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Abstract 

 The initial boundary value problem for the hyperbolic equation of 

the second order with nontrivial boundary condition is discussed in the 

paper. This problem is a mathematical model of different oscillatory 

processes. Thus, for example, the model of voltage distribution in a 

telegraph line emerges for the one-dimensional equation of oscillations. The 

models of oscillations of a round homogeneous solid membrane and 

membrane with an opening, and the model of gas oscillations in the sphere 

and spherical region emerge for two- and three-dimensional operators, but 

taking into account the radial symmetry of oscillations. The unified 

algorithm for reducing the corresponding problems to the initial boundary 

value problem with trivial boundary conditions is proposed. The description 

of solution development in the form of Fourier series by eigen functions of 

the corresponding Sturm-Liouville problem is presented.    

 

Keywords: hyperbolic equation, modeling of oscillations with fading 

effect, boundary value problem, accurate solutions   . 

 

 

Introduction 

 Let us consider the differential equation in partial derivatives:  

𝛼2(𝑡)𝑢𝑡𝑡 + 2𝛽(𝑡)𝑢𝑡 + 𝛾2(𝑡)𝑢 = 𝐿𝑢,          (1) 

𝑢|𝑥=0 = 𝑣(𝑡), 𝑢|𝑥=𝑙 = 0,          (2) 
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𝑢|𝑡=0 = 𝑢𝑡|𝑡=0 = 0,          (3) 

where 𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡) − prescribed functions of time whose physical sense depends on the 

consideration of a specific physical process, 𝑢 = 𝑢(𝑥, 𝑡) − required function. The differential 

expression defined by differential operator L by spatial variables, which has the second order or 

higher, is in the right side of the equation (1). In this paper we will consider the case of one spatial 

variable or multi-dimensional problems, which can be reduced to a one-dimensional one in one way 

or another.  

 Further, let us introduce the differential operator by time variable:  

𝐷𝑡 ≔ 𝛼2(𝑡)
𝜕2

𝜕𝑡2
+ 2𝛽(𝑡)

𝜕

𝜕𝑡
+ 𝛾2(𝑡), (4) 

in this case, the equation (1) will be as follows:  

𝐷𝑡𝑢 = 𝐿𝑢, (5) 

the boundary conditions (2) and the initial conditions (3) remain unchanged. 

 Let us point out that many authors pay attention to such problems. Thus, the problem of the 

round film membrane oscillation with the electric current conductors distributed on it is discussed in 

[1]. It is possible to obtain the method of formulating the accurate law of membrane oscillations with 

the assumption of the solution linear dependence on radial variable and method of Fourier variable 

separation. The paper [2] considers the problem of controlling a string oscillation process without 

friction. The mathematical models of dynamic processes in heterogeneous structures are described in 

[3] according to the hypotheses of complex rigidity and internal friction. The accurate solutions 

obtained in the paper emerged when investigating ordinary differential equations with constant 

coefficients being the mathematical models of oscillations with friction. The method of obtaining the 

accurate solution for the linear model of oscillations with friction is proposed in [4]. The approximate-

analytical method for calculating small free and forced oscillations of one-dimensional systems with 

dry friction is considered in [5].   

 It should be also pointed out that the equation (5) can be considered not only as a model of 

oscillatory processes in mechanics but also in biology. It has been found that the oscillatory process 

of an internal ear is described by the same equation (for example, [6]). It is known that radial-

symmetric oscillations are modeled by one-dimensional hyperbolic-type equations. Thus, the method 

of developing the solution of heterogeneous equation of the type (1) with harmonic type of 

heterogeneous component is proposed in [7]. In [8], a “very weak” solution for the equation similar 

to (1) is defined and the acoustic problem of shallow water, for which the qualitative effect of echo 

emergence was found by numerical methods is considered.    

