Comparison between Bayesian and Classical Estimators of Birnbaum-Saunders Distribution Parameters with Application

Hussein Bashar Kazem, Ahmed Mahdi Salih
Statistics Department, College of Administration, and Economics, University of Wasit

Corresponding Author: Ahmed Mahdi Salih
Email: amahdi @uowasit.edu,iq, ahmadaljomaily @ yahoo.com
Mobile: 07803658769

Article Info

Page Number: 4899-4905
Publication Issue:
Vol 71 No. 4 (2022)

Article History
Article Received: 25 March 2022
Revised: 30 April 2022
Accepted: 15 June 2022
Publication: 19 August 2022

Abstract

Estimating the parameters of any distribution or model is a main process that helps to make good understanding of the variables behavior under study. Birnbaum and Saunders introduced a two-parameter lifetime distribution to model fatigue life. Since then, extensive work submitted on this model providing different interpretations, constructions, generalizations, inferential method. In our study, we estimate the parameters of it by using classical methods moreover, we use Bayesian estimation, comparison wasmade by using Mean Square Errors MSE and Mean od Absolute Percentage Errors MAPE.

Keywords: Birnbaum-Saunders, Bayesian Estimation, Fatigue Time , Jeffrey's prior

1- Introduction

From all statistical distributions, we can see that the normal distribution is the most one that appears in practice. Some distributions have been developed from the normal distribution.one of them is the Two-parameter Birnbaum-Saunders (BS) is such distribution established by making transformation from random variable has a standard normal distribution. The BirnbaumSaunders (BS) distributionrepresent a natural physical model of a fatigue failure produced under loading[1].

The Birnbaum-Saunders (BS) distribution probability density function could be written as follows:
$f(t ; \alpha, \beta)=\frac{1}{2 \sqrt{2 \pi \alpha \beta}}\left[\left(\frac{\beta}{t}\right)^{\frac{1}{2}}+\left(\frac{\beta}{t}\right)^{\frac{3}{2}}\right] \operatorname{Exp}\left[-\frac{1}{\alpha^{2}}\left(\frac{t}{\beta}+\frac{\beta}{t}-2\right)\right] \ldots(1)$
Where α, β are the shape and scale parameters and $t, \alpha, \beta>0$ the formula in (1) was given by Birnbaum and Saunders [2] that fetched the worth of thisdistribution.

The Birnbaum and Saunders distribution has appeared in several scientific works with many features. like Fletcher [6] who derived the properties of the cumulative distribution function and Konstantinowsky [7] who use this distribution as a life time distribution with industrial data and Desmond[4] who offered a general formula of this distribution and use it in biological studies and also,he supported the physical model of this distribution and its application in industry and Biology.

Our study consists of 7 sections, the first section is the introduction and the second section is Maximum likelihood estimation, the 3ed section is the Bayesian estimation and the $4^{\text {th }}$ section is the data under study while $5^{\text {th }}$ section is the comparison methodsand the $6^{\text {th }}$ section is the results and discussion and the $7^{\text {th }}$ section is the conclusions recommendations.

2- Maximum Likelihood Estimation

The maximum likelihood (ML) estimationfor the both shape and scale parameters were present byby Birnbaum and Saunders [1]. and the asymptotic properties of the distributions were found by Engelhardt [5]. Now for the PDF in (1) we obtain the log-likelihood function to be as follows.
$L \ln f(t: \alpha, \beta)=-n \ln (\alpha)-n \ln (\beta)+\sum_{i=1}^{n} \ln \left[\left(\frac{\beta}{t i}\right)^{\frac{1}{2}}+\left(\frac{\beta}{t i}\right)^{\frac{3}{2}}\right]-\frac{1}{\alpha^{2}} \sum_{i=1}^{n}\left(\frac{t i}{\beta}+\frac{\beta}{t i}-2\right) .$.

