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Abstract

The smoothing parameter has a complete bearing on curve
estimation in the context of kernel nonparametric
regression.Meta-heuristic algorithm implementation has
grown in popularity among researchers.In this study, a
multivariate  Nadaraya-Watson  kernel ~ nonparametric
regression bandwidth matrix selection approach based on a
pigeon optimization algorithm is given.The suggested
approach will effectively assist in identifying the appropriate
bandwidth matrix with a strong forecast.The proposed
approach is contrasted with two well-known approaches.The
thorough demonstration of the suggested method's superiority
in terms of prediction ability is provided by the experimental

results.
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1.Introduction

Nonparametric ~ kernel  estimation method is the most popular nonparametric
estimationmethod(Hardle, 1990). Nonparametric approaches to the smoothing of noisy regression
data sets have been demonstrated to be effective for many applications. “For detailed expositions
see Eubank (1988)Eubank , Miller (1988)and Hardle (1990). An important component of all
nonparametric regression estimators is the choice of the smoothing parameter . The nonparametric
regression model, often estimated by estimators of the Nadaraya—Watson type (Nadaraya (1964),
Watson (1964)) . The estimation resulte, however, depend crucially on the choice of bandwidth . In
a univariate case these estimates depend on a bandwidth (h), which is a smoothing parameter
controlling smoothness of an estimated curve and a kernel (k) which is considered as a weight

function .

The choice of the smoothing parameter is a crucial problem in the kernel regression. The
literature on bandwidth selection is quite extensive, such as (Ali, 2019; Chen, 2015; C.-K. Chu &
Marron, 1991; C. Chu, 1995; Dobrovidov & Ruds’ko, 2010; Feng & Heiler, 2009; Francisco-
Fernandez & Vilar-Fernandez, 2005; Gao & Gijbels, 2012; Kauermann & Opsomer, 2004; Kolacek
& Horova, 2017; Lee & Solo, 1999; Leungi, Marriott, & Wu, 1993; Mustafa & Algamal, 2021;
Nychka, 1991; Opsomer & Miller, 2007; Rice, 1984; Schucany, 1995; Zhang, Chan, Ho, & Ho,
2008; Zhou & Huang, 2018; Zychaluk, 2014). For the multivariate case (d-dimemsional), these

estimates depend on a bandwidth matrix H and K ([) is a multivariate kernel function”.

In this paper, meta-heuristic optimization algorithms method proposed to choose smoothing
parameter in multivariate Nadaraya-Watson kernel nonparametric regression. The proposed method
will efficiently help to findsuperiority of the proposed method in different simulated examples and a

real data application is proved. the best smoothing parameter with a high prediction.
2. Multivariate Nadaraya-Watson estimator (MNW)

Consider the multivariate  nonparametric regression model MNR defined as (Schafer &
Wasserman, 2013)

(1)
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where vy is a scalar dependent variable, X =(x,;,X,;,...,X ) is a matrix of independent d-variables,
g;is independent of X, E (¢)=0and var(g)=oc’andm(x)is the function of unknown regression

estimated by Multivariate Nadaraya-Watson estimator (Multivariate local constant) is defined as the

following :

2 K(H (x-x) .

m (X)MNW = Z?_lK(H_lI(Xi -X)) (2)

Where K (1) is a multivariate kernel function and His a symmetric positive definite matrix called

the bandwidth matrix,whereh =[h, h,---h, |, H=h,1,., , then

h, 0---0
.0
_ 2
A=l 3)
hd d xd

The multivariate Nadaraya-Watson estimator (MNW) depend crucially on the optimal bandwidth
matrix choice .There are many methods to choice bandwidth matrixH, Cross validation (CV),
General cross validation(GCV), Kullback-Leibler cross validation (KLCV) and Least —Squares

cross validation (LSCV), we measure the performance of m (x) by mean integrated squared error

(MISE).
3. The proposed method

The efficiency of MNW kernel estimator largely depends on an appropriately choosing the
smoothing parameter matrix ,H. “As a result, it is of crucial importance selecting a suitable value
of the H . In literature, the most widely used method for selecting H is the cross-validation (CV)

and General cross validation(GCV) .

