Forecasting of Temperature and Rain in the City of Baghdad Using Seasonal Vector Autoregressive Moving Average Modelsvarma

Lemya Taha Abdullah*

Information technology unit , College of Arts, Baghdad University, Baghdad, Iraq Lamiaa.abd@coart.uobaghdad.edu.iq

Abstract

in this research, memeraction between two variable was studied and
analyzed , the firstrepresenting the amount of monthly rainfall and the
secondrepresenting the monthly temperature in Baghdad city, Abu Ghraib
station for the period from Jan 2015 to Dec 2019 so it will be 60 values
,each variable represents a time series of 60 values , the two series were
standardized with zero mean and one variance ,then the stationarity of the
two series was tested by the Diekey Fuller test, for the purpose of
choosing the best order of the model , the corrected Akaike information
standard AICC was calculated, It was found that the best model has the
lowest value for the AICCstandard is SVARMA(2,0) , then the model was
estimated , some tests were conducted including Portmanteau test on the
residual series of the estimated model, AR disturbance test , and then
for ecast for this model for a period of 24 months $% \left({{{\rm{A}}} \right)_{\rm{A}}$, starting from Jan 2020
to Dec 2021. The aim of this research is to analyze the relationship
between rain and temperature with forecasting , due to importance of the
amount of rainfall and the temperature on agriculture and the economy in
general , it was concluded that The optimal model is $SVARMA(2,0)$,the
rain influenced by temperature at lag 1 , while temperature is influenced
by temperature at lag 1 and 2 andthe variance increases as the forecast
period increases . SAS programing was used to estimate and forecast the
model .

1.Introduction

Article Info

Rain and temperature are important climatic factors that have a significant impact on agricultural production and that have a significant impact on the economy, as well as the forecasting of these two factors, and the rain is of great importance, it enables the competent agriculture authorities to

grow agriculture crops that are commensurate with the Amount of forecasting rainfall, as well as with regard to temperature and its impact on agricultural crops, especially in the recent period of time and the damage caused by global warming to the environment in general and to agricultural crops in particular,

One of the important models in analyzing the relationship between variables is seasonalvector autoregressive moving average models, it is a model used to measure the effects between variables , It is used in the field of climatic factorReinsel,1993 measure the impact of each climatic factor and the relationship between them . It is also used to determine the relationship between economic variables , The topic of multivariate time seriesattracted the attention by researchers such asTiao and Box (1981) [1] [7]

2.method

There are seasonal phenomena that appear in several time series repeat itself after each regular period, these phenomena appear in time series related to agriculture, construction and travel sector, they will have seasonal models because of the relationship between these time series and the weather. The appropriate way to represent these seasonal phenomena through seasonal vector autoregressive moving average models as following :

for *n* variables, a seasonal vector $ARMA(p)(P)_s(q)(Q)_s$ model has the following form:

$$\phi(B)\boldsymbol{\Phi}(\boldsymbol{B}^{s})\boldsymbol{y}_{t} = \boldsymbol{\theta}(\boldsymbol{B})\boldsymbol{\Theta}(B^{s})\boldsymbol{u}_{t} \qquad \cdots \qquad 1$$

Where

$$\phi(B) = I_n - \phi_1 B - \dots - \phi_p B^p$$
$$\Phi(B^s) = I_n - \Phi_1 B^s - \dots - \Phi_p B^{Ps}$$
$$\theta(B) = I_n - \theta_1 B - \dots - \theta_q B^q$$
$$\Theta(B^s) = I_n - \Theta_1 B^s - \dots - \Theta_Q B^{Qs}$$

 $y_t = (y_{1t}, \dots, y_{nt})$ representes $(n \times 1)$ vector of variables, B is the backshift operator, $\phi_s \cdot \phi_s \cdot a_s$, an $(n \times n)$ matrices of autoregression parameters, $\theta_s \cdot \theta_s$ an $(n \times n)$ matrices of moving average parameters, s is the smallest time period, u_t an $(n \times 1)$ vector of white noise $u_t = (u_{1t} \dots u_{nt})^{\prime}$ zeromean white noise with covariance matrix $\Sigma_u = E(u_t u_t^{\prime})$. [8]

