the used methods are summarized in Tables 1-5. 

As shown in Tables 1-5, on the five cases, according to the results of the POA and other 

methods, it can be clearly seen that the results achieved is better than the CV and the GCV. For 

example, for case 2 and n=250, the reduction in MSE for POA compared to CV and GCV was 

57.25% and 55.86%, respectively”. Further, regardless of the value of n, the proposed methods, 

POA, provides considerably better results compared to the other methods, in terms of MSE.   

 

Table 1: AVERAGE MSE values for the used methods of case 1 

 CV GCV POA 

n=50 0.035 ± 0.008 0.029 ± 0.011 0.004094 ± 0.001856 

n=100 0.036 ± 0.007  0.034 ± 0.007 0.007698 ± 0.002252 

n=250 0.037 ± 0.003 0.036 ± 0.004 0.015895 ± 0.001955 

 

Table 2: MSE values for the used methods of case 2 

 CV GCV POA 

n=50 2.782 ± 0.813  1.821 ± 0.905 0.022582 ± 0.046602 

n=100 2.869 ± 0.627 2.485 ± 0.710 0.058222 ± 0.046109 

n=250 2.932 ± 0.259 2.807 ± 0.276 0.101367 ± 0.042885  

 

Table 3: MSE values for the used methods of case 3 

 CV GCV POA 

n=50 0.207 ± 0.050 0.145 ± 0.072 0.001 ± 0.003  

n=100 0.217 ± 0.044 0.187 ± 0.055 0.004 ± 0.003 

n=250 0.224 ± 0.019 0.213± 0.023  0.007 ± 0.003 
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Table 4: MSE values for the used methods of case 4 

 CV GCV POA 

n=50 0.411 ± 0.159 0.061 ± 0.065 1.14×10
-7

  ± 5.71×10
-7

 

n=100 0.362 ± 0.138 0.111 ± 0.039  9.57×10
-6

  ± 2.70×10
-5

 

n=250 0.235 ± 0.053  0.127 ± 0.033 4.03×10
-5  

± 0.000132 

 

Table 5: MSE values for the used methods of case 5 

 CV GCV POA 

n=50 8.457 ± 3.644 1.465 ± 1.090 2.02×10
-6

 ± 1.01×10
-5

 

n=100 5.695 ± 1.469 1.898 ± 1.087 0.000209 ± 0.000646 

n=250 4.408 ± 0.690  1.873 ± 0.537 0.000746 ± 0.002415 

 

5. Conclusion 

Meta-heuristic algorithm implementation has grown in popularity among researchers.The issue of 

choosing a smoothing parameter for multivariate Nadaraya-Watson kernel nonparametricregression 

is discussed in this study.It was suggested to use a pigeon optimization approach to select the 

smoothing parameter matrix.The simulation results showed that the POA approach, when compared 

to other competing methods, was superior in terms of IMSE. 
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