For simplicity in obtaining the parameters from (2) we consider the following sample arithmetic mean and the sample harmonic mean [2].
$\bar{t}=\frac{1}{n} \sum_{i=1}^{n} t_{i}$
$h t=\left[\frac{1}{n} \sum_{i=1}^{n} t_{i}^{-1}\right]^{-1}$

And by differentiating (2) with respect to α and equalizing by zero we can obtain the following [13].
$\alpha^{2}=\frac{t}{\beta}+\frac{\beta}{h t}-2$
Again, by differentiating (2) with respect to β and equalizing by zero we can obtain the following nonlinear function.
$\beta^{2}-\beta(2 h t+R)+h t(\bar{t}+R)$
Where R can be written as the following formula
$R=\left[\frac{1}{n} \sum_{i=1}^{n}\left(\beta+t_{i}\right)^{-1}\right]^{-1}$

Where $\boldsymbol{u} \boldsymbol{>} \boldsymbol{0}$ and here, we can see that the value of $\hat{\beta}$ is the positive root of the nonlinear equation in (6).
And finally, we can put α as follows [2].
$\widehat{\alpha}=\left(\frac{t}{\widehat{\beta}}+\frac{\widehat{\beta}}{h t}-2\right)^{1 / 2}$

3- Bayes Estimation

The Bayesian estimation is significant and has fascinated a lot of attention lately. The Bayesian approach begins with determining a prior distribution function for the parameters under study. we have no knowledge about the parameters so we used the non-Informative prior function. The most common prior distribution function is Jeffrey's prior. Jeffrey [8] proposes using the square root of the determinate of the Fisher information matrix as a prior distribution function for the parameters such that [9].
$\boldsymbol{u}(\boldsymbol{\alpha}, \boldsymbol{\beta})=\sqrt{\operatorname{det}^{\left(\boldsymbol{I}_{(\alpha, \boldsymbol{\beta})}\right)}}$
where:
$\boldsymbol{I}_{(\alpha, \boldsymbol{\beta})}=\left[\begin{array}{ll}E\left(\frac{\partial^{2} \log \left(f_{(x)}\right)}{\partial^{2} \alpha^{2}}\right) & E\left(\frac{\partial^{2} \log \left(f_{(x)}\right)}{\partial \alpha \partial \beta}\right) \\ E\left(\frac{\partial^{2} \log \left(f_{(x)}\right)}{\partial \alpha \partial \beta}\right) & E\left(\frac{\partial^{2} \log (f(x))}{\partial^{2} \beta^{2}}\right)\end{array}\right] \ldots$ (

Here, we may write posterior distribution function according to Bayes theory, in which the joint density function of α, β is [12]:
$f\left(\alpha, \beta \backslash t_{1}, t_{2}, \ldots t_{n}\right)=\frac{f\left(t_{1}, t_{2}, \ldots t_{n} \backslash \alpha, \beta\right) u(\alpha, \beta)}{\int_{0}^{\infty} \int_{0}^{\infty} f\left(t, t, \ldots t_{n} \backslash \alpha, \beta\right) u(\alpha, \beta) d \beta d \alpha} \ldots$
By using the likelihood function:
$f\left(\alpha, \beta \backslash t_{1}, t_{2}, \ldots . t_{n}\right)=\frac{L\left(t_{1}, t_{2}, \ldots t_{n} \backslash \alpha, \beta\right) u(\alpha, \beta)}{\int_{0}^{\infty} \int_{0}^{\infty} L\left(t_{1}, t_{2}, \ldots t_{n} \backslash \alpha, \beta\right) u(\alpha, \beta) d \beta d \alpha} \ldots$
Achcar[1] use Laplace transformation to obtain $\boldsymbol{u}(\boldsymbol{\alpha}, \boldsymbol{\beta})$ for the non-informative Jeffrey's prior function will as the following.
$u(\alpha, \beta)=\frac{1}{\alpha \beta}\left(\frac{1}{\alpha^{2}}+\frac{1}{4}\right)^{\frac{1}{2}}$

While we can write the likelihood function of the Birnbaum-Saunders (BS) distribution as follows.