2.1 Model optimum lag length selection

For the purpose of determining the model order, CorrectedAkaike information criterion was adopt, the formula is defined as follows :

Vol. 71 No. 4 (2022) http://philstat.org.ph

$$AICC = log(|\Sigma_{\hat{u}}|) + \frac{2r}{(T - r)/n}$$
(2)

Were $\Sigma_{\hat{u}} = T^{-1} \Sigma_{t=1}^{T} \hat{u}_t \hat{u}_t^{'}$ the maximum likelihood estimator of the residual covariance matrix, ndenote the number of variables, r denote the number of parameters and T denote the number of observation[3][1]

2.2 Multivariate Portmantau test

the statistics for the Ljung-Boxtest is the following form :

$$Q_{\rm h} = T^2 \sum_{l=1}^{\rm h} (T - l)^{-1} tr \{ \hat{\mathcal{C}}_{\epsilon}(l) \hat{\mathcal{C}}_{\epsilon}(0)^{-1} \hat{\mathcal{C}}_{\epsilon}(-l) \hat{\mathcal{C}}_{\epsilon}(0)^{-1} \}$$
(3)

Were $\hat{C}_{\epsilon}(l)$ represent the residuals of cross correlation, h is the maximum lag to be tested [2] [1][5][6]

3. Application

Two time series were used , represented by the monthly rainfall and the monthly temperature series in Baghdad city , Abu Ghraib station for the period from Jan 2015 to Dec 2019

Figure. $(1.(A) \cdot (B))$ rain and temperature series

After standardized the two series to mean zero and variance one [4], to test the stationarity of the series the dicky - fuller test has been calculated, The null hypothesis which states there exists a unit root is not accepted, and then the two series are stationary, table(1).

Variable	Туре	Rho	Pr< Rho	Tau	Pr< Tau
Rain	Zero Mean	-33.95	<.0001	-4.05	0.0001
	Single Mean	-33.95	0.0005	-4.01	0.0025
	Trend	-34.53	0.0007	-4.01	0.0138
Temperature	Zero Mean	-120.03	0.0001	-6.49	<.0001
	Single Mean	-120.06	0.0001	-6.47	0.0001
	Trend	-129.62	0.0001	-6.47	<.0001

Table (1). The test of Dickey-Fuller

For the purpose of determining the order of the appropriate model, the value of corrected Akaike information criterion was calculated, table(2)shows that the model SVARMA(2,0) has the lowest value of the AICC criterion.

Lag	MA 0	MA 1	MA 2	MA 3	MA 4	MA 5
AR 0	-0.188471	-0.17852	-0.213882	-0.108475	0.0056006	0.0617678
AR 1	-1.288552	-1.136496	-1.20605	-1.239905	-1.333445	-1.338471
AR 2	-2.138846	-2.091439	-2.066039	-2.02936	-1.939573	-1.765191
AR 3	-2.045322	-2.057932	-1.952669	-1.823278	-1.720026	-1.542618
AR 4	-1.982337	-2.046527	-1.90615	-1.704758	-1.647116	-1.47061
AR 5	-1.858597	-1.878725	-1.76146	-1.528186	-1.503641	-1.15574

Table (2). The Corrected Akaike Information Criterion

Table (3) shows the parameters estimates for SVARMA(2,0) model, it is clear from the significant parameter A1_1_2 that rain influenced by temperature at t-1, while temperature is influenced by temperature at t-1, AR1_2_2 and t-2, AR2_2_2respectively.

