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Abstract 

The ridge regression model has been shown to be an effective shrinking 

strategy for reducing the impacts of multicollinearity on a number of 

occasions. When the response variable is positively skewed, the inverse 

Gaussian regression model (IGR) is a popular model to use. 

Multicollinearity, on the other hand, is known to reduce the variance of the 

maximum likelihood estimator of inverse Gaussian regression coefficients. 

A novel estimator is proposed in this paper by presenting a generalization 

of the Liu-type estimator using inverse Gaussian regression (NIGLTE). 

The performance of NIGLTE is fully depending on the shrinkage 

parameter, k. In this paper, three selection methods of the shrinkage 

parameter are explored and investigated. In addition, their predictive 
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performances are considered. Our Monte Carlo simulation and real 

application results suggest that some estimators can bring significant 

improvement relative to others, in terms of mean squared error. 

Keywords: Multicollinearity; ridge estimator; inverse Gaussian regression 

model; Liu-type estimator; Monte Carlo simulation. 

 

1. Introduction 

Inverse Gaussian regressionis widely applied model for studying several real data problems, 

such as automobile insurance claims, healthcare economics, and medical science
1-3

. “Specifically, 

inverse Gaussian regression model is used when the response variable under the study is not 

distributed as normal distribution or the response variable is positively skewed. Consequently, the 

inverse Gaussian  regression assumes that the response variable has a inverse Gaussian  distribution 

4, 5
.  

In dealing with the inverse Gaussian regression model, it is assumed that there is no correlation 

among the regressors. In practice, however, this assumption often not holds, which leads to the 

problem of multicollinearity. In the presence of multicollinearity, when estimating the regression 

coefficients for inverse Gaussian  regression model using the maximum likelihood (ML) method, 

the estimated coefficients are usually become unstable with a high variance, and therefore low 

statistical significance
6, 7

. Numerous remedial methods have been proposed to overcome the 

problem of multicollinearity
8-28

. The ridge regression method 
29

has been consistently demonstrated 

to be an attractive and alternative to the ML estimation method”. 

In classical linear regression models the following relationship is usually adopted 

 , y Xβ ε  (1) 

where y  is an 1n   vector of observations of the response variable, 1( ,..., )pX x x  is an n p  

known design matrix of explanatory variables, 1( ,..., )p β  is a 1p   vector of unknown 

regression coefficients, and ε  is an 1n   vector of random errors with mean 0 and variance 
2 .   

Ridge regression is a shrinkage method that shrinks all regression coefficients toward zero to 

reduce the large variance 
6, 30

. “This done by adding a positive amount to the diagonal of T
X X . As 
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a result, the ridge estimator is biased, but it guaranties a smaller mean squared error than the ML 

estimator.  

In linear regression, the ridge estimator is defined as 

 1ˆ ( ) ,T T
Ridge k  β X X I X y  (2) 

where I  is the identity matrix with dimension p p  and 0k   represents the ridge parameter 

(shrinkage parameter). The ridge parameter, k , controls the shrinkage of β  toward zero. For larger 

value of k , the ˆ
Ridgeβ  estimator yields greater shrinkage approaching zero

29
.  

2. Statistical methodology 

2.1. Inverse Gaussian ridge regression model 

Positively skewed data often arise in epidemiology, social, and economic studies. This type of 

data consists of nonnegative values. Inverse Gaussian distribution is a well-known distribution that 

fits to such type of data. Inverse Gaussian  regression model (IGR) is used to model the relationship 

between the positively skewed response variable and potentially regressors 
31

. 

The inverse Gaussian distribution is a continuous distribution with two positive parameters: 

location parameter,  , and scale parameter,  , denoted as ( , )IG   . Its probability density function 

is defined as 

 

2

3

1 1
( , , ) exp , 0.

22

y
f y y

yy


 

  

  
    
   

 (3) 

The mean and variance of this distribution are, respectively, ( )E y   and 3var( )y  . 

Inverse Gaussian regression model is considered a member of the generalized linear models 

(GLM) family, extending the ideas of linear regression to the situation where the response variable 

is following the inverse Gaussian distribution. Following the GLM methodology, Eq. (1) can re-

write in terms of exponential family function as 

 
3

2

1 1 1 1
( , , ) ln(2 ) ln( ) ,

2 22

y
f y y   

 

   
        

  
 (4) 
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where 3( , ) (1/ 2)ln(2 ) (1/ 2)ln( )C y y      and  
2

( ) 1 1

2

y a y 

  

 
   

 
. Here,   

represents the dispersion parameter and 21/   represents the canonical link function. 