 It is possible to introduce substitution for the required function in such a way that boundary 

conditions (2) will become trivial. For this, let us introduce the new function 𝑤(𝑥, 𝑡): 

𝑢 = 𝑤 + 𝑣(𝑡) (1 −
𝑥

𝑙
) , (6) 

for which the equation (5) and the conditions (2)-(3) will be as follows:  
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𝐷𝑡𝑤 + (1 −
𝑥

𝑙
) 𝐷𝑡𝑣(𝑡) = 𝐿𝑤, (7) 

𝑤|𝑥=0 = 𝑤|𝑥=𝑙 = 0, (8) 

𝑤|𝑡=0 = −𝑣(0) (1 −
𝑥

𝑙
) , 𝑤𝑡|𝑡=0 = −𝑣′(0) (1 −

𝑥

𝑙
).       (9) 

Then we introduce the substitution for function 𝑤 in such a way that the summand disappears 

from the first variable by time variable in the equation (7). Let  

𝑤 = 𝐴(𝑡)𝑊, 𝑣(𝑡) = 𝐴(𝑡)𝑠(𝑡), (10) 

where function 𝐴(𝑡) is determined from Cauchy problem:  

𝛼2(𝑡)𝐴′(𝑡) +  𝛽(𝑡)𝐴(𝑡) = 0, 𝐴(0) = 1, (11) 

that is  

𝐴(𝑡) = 𝑒𝑥𝑝 (− ∫
𝛽(𝜏)

𝛼2(𝜏)
𝑑𝜏

𝑡

0

). 

Then according to (10) we have that  

𝑤 = 𝑒𝑥𝑝 (− ∫
𝛽(𝜏)

𝛼2(𝜏)
𝑑𝜏

𝑡

0

) 𝑊, 𝑠(𝑡) = 𝑒𝑥𝑝 (− ∫
𝛽(𝜏)

𝛼2(𝜏)
𝑑𝜏

𝑡

0

) 𝑣. 

With such substitution we get the equation for the new function 𝑊: 

𝛼2(𝑡)𝑊𝑡𝑡 + 𝑄(𝑡)𝑊 + (1 −
𝑥

𝑙
) (𝛼2(𝑡)𝑠′′(𝑡) + 𝑄(𝑡)𝑠(𝑡)) = 𝐿𝑊, (12) 

where 𝑄(𝑡) is defined by the formula (13): 

𝑄(𝑡) = −
𝛽′(𝑡)𝛼2(𝑡) − 𝛽(𝑡)(𝛼2(𝑡))

′

𝛼2(𝑡)
−

𝛽2(𝑡)

𝛼2(𝑡)
+ 𝛾2(𝑡).      (13) 

It should be noted that the boundary conditions (8) for the new function 𝑊 do not change: 

𝑊|𝑥=0 = 𝑊|𝑥=𝑙 = 0, (14) 

and the initial conditions will be as follows:  

𝑊|𝑡=0 = −𝑣(0) (1 −
𝑥

𝑙
) , 𝑊𝑡|𝑡=0 = − (𝑣′(0) +

𝛽(0)

𝛼2(0)
𝑣(0)) (1 −

𝑥

𝑙
).   (15) 

 It should be indicated that the solution of the equation (1) is expressed through the solution of 

the equation (12) by the formula: 
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𝑢(𝑥, 𝑡) = 𝑣(𝑡) (1 −
𝑥

𝑙
) + 𝑒𝑥𝑝 (− ∫

𝛽(𝜏)

𝛼2(𝜏)
𝑑𝜏

𝑡

0

) 𝑊(𝑥, 𝑡).    (16) 

Let us find the solution of the problem (12), (14), (15) with the help of variable separation 

method. Let us consider the equation (12), which does not have a heterogeneous summand: 

𝛼2(𝑡)𝑊𝑡𝑡 + 𝑄(𝑡)𝑊 = 𝐿𝑊, (17) 

we define 𝑊 = 𝑇𝑋, then after substituting this expression into the equation (17) we have: 

𝛼2(𝑡)
𝑇′′

𝑇
+ 𝑄(𝑡) =

𝐿𝑋

𝑋
. 