Table(3). Estimated parameters of SVARMA(2,0) model

Equation	Parameter	Estimate	Standard	t	$\Pr > t $	Variable
			Error			
Rain	Constant1	0.01339	0.11742	0.11	0.9096	1
	AR1_1_1	-0.27227	0.13860	-1.96	0.0547	Rain(t-1)
	AR1_1_2	-0.61008	0.22623	-2.70	0.0094	Temperature(t-1)
	AR2_1_1	0.14608	0.13775	1.06	0.2937	Rain(t-2)
	AR2_1_2	0.10381	0.24462	0.42	0.6730	Temperature(t-2)
Temperature	Constant2	0.02926	0.04786	0.61	0.5436	1
	AR1_2_1	0.04577	0.05649	0.81	0.4214	Rain(t-1)
	AR1_2_2	1.53980	0.09221	16.70	0.0001	Temperature(t-1)
	AR2_2_1	-0.01004	0.05614	-0.18	0.8587	Rain(t-2)
	AR2_2_2	-0.84239	0.09970	-8.45	0.0001	Temperature(t-2)

Table (4) shows the cross – correlation structure for the residuals of the SVARMA(2,0) model, as it turns out that the residuals are uncorrelated.

Table(4). The Representation of Residuals Schemeof Cross Correlations for SVARMA(2,0) model

Variable/Lag	0	1	2	3	4	5	6	7	8	9	10	11	12
Rain	+-												
Temperature	-+												

Table (5) shows portmanteau test, as it turns out that the test statistic insignificant for all lagged, this means that there is no autocorrelation in the residuals.

Lag	df	Chi-Square	Pr > ChiSquare
3	4	4.84	0.3043
4	8	8.63	0.3747
5	12	10.65	0.5590
6	16	13.08	0.6670
7	20	13.53	0.8536
8	24	15.43	0.9077
9	28	19.99	0.8648

Table(5).Portmanteau test of residuals for SVARMA(2,0) model

_

		Mathematical	Statistician and Eng	ineering Applications ISSN: 2094-0343
				2326-9865
10	32	21.55	0.9189	
11	36	23.16	0.9518	
12	40	24.08	0.9781	_

Table (6) shows R- Square explanatory ability for each variable, the P value of F statistics show that the univariate model is significant.

Variable	R-Square	Standard	F	Pr > F
		Deviation		
 Rain	0.2762	0.89378	5.06	0.0016
Temperature	0.8744	0.36429	92.28	<.0001

Table(6). Diagnostics of Univariate Model for SVARMA(2,0) model

Table(7) shows F test for Autoregressive Conditional HeteroscdasticARCH, to test that thecovariances of residuals are equal, as it turns out that the test statistics are insignificant, this indicates that the residuals are homogeneous. [5]

Table(7).ARCH test for SVARMA(2,0) model							
Variable	ARCH						
-	F	Pr > F					
Rain	0.20	0.6589					
Temperature	0.25	0.6203					

Table (8) shows the test of disturbance for ARUnivariate Model, for the purpose of testing the null hypothesis that the residualsare independent, as it turns out that the residuals have no AR effects .[5]

Table(8). The test of AR Univariate Model

Variable	AR1 AR2		.2	AR3		AR4		
_	F	Pr > F	F	Pr > F	F	Pr > F	F	Pr > F
Rain	0.01	0.918	0.01	0.986	0.18	0.906	0.60	0.664
		4		4		4		3
Temperature	1.78	0.187	1.14	0.328	0.73	0.541	0.95	0.441
		0		1		4		3

Figure(2), (3)shows actual with predicted value for the rain series , and actual with predicted value for the temperature series respectively.

Figure(2). predicted rain series

Figure(3). predicted temperature series

3.1 Simple impulse response

Response impulse can be defined as the response of one variable to the shock in another variable[5], table (9) shows the response of rain \rightarrow temperature at lag 2 is 0.67, this represent the impact on rain of one unit change in temperature at lag 2, and the response of temperature

 \rightarrow temperature at lag 3 is 0.99 this represent the impact on temperature of one unit change in temperature at lag 3.