 In GLM, a monotonic and differentiable link function connects the mean of the response 

variable with the linear predictor 
T

i i  x β , where ix  is the i
th

 row of X  and β  is a ( 1) 1p    

vector of unknown regression coefficients. Because i depends on β  and the mean of the response 

variable is a function of i , then 
1 1( ) ( ) ( )T

i i i iE y g g     x β . Related to the IGR, the 

1/ T
i  x β . Another possible link function for the IGR is log link function,  exp( )T

i  x β .  

The model estimation of the IGR is based on the maximum likelihood method (ML). The log 

likelihood function of the IGR under the canonical link function is defined as 

 3

1

1 1 ln
( ) ln(2 ) .

2 2 2

Tn
Ti i
i i

i i

y
y

y




 

   
      

   


x β
β x β  (5) 

The ML estimator is then obtained by computing the first derivative of the Eq. (3) and setting it 

equal to zero, as 

 
1

( ) 1 1
0.

2

n

i i
T

i i

y


 
   

  
 


β

x
β x β


 (6) 

Unfortunately, the first derivative cannot be solved analytically because Eq. (4) is nonlinear in β . 

The iteratively weighted least squares (IWLS) algorithm or Fisher-scoring algorithm can be used to 

obtain the ML estimators of the IGR parameters. In each iteration, the parameters are updated by 

 ( 1) ( ) 1 ( ) ( )( ) ( ),r r r rI S  β β β β  (7) 

where ( )( )rS β  and 1 ( )( )rI 
β  are ( ) ( ) /S   β β β  and   

1
1 2( ) ( ) / TI E


     β β β β evaluated at 

( )r
β , respectively. The final step of the estimated coefficients is defined as  

 
1ˆ ˆ ˆ ˆ( ) ,T T

IGR
β X WX X Wu  (8) 
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where 
3ˆ ˆdiag( )iW , û  is a vector where i

th
 element equals to 

2 3ˆ ˆ ˆ ˆ(1/ ) (( ) / )i i i i iu y     , and 

ˆˆ 1/ T
i  x β . The covariance matrix of ˆ

IGRβ  equals  

 

1
2

1( )ˆ ˆcov( ) ( ) ,T
IGR T

E 




  

    
    

β
β X WX

β β


 (9) 

and the mean squared error (MSE) equals  

 
1

1

ˆ ˆ ˆ ˆ ˆMSE( ) ( ) ( )

ˆ[( ) ]

1
,

T
IGR IGR IGR

T

p

j j

E

tr








  



 

β β β β β

X WX  (10) 

where j  is the eigenvalue of the ˆT
X WX  matrix and the dispersion parameter,  , is estimated by 

31
 

 
2

3
1

ˆ( )1
ˆ .

( ) ˆ

n
i i

i i

y

n p










  (11) 

In the presence of multicollinearity, the matrix ˆT
X WX becomes ill-conditioned leading to high 

variance and instability of the ML estimator of the inverse Gaussian regression parameters. As a 

remedy, the inverse Gaussian ridge regression estimator (IGRR) can be defined as 

 

1
IGRR IGR

1

ˆ ˆˆ ˆ( )

ˆ ˆ ˆ( ) ,

T T

T T

k

k





 

 

β X WX I X WXβ

X WX I X Wu
 (12) 

where 0k  . The ML estimator can be considered as a special estimator from Eq. (11) with 0k 

”.  

2.2.The proposed estimator 

K. Liu (1993) proposed an estimator, which is called Liu estimator, combining the Stein 

estimator with the ridge estimator. “Comparing with ridge estimator, the Liu estimator is a linear 

function of the shrinkage parameter, therefore it is easy to choose the shrinkage parameter than to 

choose ridge parameter. 
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Consequently, the Liu estimator in GRM, the inverse Gaussian Liu estimator (IGLE), is defined 

as 

 1ˆ ˆˆ ˆ( ) ( )T T
IGLE IGRd  β X WX I X WX I β  (13) 

where d  is a shrinkage parameter, 0 1d  . For 1d  , ˆ ˆ
IGLE IGRβ β and for 0 1d  , 

ˆ ˆ
IGLE IGRβ β .  