$$
\begin{equation*}
L f(t: \alpha, \beta)=\left(\frac{1}{2 \sqrt{2 \pi \alpha \beta}}\right)^{n} \prod_{i=1}^{n}\left[\left(\frac{\beta}{t i}\right)^{\frac{1}{2}}+\left(\frac{\beta}{t i}\right)^{\frac{3}{2}}\right] \exp -\frac{1}{\alpha^{2}} \sum_{i=1}^{n}\left(\frac{t i}{\beta}+\frac{\beta}{t i}-2\right) \ldots \tag{14}
\end{equation*}
$$

Then we can write posterior distribution function [11].
$\boldsymbol{f}\left(\boldsymbol{\alpha}, \boldsymbol{\beta} \backslash \boldsymbol{t}_{1}, \boldsymbol{t}_{2}, \ldots \boldsymbol{t}_{n}\right)=\frac{\left(\frac{1}{2 \sqrt{2 \pi \alpha \beta}}\right)^{n} \prod_{i=1}^{n}\left[\left(\frac{\beta}{t i}\right)^{\frac{1}{2}}+\left(\frac{\beta}{t i}\right)^{\frac{3}{2}}\right] \exp -\frac{1}{\alpha^{2}} \sum_{i=1}^{n}\left(\frac{t i}{\beta}+\frac{\beta}{t i}-2\right) \frac{1}{\alpha \beta}\left(\frac{1}{\alpha^{2}}+\frac{1}{4}\right)^{\frac{1}{2}}}{\iint_{0}^{\infty}\left(\frac{1}{2 \sqrt{2 \pi \alpha \beta}}\right)^{n} \prod_{i=1}^{n}\left[\left(\frac{\beta}{t i}\right)^{\frac{1}{2}}+\left(\frac{\beta}{t i}\right)^{\frac{3}{2}}\right] \exp -\frac{1}{\alpha^{2}} \sum_{i=1}^{n}\left(\frac{t i}{\beta}+\frac{\beta}{t i}-2\right) \frac{1}{\alpha \beta}\left(\frac{1}{\alpha^{2}}+\frac{1}{4}\right)^{\frac{1}{2}} d \alpha d \beta}$

So, the Bayes estimators (BE) for the parameters will be:
$B E_{\alpha}=E\left(\alpha \backslash t_{1}, t_{2}, \ldots t_{n}\right)=\int_{0}^{\infty} \alpha f\left(\alpha, \beta \backslash t_{1}, t_{2}, \ldots x_{n}\right) d \alpha$
$B E_{\beta}=E\left(\beta \backslash t_{1}, t_{2}, \ldots . t_{n}\right)=\int_{0}^{\infty} \beta f\left(\alpha, \beta \backslash x_{1}, x_{2}, \ldots . x_{n}\right) d \beta$

4- Comparison Methods

There are many statistical methods that we can use to make comparison and here we selected the MSE Mean Squared Errors and the Mean AbsolutePercentage Error MAPE, which is given by [11].

$$
\begin{equation*}
M S E=\frac{1}{n} \sum_{i=1}^{n}\left[t_{i}-\hat{t}_{i}\right]^{2} \ldots \tag{18}
\end{equation*}
$$

$M A P E=\frac{1}{n} \sum_{i=1}^{n}\left|\frac{t_{i}-\hat{t}_{i}}{t}\right|$

5- Data and Results

Here we choose to use two different data from pervious experiments we calculate the Maximum Likelihood Estimators in equations (6),(8) and we use numerical Laplace's approximation method to solve the integrals in (16),(17) then we calculate MSE and MAPE as in Equations (18),(19), and we use MATLAB program to obtain results we choose two data sets from the application of Birnbaum-Saunders (BS) distribution

5-1 Fatigue Data

This data wasgiven by Birnbaum and Saunders [3] which represent the life time of cut aluminum cylinder under certain pressure as follows.