Table(9).Simple impulse Response function							
Lag	Variable	Rain	Temperature				
	Response\Impulse						
1	Rain	-0.27227	-0.61008				
	STD	0.13860	0.22623				
	Temperature	0.04577	1.53980				
	STD	0.05649	0.09221				
2	Rain	0.19229	-0.66949				
	STD	0.13732	0.17515				
	Temperature	0.04798	1.50067				
	STD	0.10131	0.20630				
3	Rain	-0.11664	-0.66253				
	STD	0.09596	0.20291				
	Temperature	0.04685	0.98910				
	STD	0.11421	0.28834				
4	Rain	0.03625	-0.36507				
	STD	0.08677	0.22159				
	Temperature	0.02446	0.23527				
	STD	0.09582	0.31503				
5	Rain	-0.03697	-0.03825				
	STD	0.05575	0.21127				
	Temperature	0.00102	-0.48100				
	STD	0.05055	0.31300				
6	Rain	0.01728	0.27495				
	STD	0.03478	0.20293				
	Temperature	-0.02108	-0.93691				
	STD	0.02545	0.33167				
7	Rain	0.00287	0.44122				
	STD	0.02226	0.19863				
	Temperature	-0.03216	-1.02450				

Table(9).Simple Impulse Response function

	STD	0.05724	0.37613
8	Rain	0.01918	0.44781
	STD	0.03016	0.20994
	Temperature	-0.03181	-0.77085
	STD	0.07600	0.40986
9	Rain	0.01126	0.30646
	STD	0.03562	0.21911
	Temperature	-0.02103	-0.30785
	STD	0.07015	0.41573
10	Rain	0.00927	0.08978
	STD	0.02987	0.21789
	Temperature	-0.00527	0.18485
	STD	0.04508	0.40985
11	Rain	0.00015	-0.12441
	STD	0.01797	0.21184
	Temperature	0.00991	0.54500
	STD	0.01998	0.41416
12	Rain	-0.00528	-0.26632
	STD	0.00945	0.20877
	Temperature	0.01962	0.67687
	STD	0.03320	0.42583

Figure (4) shows the responses of rain and temperature to a forecast error in rain impulse

Figure(4).response to impulsein rain

Vol. 71 No. 4 (2022) http://philstat.org.ph Figure(5)shows the responses of rain and temperature to a forecast error in temperature impulse

the forecasting process based on The optimal minimum mean squared error (minimum MSE)i-stepahead forecast (8),tabel (10) shows forecasting values for rain and temperature series fromJan 2020 to Dec 2021, we note that the standard deviation increases for both series as the forecast period increases, this indicates that the variance increases as the forecast period increases. figure (6), (7).

Variable	Obs	Time	Forecast	Standard	95% Confidence	
				Error	Limits	
Rain	61	2020m1	0.51255	1.26288	-1.96264	2.98774
	62	2020m2	1.84620	1.28850	-0.67922	4.37163
	63	2020m3	0.54614	1.68767	-2.76164	3.85392
	64	2020m4	0.67870	1.71745	-2.68743	4.04483
	65	2020m5	-0.93681	1.89581	-4.65252	2.77891
	66	2020m6	0.29254	1.98413	-3.59628	4.18137
	67	2020m7	-0.47004	2.07707	-4.54102	3.60094
	68	2020m8	0.83411	2.18711	-3.45256	5.12077
	69	2020m9	0.43936	2.25923	-3.98864	4.86736
	70	2020m10	-0.25604	2.35924	-4.88008	4.36799