Liu estimator is upgraded by proposing Liu-type estimator to overcome the problem of sever 

multicollinearity, Liu-type estimator is defined as follows 
32

 

 
1ˆ ˆˆ ˆ( ) ( )T T

IGLTE IGRk d  β X WX I X WX I β  (14) 

where d   and 0k  . Liu-type estimator has superior over ridge estimator 
33

. The MSE of  

ˆ
IGLTEβ  is 

 

2 2

1 2

2 2
1 1

( )
ˆ( ) ( )

( ) ( )

J J
j j

IGLTE

j jj j j

d
MSE d k

k k

 


  



 


  

 
 β  (15) 

In the context of the linear regression model,Kurnaz and Akay 
34

, proposed the a new 

generalized Liu-type estimator to alleviate the problem of multicollinearity in linear regression 

model.The theoretical of the generalized Liu-type estimator have been studied by Kurnaz and Akay 

34
 and Ertan and Akay 

35
.  

According to Kurnaz and Akay 
34

 and Ertan and Akay 
35

, our proposed new Liu-type estimator 

for inverse Gaussian  regression model (NIGLTE) is defined as: 

 
1ˆ ˆˆ ˆ( ) ( ( ) )T T

NIGLTE IGRk f k  β X WX I X WX I β  (16) 

where ( )f k  is a continuous function of the k. Usually, ( )f k  is selected as a linear function of the 

biasing parameter such as  ( ) ak k bf   , where a,b R . As a result, the NGLTE becomes a 

general estimator which includes the other biased estimators
34, 35

.  

The MSE of  ˆ
NIGLTEβ  is 

 

2 22

1

2 2

1 1

1 1

ˆ(  + 
( ( ) )( ( ))

)  
( ) ( )

j

j j j

j

NIGLTE

p p

j j

MSE
k

ff

k

k kk




  


 

 

 


  β  (17) 
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2.3.Selecting methods of k 

Since the performances of the biased estimators depend on the choice of biasing parameters, it 

is a significant problem to find reasonable estimates of the biasing parameters. Three well-known 

methods are used. They defined as: 

 
1

1

1

ˆ ˆ
GR GR

k
p


 







 (18) 

 
2

1max
j

j

k m

 
 
 
 

  (19) 

 
3

median 1
j

k q

 
 
 
 
 
 

  (20) 

where 
1

2ˆjm 





 and
1

max
2

max

,  
ˆ( 1)

j

j

q
n p



  


  
. 

3. Simulation study  

In this section, a Monte Carlo simulation experiment is used to examine the performance of our 

proposed estimatorunder different degrees of multicollinearity.  

 

3.1. Simulation design 

The response variable of n  observations from inverse Gaussian  regression model is generated 

as ( , )i iy IG   , where {0.50,1.5}   and exp( )T
i i  x β , 1( ,..., )p β with 2

1

1
p

j

j




  and 

1 2 ... p     36
.The explanatory variables 1 2( , ,..., )T

i i i inx x xx  have been generated from 

thefollowing formula  

 2 1 2(1 ) , 1,2,..., , 1,2,..., ,l

ij ij ipx w w i n j p       (21) 

where   represents the correlation between the explanatory variables and ijw ’s are independent 

standard normal pseudo-random numbers. Because the sample size has direct impact on the 

prediction accuracy, three representative values of the sample size are considered: 50, 100, and 150. 

In addition, the number of the explanatory variables is considered as 4p   and 8p   because 
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increasing the number of explanatory variables can lead to increase the MSE. Further, because we 

are interested in the effect of multicollinearity, in which the degrees of correlation considered more 

important, three values of the pairwise correlation are considered with {0.90,0.95,0.99}  .For a 

combination of these different values of , ,n p , and  the generated data is repeated 1000 times 

and the average absolute bias and average MSE are determined as  

 
1000

1

1ˆ ˆ ˆMSE( ) ( ) ( ).
1000

T

i 

  β β β β β  (22) 

3.2. Simulation results 

The averaged MSE all the combination of , ,n p , and  , are respectively summarized in 

Tables 1 and 2.The best value of the averaged bias and MSE is highlighted in bold. As Table 1 

shows, the proposed method, k3, gives lowbias comparing with IGR, k1, and k2. On other hand, k3 

performances better than IGR. It is noted from Table 2 that k3 ranks first with respect to MSE. In 

the second rank, k2 estimator performs better than both IGR and k1 estimators. Additionally, IGR 

estimator has the worst performance among k1, k2, and k3which is significantly impacted by the 

multicollinearity. 