CV (H) == Y [y, -1, (%, K)] @
H =argminH (5)
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Gev, =S %) Ji
; niz_;{l—tr(SH)/n} (6)
H,,, =argmin GCV,
Gev argrerlllnGC b 7

Wherem _,(X;;K) is multivariate Nadaraya-Watson estimator (MNW) and n represent the size of

sample. In this paper, a meta-heuristic optimization algorithms method is proposed to determine the
smoothing parameter matrix in the MNW kernel estimator. The proposed method will efficiently
help to find the best value with high prediction performance. The parameter configurations for our

proposed method are presented as follows.

Nature has been an inspiration for the introduction of many meta-heuristic algorithms. Swarm
intelligence is an important tool for solving many complex problems in scientific research
(Algamal, 2018; Kahya, Altamir, & Algamal, 2020). Swarm intelligence algorithms have been
widely studied and successfully applied to a variety of complex optimization problems.

The pigeon optimization algorithm (POA), which was proposed by Duan and Qiao (2014), has
certain outstanding merits, such as a simple computational process, simple implementation, and
easy understanding with only a few parameters for tuning. Due to its good properties, POA has
become a useful tool for many real-world problems (Fu, Chan, Niu, Chung, & Qu, 2019; Qiu &
Duan, 2020; Sushnigdha & Joshi, 2018; Yan, Qu, Zhu, Qiao, & Suganthan, 2019; Yang, Duan, Fan,
& Deng, 2018; Zhong, Wang, Lin, & Zhang, 2019). The POA simulates the homing behavior of
pigeons.

The POA mainly consists of two operators: the map and compass operator and the landmark
operator. In the map and compass operator, pigeons sense the geomagnetic field to shape the map
for homing. Suppose that the search space is N-dimensional, and then the i-th pigeon of the swarm

can be represented by a N-dimensional vector X; =(X;,X,,,...X; ). The velocity of this

pigeon, which represents the position change of this pigeon, can be represented by another N-

dimensional vector V, =, ,V V. «) - The best previously visited position of the i-th pigeon is

gy
denoted as P, =(P,,,P, ,,....P, ).The global best position of the swarm is g =(g,, 9,..... 9y )
Each pigeon is flying according to the following two equations:

Vit +1) =V, (t) xe ™ +rand x (X, =X, (t)) (8)
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X, (t +1) =X, (t) +V,(t +1), 9)

where R is a map and compass factor, while rand is a uniform random number in the range [O, 1],
X, is the global best solution, X ( t ) denotes the current position of a pigeon at instance t , and

V. ( t ) denotes the current velocity of a pigeon at iteration t .

In landmark operator, all the pigeons are ranked according to their fitness value. In each
generation, the number of pigeons is updated by Eq. (9), where only half number of pigeons is
considered to calculate the desired position of the centered pigeon, while all other pigeons adjust

their destination by following the desirable destination position.

N =, (10)

where N is the number of pigeons in the current iteration t .

The position of the desired destination is calculated by Eq. (8), while all other pigeons update
their position toward this position by Eq. (9) (Duan & Qiao, 2014).

. Y X, (t +1) xFitness(X , (t +1)
((t+1)= N, D Fitness(X ; (t +1))

11)

X;(t +1) = X, (t) + rand x(X_(t +1)xX,(t)), (12)

where X is the position of the centered pigeon (desired destination).

The efficiency of MNW kernel estimator largely depends on an appropriately choosing the
smoothing parameter matrix, H . As a result, it is of crucial importance selecting a suitable value of
the h, . In this paper, a POA is proposed to determine the smoothing parameter in the MNW kernel
estimator. The proposed method will efficiently help to find the best value with high prediction
performance”. The parameter configurations for our proposed method are presented as follows.

(1) The number of pigeons, is set to 30 and the number of iterations is t_, =250 .
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(2) The positions of each pigeon are randomly determined. The position of a pigeon represents the
smoothing parameter matrix, H . The initial positions of the pigeon s are generated from a

uniform distribution within the range [0,15].

(3) The fitness function is defined as

fitness:minEZ(yi -¥)% (13)
n

i=1
(4) The positions are updated using Eq. (12).

(5) Steps 3 and 4 are repeated until a t,,, is reached.