And Sturm-Liouville problem arises for function 𝑋: 

𝐿𝑋 = 𝜆𝑋, 𝑋(0) = 𝑋(𝐿) = 0.          (18) 

As it is known, the problem (18) has the computational set of eigen numbers 𝜆𝑛 and eigen 

functions 𝑋𝑛 with the corresponding differential operator L. Let us further expand function (1 −
𝑥

𝑙
) 

as Fourier series by the system of eigen functions 𝑋𝑛 of the problem (18). Let  

(1 −
𝑥

𝑙
) = ∑ 𝑏𝑛𝑋𝑛

𝑛

, (19) 

where 𝑏𝑛 − Fourier coefficients defined by the formula (20): 

𝑏𝑛 =
(1 −

𝑥
𝑙

, 𝑋𝑛)

(𝑋𝑛, 𝑋𝑛)
.      (20) 

Taking into account (19) and (20), the problem (12), (14), (15) will be as follows:  

∑ (𝛼2(𝑡)𝑇𝑛
′′ + 𝑄(𝑡)𝑇𝑛 + 𝑏𝑛(𝛼2(𝑡)𝑠′′(𝑡) + 𝑄(𝑡)𝑠(𝑡))) 𝑋𝑛

𝑛

= ∑ 𝜆𝑛𝑇𝑛𝑋𝑛

𝑛

,  

𝑊|𝑡=0 = −𝑣(0) ∑ 𝑏𝑛𝑋𝑛

𝑛

, 𝑊𝑡|𝑡=0 = − (𝑣′(0) +
𝛽(0)

𝛼2(0)
𝑣(0)) ∑ 𝑏𝑛𝑋𝑛

𝑛

. 

Due to the linear independence of eigen functions 𝑋𝑛, we have the class of Cauchy problems 

for correcting 𝑇𝑛(𝑡): 

𝛼2(𝑡)𝑇𝑛
′′ + (𝑄(𝑡) − 𝜆𝑛)𝑇𝑛 = −𝑏𝑛(𝛼2(𝑡)𝑠′′(𝑡) + 𝑄(𝑡)𝑠(𝑡)), (21) 

𝑇𝑛|𝑡=0 = −𝑣(0)𝑏𝑛, (𝑇𝑛)𝑡|𝑡=0 = − (𝑣′(0) +
𝛽(0)

𝛼2(0)
𝑣(0)) 𝑏𝑛, (22) 

Having obtained their solutions, we get the accurate solution with the help of the formula (16) 

in the form of Fourier series of the initial problem (1)-(2)-(3): 
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𝑢(𝑥, 𝑡) = 𝑣(𝑡) (1 −
𝑥

𝑙
) + 𝑒𝑥𝑝 (− ∫

𝛽(𝜏)

𝛼2(𝜏)
𝑑𝜏

𝑡

0

) ∑ 𝑇𝑛(𝑡)𝑋𝑛(𝑥)

𝑛

.        (23) 

Certain models of oscillatory processes  

Following [9], [10], let us consider the limited telegraph line with length 𝑙. With the distributed 

parameters 𝐶, 𝐿, 𝑅, 𝐺, where 𝐶 − capacity per length unit, 𝐿 − inductance per length unit, 𝑅 − 

resistance per length unit, 𝐺 − inductivity per length unit (see [11], [12]). Let differential operator 

𝐿 =
𝜕2

𝜕𝑥2, 𝛼2 = √𝐶𝐿, 𝛽 =
𝐶𝑅+𝐿𝐺

2
, 𝛾2 = 𝑅𝐺. Let us assume that the line right end is grounded, and the 

left end is connected with the power source applying the voltage following the harmonic law:  

𝑣(𝑡) = 𝑉 sin 𝜔𝑡, 

where 𝑉 − voltage amplitude, 𝜔 − frequency. Let us also suppose that there is neither current nor 

voltage in the line at the initial time moment. Let 𝑢 = 𝑢(𝑥, 𝑡) − voltage distribution in such telegraph 

line. It is found that this function is the solution for the one-dimensional problem (1)-(2)-(3) (for 

example, [13], [14], [15]). 