Furthermore, with respect to  , there is increasing in the MSE values when the correlation 

degree increases regardless the value of ,n  and p .Regarding the number of explanatory variables, 

it is easily seen that there is a negative impact on MSE, where there areincreasing in their values 

when the p  increasing from four variables to eight variables. In Addition, in terms of the sample 

size n , the MSE values decrease when n  increases, regardless the value of ,  and p .Clearly,in 

terms of the dispersion parameter  , MSE values are decreasing when   increasing.  

Table 1: Averaged MSE values for the four estimators when 0.5   

n  p    IGR k1 k2 k3 

50 4 0.90 6.031 4.737 4.398 4.284 

  0.95 6.075 4.787 4.448 4.334 

  0.99 6.341 5.053 4.714 4.6 

 8 0.90 6.145 4.857 4.518 4.404 

  0.95 6.195 4.907 4.568 4.454 

  0.99 6.461 5.173 4.834 4.72 
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100 4 0.90 5.783 4.495 4.156 4.042 

  0.95 5.833 4.545 4.206 4.092 

  0.99 6.099 4.811 4.472 4.358 

 8 0.90 5.909 4.615 4.276 4.162 

  0.95 5.953 4.665 4.326 4.212 

  0.99 6.219 4.931 4.592 4.478 

150 4 0.90 5.732 4.444 4.105 3.991 

  0.95 5.782 4.494 4.155 4.042 

  0.99 6.048 4.76 4.421 4.307 

 8 0.90 5.852 4.564 4.225 4.112 

  0.95 5.902 4.614 4.275 4.161 

  0.99 6.168 4.88 4.541 4.427 

 

Table 2: Averaged MSE values for the four estimators when 1.5   

n  p    IGR k1 k2 k3 

50 4 0.90 5.922 4.634 4.295 4.181 

  0.95 5.971 4.683 4.344 4.23 

  0.99 6.238 4.95 4.611 4.497 

 8 0.90 6.042 4.754 4.415 4.301 

  0.95 6.091 4.803 4.464 4.349 

  0.99 6.358 5.07 4.731 4.617 

100 4 0.90 5.68 4.392 4.053 3.939 

  0.95 5.73 4.441 4.102 3.988 

  0.99 5.996 4.708 4.369 4.255 

 8 0.90 5.8 4.512 4.173 4.059 

  0.95 5.85 4.562 4.223 4.109 

  0.99 6.116 4.828 4.489 4.375 

150 4 0.90 5.629 4.341 4.002 3.888 

  0.95 5.678 4.39 4.052 3.937 

  0.99 5.945 4.657 4.318 4.204 

 8 0.90 5.749 4.461 4.122 4.008 
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  0.95 5.798 4.51 4.172 4.057 

  0.99 6.065 4.777 4.438 4.324 

 

4. Real Data Application 

To demonstrate the usefulness of the NIGLTE in real application, we present here a chemistry 

dataset with    ,    65,15n p  , where n  represents the number of imidazo[4,5-b]pyridine 

derivatives, which are used as anticancer compounds. While p  denotes the number of molecular 

descriptors, which are treated as explanatory variables 
37

. The response of interest is the biological 

activities (IC50). Quantitative structure-activity relationship (QSAR) study has become a great deal 

of importance in chemometrics. The principle of QSAR is to model several biological activities 

over a collection of chemical compounds in terms of their structural properties 
38

. Consequently, 

using of regression model is one of the most important tools for constructing the QSAR model. A 

description of the used explanatory variables is provided in Table 3. All the variables are numerical. 

First, to check whether the response variable belongs to the inverse Gaussian distribution, a 

Chi-square test is used. The result of the test equals to 5.2762 with p-value equals to 0.2601. It is 

indicated form this result that the inverse Gaussian distribution fits very well to this response 

variable. That is, the following model is set 

 
50

15

1

ˆˆ exp( ).IC j j

j

y 


 x  (23) 

Second, to check whether there is a relationship among the explanatory variables or not, Figure 

1 displays the correlation matrix among the 15 explanatory variables. It is obviously seen that there 

are correlations greater than 0.90 among MW, SpMaxA_D, and ATS8v ( 0.96r  ), between 

SpMax3_Bh(s) and ATS8v ( 0.92r  ), and between Mor21v with Mor21e ( 0.93r  ). 