X

4. Simulation results

To test how well the proposed method performs for different possible mean functions the
following study design was followed. “The comparisons with different used methods, CV, GCV,

are also conducted. “Three sizes of samples are taken as: n =50,100,250 In addition, the type of

kernel is setting as Epanechnikov kernel typ.

Case 1: In the case, we use the regression function(Kolac¢ek & Horova, 2017)

y, =(x,—05)°+(x,-05)+¢ [N (0,0.02) (14)
The independent variables, are generated from uniform distribution with the range 0 and 1.

Case 2: In the case, we use the regression function(Shang, Zhang, & Shang, 2014)

; 2X 4,
y; =sin(27x; )+4(1-x,; ) (1+x,, )+m+gim N (0,0.09%) 5

The independent variables, are generated from uniform distribution with the range 0 and 1.

Case 3: In the case, we use the regression function(Lijian & Rolf, 1999)

Y, :{(xl—O.S)Z+x22}sin(27rx3)+gi 1N (0,0.25)

(16)
The independent variables, are generated from uniform distribution with the range 0 and 1.
Case 4: In the case, we use the regression function(Lijian & Rolf, 1999)
y; =sin{z(x, +0.5x, +2x,+0.5x,)}+& 0N (0,0.25) a7
The independent variables, are generated from uniform distribution with the range 0 and 1.
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Case 5: In the case, we use the regression function(Goutte, Larsen, & technology, 2000)

: 1Y
Y, =105|n(7rx1x2)+20[x3—§j +10x,+5x,+¢& [N (0,2 (18)

The independent variables, are generated from uniform distribution with the range 0 and 1.

The generated data is repeated 500 times and the averaged integrated mean squared error
(IMSE) is calculated. The results of the used methods are summarized in Tables 1-5.

As shown in Tables 1-5, on the five cases, according to the results of the POA and other
methods, it can be clearly seen that the results achieved is better than the CV and the GCV. For
example, for case 2 and n=250, the reduction in MSE for POA compared to CV and GCV was
57.25% and 55.86%, respectively”. Further, regardless of the value of n, the proposed methods,

POA, provides considerably better results compared to the other methods, in terms of MSE.

Table 1: AVERAGE MSE values for the used methods of case 1

CVv GCV POA
n=50 0.035 +0.008 0.029 + 0.011 0.004094 + 0.001856
n=100 0.036 + 0.007 0.034 + 0.007 0.007698 + 0.002252
n=250 0.037 +0.003 0.036 + 0.004 0.015895 + 0.001955

Table 2: MSE values for the used methods of case 2

CVv GCV POA
n=50 2.782 +0.813 1.821 + 0.905 0.022582 + 0.046602
n=100 2.869 + 0.627 2.485+0.710 0.058222 + 0.046109
n=250 2.932 +0.259 2.807 +0.276 0.101367 + 0.042885

Table 3: MSE values for the used methods of case 3

CVv GCV POA
n=50 0.207 + 0.050 0.145 + 0.072 0.001 + 0.003
n=100 0.217 +0.044 0.187 + 0.055 0.004 + 0.003
n=250 0.224 + 0.019 0.213+ 0.023 0.007 + 0.003
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Table 4: MSE values for the used methods of case 4

CcVv GCV POA
n=50 0.411 + 0.159 0.061 + 0.065 1.14x10" £5.71x10”
n=100 0.362 +£0.138 0.111 £+ 0.039 9.57x10° +2.70x10°
n=250 0.235 +0.053 0.127 £ 0.033 4.03x10” + 0.000132
Table 5: MSE values for the used methods of case 5

CVv GCV POA
n=50 8.457 + 3.644 1.465 £ 1.090 2.02x10° + 1.01x10™
n=100 5.695 + 1.469 1.898 + 1.087 0.000209 + 0.000646
n=250 4.408 + 0.690 1.873 + 0.537 0.000746 £ 0.002415

5. Conclusion

Meta-heuristic algorithm implementation has grown in popularity among researchers.The issue of
choosing a smoothing parameter for multivariate Nadaraya-Watson kernel nonparametricregression
is discussed in this study.It was suggested to use a pigeon optimization approach to select the
smoothing parameter matrix.The simulation results showed that the POA approach, when compared
to other competing methods, was superior in terms of IMSE.
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