 With the parameters introduced it is easy to obtain that  

𝑄(𝑡) ≡ 𝛾2 −
𝛽2

𝛼2
, 𝜆𝑛 = − (

𝜋𝑛

𝑙
)

2

, 𝑋𝑛 = sin
𝜋𝑛𝑥

𝑙
, 𝑏𝑛 =

2

𝜋𝑛
, 

at 𝑛 ∈ ℕ. The initial conditions (22) will be as follows:  

𝑇𝑛(0) = 0, 𝑇𝑛
′(0) = −2

𝜔𝑉

𝜋𝑛
.         (24) 

In the equation (21) the expression (𝛾2 −
𝛽2

𝛼2 + (
𝜋𝑛

𝑙
)

2
) can be both positive and negative, but 

for all possible natural 𝑛 it will be negative only for the finite set of 𝑛 values. 

 Let 𝑁1 ≔ {𝑛|𝑛 ∈ ℕ 𝑎𝑛𝑑 𝛾2 −
𝛽2

𝛼2 + (
𝜋𝑛

𝑙
)

2

< 0}. Then let −𝜎𝑛
2 = 𝛾2 −

𝛽2

𝛼2 + (
𝜋𝑛

𝑙
)

2

. Then 

∀𝑛 ∈ 𝑁1, we have 

𝑇𝑛 = 𝑐1𝑛𝑒
𝜎𝑛𝑡

𝛼 + 𝑐2𝑛𝑒−
𝜎𝑛𝑡

𝛼 +
𝛼2𝜔2 − 𝛾2

𝜋𝑛(𝛼2𝜔2 + 𝜎𝑛
2)

𝑉sin 𝜔𝑡 , (25) 

and from the initial conditions we find that  

𝑐1𝑛 = −
𝛼

2𝜎𝑛
(

𝜔𝑉(𝛼2𝜔2 − 𝛾2)

𝜋𝑛(𝛼2𝜔2 + 𝜎𝑛
2)

+
2𝜔𝑉

𝜋𝑛
) , 𝑐2𝑛 =

𝛼

2𝜎𝑛
(

𝜔𝑉(𝛼2𝜔2 − 𝛾2)

𝜋𝑛(𝛼2𝜔2 + 𝜎𝑛
2)

+
2𝜔𝑉

𝜋𝑛
) 

and  

𝑊 = ∑ (
𝛼

2𝜎𝑛
(

𝜔𝑉(𝛼2𝜔2 − 𝛾2)

𝜋𝑛(𝛼2𝜔2 + 𝜎𝑛
2)

+
2𝜔𝑉

𝜋𝑛
) (−𝑒

𝜎𝑛𝑡
𝛼 + 𝑒−

𝜎𝑛𝑡
𝛼 ) +

𝛼2𝜔2 − 𝛾2

𝜋𝑛(𝛼2𝜔2 + 𝜎𝑛
2)

𝑉sin 𝜔𝑡)

𝑛∈𝑁1

sin
𝜋𝑛𝑥

𝑙
, 
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Then based on the formulas (4) and (12) we have that  

𝑢 = (1 −
𝑥

𝑙
) 𝑉 sin 𝜔𝑡

+ ∑ (
𝛼𝜔𝑉

2𝜎𝑛
(

𝛼2𝜔2 − 𝛾2

𝜋𝑛(𝛼2𝜔2 + 𝜎𝑛
2)

+
2

𝜋𝑛
) (−𝑒

(
𝜎𝑛
𝛼

−
𝛽

𝛼2)𝑡
+ 𝑒

−(
𝜎𝑛𝑡

𝛼
+

𝛽
𝛼2)𝑡

)

𝑛∈𝑁1

+
𝛼2𝜔2 − 𝛾2

𝜋𝑛(𝛼2𝜔2 + 𝜎𝑛
2)

𝑉sin 𝜔𝑡) sin
𝜋𝑛𝑥

𝑙
.       (26) 

Let now 𝑁2 ≔ {𝑛|𝑛 ∈ ℕ 𝑎𝑛𝑑 𝛾2 −
𝛽2

𝛼2 + (
𝜋𝑛

𝑙
)

2

> 0}. Let us introduce the designation 𝜁𝑛
2 =

𝛾2 −
𝛽2

𝛼2 + (
𝜋𝑛

𝑙
)