Third, to test the existence of multicollinearity after fitting the inverse Gaussian regression 

model using log link function and the estimated dispersion parameter is 0.00103, the eigenvalues of 

the matrix ˆT
X WX  are obtained as 91.884 10 , 63.445 10 , 52.163 10 , 42.388 10 , 31.290 10 , 

29.120 10 , 24.431 10 , 21.839 10 , 21.056 10 , 5525 , 3231, 2631, 1654 , 1008 , and 1.115 . The 

determined condition number max minCN /   of the data is 40383.035 indicating that the severe 

multicollinearity issue is exist. 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 

5019 

 
Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

 

The estimated inverse Gaussian regression coefficients and MSE values for the IGR, K1, K2, 

and K3 estimators are listed in Table 4. According to Table 4, it is clearly seen that the NGLTE 

shrinkages the value of the estimated coefficients efficiently. Additionally, in terms of the MSE, 

there is an important reduction in favor of the NGLTE. Specifically, it can be seen that the MSE of 

the NGLTE estimator was about 44.52%, 36.61%, and 22.11% lower than that of IGR, K1, and 

K2estimators, respectively”. 

Table 3: Description of the used explanatory variables 

Variable 

name’s 

description 

MW molecular weight 

IC3 Information Content index (neighborhood symmetry of 3-order) 

SpMaxA_D normalized leading eigenvalue from topological distance matrix 

ATS8v Broto-Moreau autocorrelation of lag 8 (log function) weighted by van der 

Waals volume 

MATS7v Moran autocorrelation of lag 7 weighted by van der Waals volume 

MATS2s Moran autocorrelation of lag 2 weighted by I-state 

GATS4p Geary autocorrelation of lag 4 weighted by polarizability 

SpMax8_Bh(p) largest eigenvalue n. 8 of Burden matrix weighted by polarizability 

SpMax3_Bh(s) largest eigenvalue n. 3 of Burden matrix weighted by I-state 

P_VSA_e_3 P_VSA-like on Sanderson electronegativity, bin 3 

TDB08m 3D Topological distance based descriptors - lag 8 weighted by mass 

RDF100m Radial Distribution Function - 100 / weighted by mass 

Mor21v signal 21 / weighted by van der Waals volume 

Mor21e signal 21 / weighted by Sanderson electronegativity 

HATS6v leverage-weighted autocorrelation of lag 6 / weighted by van der Waals 

volume 

 

Table 4: The estimated coefficients and MSE values for the four used estimators.  

 Estimators    

 GR k1 k2 k3 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 

5020 

 
Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

 

MW̂  1.002 0.3397 0.3157 0.2727 

IC3̂  1.237 0.0244 0.0004 -0.0426 

SpMaxA_D̂  -1.102 0.6021 0.5781 0.5351 

ATS8v̂  -1.379 0.0244 0.0004 -0.0426 

MATS7v̂  -1.219 -0.8652 -0.8892 -0.9322 

MATS2s̂  -1.215 0.08084 0.05684 0.01384 

GATS4p̂
 

-1.237 -1.2411 -1.2651 -1.3081 

 SpMax8_Bh p
̂

 
2.506 0.11684 0.09284 0.04984 

 SpMax3_Bh s
̂

 
2.069 -1.0827 -1.1067 -1.1497 

P_VSA_e_3̂
 

2.001 0.0931 0.0691 0.0261 

TDB08m̂
 

-2.103 -1.0968 -1.1208 -1.1638 

RDF100m̂
 

1.571 0.0593 0.0353 -0.0077 

Mor21v̂  -2.434 -1.1259 -1.1499 -1.1929 

Mor21e̂
 

-2.352 0.04284 0.01884 -0.02416 

HATS6v̂
 

2.211 0.8611 0.8371 0.7941 

MSE 3.2951 1.9366 1.709 1.655 

 

5. Conclusions 

Numerous selection methods of the k parameter are explored and investigated of Liu-type 

inverse Gaussian regression model. In addition, their predictive performances are considered. 

According to Monte Carlo simulation studies, it has been seen that some estimator can bring 

significant improvement relative to others, in terms of MSE. The 3K improved the performance of 

the inverse Gaussian Liu-type regression compared to GM estimator in all the cases without any 

domination but with superiority of 3K  in terms of MSE. In contrast, 1k  estimator showed poor 
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results comparing with others in all cases. Moreover, in real data application, compared to GR 

estimators, the developed estimator, k1, k2, and k3 can efficiently reduce the MSE.   
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