Table(10). The Forecasts for SVARMA(2,0) model

	71	2020m11	1.01852	2.43228	-3.74866	5.78569
	72	2020m12	-0.24527	2.51677	-5.17805	4.68751
	73	2021m1	0.95850	3.09833	-5.11413	7.03112
	74	2021m2	2.20511	3.18643	-4.04018	8.45040
	75	2021m3	0.94483	3.62246	-6.15506	8.04471
	76	2021m4	1.07160	3.74130	-6.26121	8.40441
	77	2021m5	-0.55764	4.00625	-8.40973	7.29446
	78	2021m6	0.69297	4.18294	-7.50544	8.89137
	79	2021m7	-0.09032	4.36299	-8.64162	8.46097
	80	2021m8	1.22976	4.55553	-7.69891	10.15844
	81	2021m9	0.82508	4.70913	-8.40465	10.05481
	82	2021m10	0.13424	4.88732	-9.44474	9.71322
	83	2021m11	1.40811	5.03683	-8.46389	11.28012
	84	2021m12	0.14278	5.19560	-10.04041	10.32598
re	61	2020m1	0.51794	0.45495	-0.37375	1.40963
	62	2020m2	1.21361	0.62676	-0.01483	2.44205
	63	2020m3	1.60928	0.78596	0.06883	3.14973
	64	2020m4	2.53094	0.91587	0.73586	4.32602
	65	2020m5	3.15832	1.02147	1.15628	5.16036
	66	2020m6	3.06444	1.12678	0.85599	5.27289
	67	2020m7	3.32118	1.21448	0.94085	5.70151
	68	2020m8	2.83967	1.30221	0.28739	5.39195
	69	2020m9	2.36490	1.38099	-0.34179	5.07159
	70	2020m10	1.34129	1.45690	-1.51418	4.19676
	71	2020m11	0.83448	1.52895	-2.16220	3.83116
	72	2020m12	2.65876	1.59719	-0.47167	5.78919
	73	2021m1	2.51927	1.84296	-1.09287	6.13141
	74	2021m2	3.22536	2.04758	-0.78782	7.23855
	75	2021m3	3.61337	2.25192	-0.80031	8.02705
	76	2021m4	4.53955	2.43732	-0.23751	9.31661
	77	2021m5	5.16507	2.60352	0.06227	10.26788
	78	2021m6	5.07122	2.76762	-0.35321	10.49565

Temperature

Mathematical Statistician and Engineering Applications ISSN: 2094-0343 2326-9865

79	2021m7	5.32892	2.91531	-0.38498	11.04283
80	2021m8	4.84613	3.06104	-1.15339	10.84565
81	2021m9	4.37254	3.19711	-1.89368	10.63877
82	2021m10	3.34806	3.32890	-3.17647	9.87259
83	2021m11	2.84177	3.45555	-3.93098	9.61451
84	2021m12	4.66583	3.57723	-2.34541	11.67707

Figure(6). Forecasts and predicted for rain series

Figure(7). Forecasts and predicted for temperature series

4. Conclusions

• The optimal model is SVARMA(2,0), which is determined by AICCstandard,

Vol. 71 No. 4 (2022) http://philstat.org.ph

- The residuals for SVARMA(2,0) model are random , based on the results of the portmanteau test, ARCH test and AR disturbance test .
- the rain influenced by temperature at lag 1, while temperature is influenced by temperature at lag 1 and 2
- the variance increases as the forecast period increases .

5. proposal

among the models that are suggested to be estimated are multivariate GARCH modes such as BEKK, CCC, DCC.

References

- Al-NasserA H and Abdullah L T.2021, The estimators of vector autoregressive moving avarege model VARMA of lower order : VARMA(0,1) , ARMA(1,0) , VARMA(1,1) , VARMA(1,2) VARMA(2,1) , VARMA(2,2) with forecasting . J. Phys. Conf. Ser 1818 , 011002.
- Lutkepol H , 2005. New introduction to multiple time series analysis. ISBN 3-540-40172-5, (New York), p764
- Meimela A , Lestari S SS , Mahdy I F, Toharudin T , and Ruchjana B N , 2021 J. *Phys.:Conf. Ser.* 1722 012079,Modeling of covid-19 in Indonesia using vector autoregressive integrated moving average.p3
- 4. Milhoj A. 2016, Multiple time series modeling using the sas VARMAX procedure. SAS InstituteInc, Cary, NC, (USA).
 <u>https://play.google.com/books/reader?id=qwFtCwAAQBAJ&hl=es(2016)</u>
- 5. SAS /ETS 15.1 User's Guide, 2018, The VARMAX Procedure. SAS Institute Inc., Cary, NC,USA ..
- 6. Tsay, R.S. 2005, Analysis of Financial Time Series. New Jersey: John Wiley and Sons, Inc.
- Warsono, Rusel E, Wamiliana, Widiarti and Usman M. 2019, Modeling and forecasting by the vector autoregressive moving average model for export of coal and oil data (case study from Indonesia over the years 2002-2017), *International Journal of Energy Economics and Policy*.9(4) pp240-247.
- 8. Yozgatligil C. and Wei W. W . S. 2009, Representation of multiplicative seasona vectorautoregressive moving average model. the American statistician . vol 63 No 4 p328