2

. Then ∀𝑛 ∈ 𝑁2 and 𝜔2 ≠ 𝜁𝑛
2, we have 

𝑇𝑛 = 𝑐1𝑛 sin
𝜁𝑛

𝛼
𝑡 + 𝑐2𝑛 cos

𝜁𝑛

𝛼
𝑡 +

𝛼2𝜔2 − 𝛾2

𝜋𝑛(𝛼2𝜔2 − 𝜁𝑛
2)

𝑉sin 𝜔𝑡 , (27) 

and from the initial conditions we find that 

𝑐1𝑛 = −
𝛼𝜔𝑉

2𝜁𝑛
(

𝛼2𝜔2 − 𝛾2

𝜋𝑛(𝛼2𝜔2 − 𝜁𝑛
2)

+
2

𝜋𝑛
) , 𝑐2𝑛 = 0 

and  

𝑊 = ∑ (−
𝛼𝜔𝑉

2𝜁𝑛
(

𝛼2𝜔2 − 𝛾2

𝜋𝑛(𝛼2𝜔2 − 𝜁𝑛
2)

+
2

𝜋𝑛
) sin

𝜁𝑛

𝛼
𝑡 +

𝛼2𝜔2 − 𝛾2

𝜋𝑛(𝛼2𝜔2 − 𝜁𝑛
2)

𝑉sin 𝜔𝑡)

𝑛∈𝑁2

sin
𝜋𝑛𝑥

𝑙
. 

Then based on the formulas (23) we have that 

𝑢 = (1 −
𝑥

𝑙
) 𝑉 sin 𝜔𝑡

+ ∑ (−
𝛼𝜔𝑉

2𝜁𝑛
(

𝛼2𝜔2 − 𝛾2

𝜋𝑛(𝛼2𝜔2 + 𝜁𝑛
2)

+
2

𝜋𝑛
) sin

𝜁𝑛

𝛼
𝑡

𝑛∈𝑁2

+
𝛼2𝜔2 − 𝛾2

𝜋𝑛(𝛼2𝜔2 + 𝜁𝑛
2)

𝑉sin 𝜔𝑡) 𝑒
−

𝛽
𝛼2𝑡

sin
𝜋𝑛𝑥

𝑙
.       (28) 

For the resonance case 𝜔2 = 𝜁𝑛
2 the solution defined by the formula (27) is substituted for  

𝑇𝑛 = 𝑐1𝑛 sin 𝜔𝑡 + 𝑐2𝑛 cos 𝜔𝑡 + 𝑡(𝐴sin 𝜔𝑡 + 𝐵 cos 𝜔𝑡),      (29) 

constants from (29) can be also found from the initial conditions and the formula for the accurate 

solution in the form of Fourier series, similar to (28), can be obtained. 

 Let us point out that the solution of the problem of small radial oscillations of gas with fading 

effect [16] with the availability of nonstationary disturbance at the boundary can be reduced to the 

discussed problem (1)-(3). Let 𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡), 𝐿 =
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2. And the region, in which the 

oscillations take place, is radially symmetrical. Thus, for example, it is possible to take the sphere 
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with radius 𝑅 or spherical layer Ω = {(𝑥, 𝑦, 𝑧)|(𝑥, 𝑦, 𝑧) ∈ ℝ3, 𝑅0
2 < 𝑥2 + 𝑦2 + 𝑧2 < 𝑅1

2}. Let us 

indicate that the solution 𝑢(𝑥, 𝑦, 𝑧, 𝑡) will depend on variable 𝑟 = √𝑥2 + 𝑦2 + 𝑧2, and by spatial 

variables operator 𝐿 will be as follows [17]: 

𝐿 ≔
𝜕2

𝜕𝑟2
+

2

𝑟

𝜕

𝜕𝑟
.    (30) 

Let us execute a formal problem setting for the spherical region. It is necessary to find the 

solution for the equation  

𝐷𝑡𝑢 = (
𝜕2

𝜕𝑟2
+

2

𝑟

𝜕

𝜕𝑟
) 𝑢, (31) 

which satisfies the boundary conditions (32): 

𝑢|𝑟=0 = 0, 𝑢|𝑟=𝑅0
= 𝑣(𝑡), (32) 

and the initial conditions (33): 