Data
7090969799100103104104105107108108108109109112112113114114114116119
120120120121121123124124124124124128128129129130130130131131131131
131132132132133134134134134134136136137138138138139139141141142142
142142142142144144145146148148149151151152155156157157157157158159
162163163164166166168170174196212

Table (1)
 ML and BE estimators for Fatigue Data With ME and MAPE

Methods	$\widehat{\boldsymbol{\alpha}}$	$\widehat{\boldsymbol{\beta}}$	MSE	MAPE
ML	0.5432	140.13	2.345	0.654
BE	0.118	126.18	0.723	0.411

5-2 Ball Bearings

This data representsthe fatigues life in hours of ten ball bearings of a certain type which was originally given by McCool [10]
152.7 172.0172.5 173.3 193.0 204.7 216.5 234.9 262.6422 .6

Table (2)

ML and BE estimators for Ball Bearings
With ME and MAPE

Methods	$\widehat{\boldsymbol{\alpha}}$	$\widehat{\boldsymbol{\beta}}$	MSE	MAPE
ML	0.1942	207.11	3.284	0.954
BE	0.0118	166.11	0.911	0.503

6- Conclusions and Recommendations

From results in both of table (1), (2) we can notice that the Bayesian Estimation BE of the scale and shape parameters of Birnbaum-Sounders distribution is better than the Maximum Likelihood Estimation MLE due the values of MSE and MAPE.

We highly recommend to use Bayesian estimation for the Birnbaum-Sounders distribution parameters and use different informative and non-informative loss functions for better results.

References

[1] Achcar, J.A. (1993), "Inferences for the Birnbaum-Saunders fatigue life model using Bayesian methods", Computational Statistics and Data Analysis, vol. 15,367-380
[2] Birnbaum, Z.W., Saunders, S.C. (1969a), "A new family of life distribution", Journal of Applied Probability, vol. 6, 319-327.
[3] Birnbaum, Z.W., Saunders, S.C. (1969b), "Estimation for a family of life distributionswith applications to fatigue", Journal of Applied Probability, vol. 6, 328-347.
[4] Desmond, A.F. (1985), "Stochastic models of failure in random environments", Canadian Journal of Statistics, vol. 13, 171-183.
[5] Engelhardt, M., Bain, L.J., Wright, F.T. (1981), "Inferences on the parametersof the Birnbaum-Saunders fatigue life distribution based on maximum likelihood estimation", Technometrics, vol. 23, 251-255.
[6] Fletcher, H. (1911), "A verification of the theory of Brownian movements and a direct determination of the value of NE for gaseous ionization", The PhysicalReview, vol. 33, 81 110.
[7] Konstantinowsky, D. (1914), "ElektrischeLadungen und BrownscheBewegungschrkleinerMetallteilchenGasen", Sitzungsberichte der KaiserlichenAkademie der Wissenschaften, vol. 123, 1697-1752.
[8] Kundu, "Bayesianinferenceandlifetestingplanfor Weibull distribution presence of progressive censoring,'"Technimetrics. Vol. 50, pp.144-154,2008
[9] M. Aslam, S. Kazmi, I. Ahmed, S. Shah, "Bayesian Estimation for Parameters of the Weibull Distribution," Science International, Vol.5, No. 1089 Lahore, Pakistan, pp. 1915-1920, 2014.
[10] McCool, J.L. (1974), "Inferential techniques for Weibull populations", Aerospace Research Laboratories Report ARL TR74-0180, Wright-Patterson Air Force Base, Dayton, Ohio.
[11] N. Mann, R. Schafer, and N. Singpurwalla, Methodsof Statistical AnalysisofReliabilityandLifeData.JohnWiley\&Sons,NewYork 1974.
[12] Wang, M., Sun, X., Park, C. (2016), "Bayesian analysis of Birnbaum-Saunders distribution via the generalized ratio-of-uniforms method", Computational Statistics, vol. 31, 207-225.
[13] Xu, A., Tang, Y. (2010), "Reference analysis for Birnbaum-Saunders distribution",Computational Statistics and Data Analysis, vol. 54, 185-192.