𝑢|𝑡=0 = 𝑢𝑡|𝑡=0 = 0,          (33) 

It is known that function 𝑍 = 𝑍(𝑟, 𝑡), which is found by the rule (34): 

𝑢 =
𝑍

𝑟
, (34) 

It reduces the equation (31) to  

𝐷𝑡𝑍 = 𝑍𝑟𝑟 , (35) 

the boundary conditions 

𝑍|𝑟=0 = 0, 𝑍|𝑟=𝑅0
= 𝑅0𝑣(𝑡), (36)   

and the initial conditions 

𝑍|𝑡=0 = 𝑍𝑡|𝑡=0 = 0.         (37) 

 The problem (35)-(37) is almost the same as the problem (1)-(3), but the difference is in the 

boundary condition. However, in this case, the substitution of the required function by the formula 

(38): 

𝑍 = 𝑤 + 𝑟𝑣(𝑡)      (38) 

allows nullifying the boundary conditions and, repeating the solution of the problem  (7)-(9), 

obtaining the accurate expression for function 𝑍 and then writing down the solution of the initial 

problem (31)-(33). 

 Only the boundary conditions will change for the spherical layer. Let us assume that there are 

no oscillations on the spherical layer external surface, and some mode, which depends only on time 

variable, is set on the internal surface. In this case, we have the boundary conditions (39): 
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𝑢|𝑟=𝑅0
= 𝑣(𝑡), 𝑢|𝑟=𝑅1

= 0.      (39) 

So, the substitution (34) remains, the equation (35) does not change, and the boundary 

conditions (36) will be as follows (40): 

𝑍|𝑟=𝑅0
= 𝑅0𝑣(𝑡), 𝑍|𝑟=𝑅1

= 0, (40)   

and the initial conditions (37) will be unchanged. Let us introduce the substitution to nullify the 

boundary conditions (41): 

𝑍 = 𝑤 + (
𝑟 − 𝑅1

𝑅0 − 𝑅1
) 𝑅0𝑣(𝑡)  (41) 

that again provides the reduction to the previously solved problem (1)-(3) 

 Let us further consider oscillations of the round membrane. This model emerges when 

studying a human cochlear, as well as in technical acoustics [18].  As it is known, the equation 𝑢 =

𝑢(𝑥, 𝑦, 𝑡) and we will examine radially symmetrical oscillations of the circular membrane with radius 

𝑅0. At the same time, let us assume that the function 𝑢 = 𝑢(𝑟, 𝑡), where 𝑟 = √𝑥2 + 𝑦2. And 

differential operator 𝐿 is defined by the formula (42): 

𝐿 ≔
𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
, (42) 

and the boundary conditions (2) are as follows: 

𝑢|𝑟=𝑅0
= 𝑣(𝑡), |𝑢||

𝑟≤𝑅0
< ∞.      (43) 

The initial conditions (3) remain unchanged. The boundary conditions (43) are nullified by 

the standard procedure. It is known that Bessel functions of the first kind, zero order are the eigen 

functions of the operator (42) [16, 17]: 

𝑋𝑛 = 𝐽0 (
𝜅𝑛𝑟

𝑅0
) , (44) 

where 𝜅𝑛 − equation root 

𝐽0(𝜅𝑛) = 0, (45) 

Fourier series, which provides the solution of the corresponding boundary problem, is defined 

by the formulas similar to (26) and (28), the difference consists in the fact that Bessel functions will 

be the basis functions, and sets 𝑁1 and 𝑁2 will be defined by the roots of the equation (45). The 

formula (46) demonstrates the solution:  

𝑢 = 𝑟𝑣(𝑡) + ∑ 𝑇1𝑛(𝑡)𝑒
−

𝛽
𝛼2𝑡

𝐽0 (
𝜅𝑛𝑟

𝑅0
)

𝑛∈𝑀1

+ ∑ 𝑇2𝑛(𝑡)𝑒
−

𝛽
𝛼2𝑡

𝐽0 (
𝜅𝑛𝑟

𝑅0
)

𝑛∈𝑀2

, (46) 
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where 𝑀1 ≔ {𝑛|𝑛 ∈ ℕ 𝑎𝑛𝑑 𝛾2 −
𝛽2

𝛼2
+ (

𝜅𝑛

𝑅0
)

2

< 0} , 𝑀2 ≔ {𝑛|𝑛 ∈ ℕ 𝑎𝑛𝑑 𝛾2 −
𝛽2

𝛼2
+ (

𝜅𝑛

𝑅0
)

2

>

0} , 𝑇1𝑛(𝑡) − function not containing periodic summands relative to 𝑡, 𝑇2𝑛(𝑡) − function, which 

contains periodic summands relative to 𝑡. Let us point out that set 𝑀1 is finite or empty, set 𝑀2 is 

countable. 

Let us now consider oscillations of a circular membrane. In this case, 𝑅1 − membrane radius, 

𝑅0 − radius of the opening in the membrane. Let us assume that the membrane is fixed along the 

external edge, and some mode, which depends only on time variable, is set on the internal boundary, 

i.e. the boundary conditions are fulfilled 

𝑢|𝑟=𝑅0
= 𝑣(𝑡), 𝑢|𝑟=𝑅1

= 0.      (47) 

 Let us point out that, in this case, the substitution of the variable (6) does not work and it is 

necessary to use the following formula: 

𝑢 = 𝑤 + 𝑣(𝑡) (
𝑟 − 𝑅1

𝑅0 − 𝑅1
).      (48) 

The boundary conditions will be fulfilled for the function 𝑤 = 𝑤(𝑟, 𝑡):  

𝑤|𝑟=𝑅0
= 𝑤|𝑟=𝑅1

= 0, (49) 

as well as the initial conditions (50):  

𝑤|𝑡=0 = −𝑣(0) (
𝑟 − 𝑅1

𝑅0 − 𝑅1
) , 𝑤𝑡|𝑡=0 = −𝑣′(0) (

𝑟 − 𝑅1

𝑅0 − 𝑅1
).       (50) 

It should be noted that the heterogeneous summand will change when substituting (33) in the 

equation (7). For the case in question we have:  

𝐷𝑡𝑤 + (
𝑟 − 𝑅1

𝑅0 − 𝑅1
) 𝐷𝑡𝑣(𝑡) −

1

𝑅0 − 𝑅1
𝑣(𝑡) = 𝐿𝑤.       (51) 

Bessel functions of the first and second order are the eigen functions of operator 𝐿. At the 

same time, eigen functions for the boundary conditions (49) are defined by the formula (52): 

𝑋𝑛 = 𝑁0(𝜅𝑛𝑅0)𝐽0(𝜅𝑛𝑟) − 𝐽0(𝜅𝑛𝑅0)𝑁0(𝜅𝑛𝑟), (52) 

where 𝜅𝑛 − roots of the characteristic equation:  

𝐽0(𝜅𝑅0)𝑁0(𝜅𝑅1) − 𝐽0(𝜅𝑅1)𝑁0(𝜅𝑅0) = 0.        (53) 

 Fourier series by the system of eigen functions (52) is the required solution of the problem of 

the circular membrane oscillation. Fourier series is defined by the formula similar to (46). 

Conclusion 

 The paper considers the mathematical model of oscillations with friction and set mode at the 

boundary, which depends only on time. The oscillation law is described by the initial boundary value 
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problem for the hyperbolic equation with nontrivial boundary condition. The differential operator of 

the second order by space variables discussed in the paper is initially one-dimensional or, based on 

the oscillatory process symmetry, can be reduced to the one-dimensional one. The successful 

substitution and variable separation method helped to reduce the solution of this problem to the known 

problem of one-dimensional limited string oscillation that allowed proposing the method of solution 

development in the form of Fourier series. At the same time, Fourier series obtained, depending on 

the differential operator type by spatial variables, set the voltage distribution for the telegraph line, 

the law of gas oscillations in the sphere or in the spherical region, and the law of oscillations of the 

round membrane without an opening and with an opening. The work results can be applied in practical 

calculations of telegraph lines, modeling of oscillations in acoustics, biology and medicine.     
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