
Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 
5110 

 
 

Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

 

 

Order Reduction Method and Its Application to Singular Perturbed 

Delay Differential Equations 

 

Lamiaa. H. Al-Taee
1 

and Ahmed A. Mohammed Fawze
2
 

1 
Mathematics Department,College of Education of pure sciences, University of Mosul, Mosul, Iraq. 

Email: lumiaa.h.s@uomosul.edu.iq 

2 
Mathematics Department, College of Computer Science and mathematics, University of Mosul, 

Mosul, Iraq aahmedamer68@uomosul.edu.iq 

 

Article Info 

Page Number: 5110 – 5124 

Publication Issue: 

Vol 71 No. 4 (2022) 

 

 

 

Article History 

Article Received: 25 March 2022 

Revised: 30 April 2022 

Accepted: 15 June 2022 

Publication: 19 August 2022 

Abstract 

The present paper presents and analyzes the concept of order reduction 

method and its application to the delay differential equation. The principle 

idea is to reduce the 2
nd

 order singular perturbed differential equation to 

pairs of reduced order ones. The obtained pairs are then solved, and the 

two common test problems are solved and the obtained results are 

compared with the available exact results. Both the test examples are 

solved twice for two different values of the parameter
108 2&2  and 

the computed results showed an excellent agreement with the exact results 

moreover, for the computed results became more accurate with
102 . 

Keywords: Perturbation techniques, singular perturbed delay differential 

equations, order reduction techniques 

 

 

1. Introduction 

Let us start the introduction by making a major difference between delay and ordinary differential 

equations that is the delaycan be considered similarlyto ordinary ones, but their evolutions involve 

past values state variable[1], [2].Resolving backward differential equations does not only require 

knowledge of the current state, but requires knowledge of the case at a specific earlier time. We would 

like to point out that in some cases, mathematical models generally formulated are the first estimates of 

the physical models studied and interest in this system often arises when a replacement is made, 

conventional wise modeling assumptions with more realistic distributed assumptions[3].Hence it is 

useful to remember that more realistic models should include some of past and future states of the 

system, therefore, real system in certain cases should be modeled by differential equations with 

delay or advance[4].The manner in which the properties of delay differential equations (D.D.E.) 
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differ from ODE equation has been remains active area of research. Let us now mention the major 

difference between ODEs and DDEs is the initial or boundary data [5]. Regarding the solution of 

the DDEs canbe determined by making use prior values at the pointsprior to the initial or boundary 

points.An equation in which the highest order derivative is multiplied by a tiny parameter and 

includes at least one delay term is known as the singular perturbed D.D.E., and this form of 

equation appears often in the mathematical modeling of numerous practical phenomena [6]–[8]. In 

what fellow, we will mention some examples in which singular perturbed D.D.E., appears, for 

example, in modeling of the human pupil-light reflex [9], model of HIV infection [10], the study of 

bistable devices in digital electronics [11], variational problem in control theory [12], first exit time 

problem in modeling of activation of neuronal variability [13], Immune response [14], evolutionary 

biology [13], dynamics of networks of two identical amplifier [15], mathematical ecology [16], 

population dynamics [17], modeling of biological oscillator [18] and in a variety of models for 

physiological process [19]. 

 

2. The proposed method 

This paper considers a singly perturbed delay differential equation (SPDDEq), which has the 

following form: 

 −𝜀 + 𝕒(𝓉) 
𝑑ℊ(𝓉)

𝑑𝓉
+ 𝕓 𝓉 ℊ 𝓉 − 1 = ℱ 𝓉 ,    ∀𝓉 ∈  −1,2 ,                       (1) 

0 < 𝜀 < 1, 

with boundary conditions (BC): 

ℊ 𝓉 = ℝ 𝓉 , ∀𝓉 ∈  −1,0 ,   ℊ 2 = 𝛽,                                                            (2 )  

 

in equation (2), both ℝ 𝓉 and 𝛽are known function and constant, respectively. 

2.1.Assumptions taken throughout the full text 

- In the present paper, it is assumed that 𝕒(𝓉), 𝕓 𝓉 and ℱ 𝓉 , sufficient continuous functions 

over the interval  2,1 . 

- Over the prescribed interval  2,1  there exists a positive constant M , such that the 

following condition is usually satisfied, that is0 < M < 𝑎(𝓉), based on this assumption, the 

neighborhood of 𝓉 = 2 will indicate to the boundary layer. 
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2.2.Main steps of the proposed method 

2.2.1. Major 1
st
 step 

(1) Put ,0 on equation (1), to obtain the reduced problem and obtain an approximate 

solution, assuming that the approximate solution isℊ0 𝓉 . 

𝕒(𝓉)
𝑑ℊ0(𝓉)

𝑑𝓉
+ 𝕓 𝓉 ℊ0 𝓉 − 1 = ℱ 𝓉 ,    ∀𝓉 ∈  0,1 ,                                     (3) 

with BC,  

ℊ0 𝓉 = ℝ 𝓉 , ∀𝓉 ∈  0,1 ,                                                                                 (4)  

(2) Applying the classical 4
th

 order Runge-Kutta method, leads to 

ℊ0 𝓉 = 𝛾, ∀𝓉 ∈  0,1 .      

(3) Now it is required to solve the equation (3), with BC (4), : 

2.2.2. Major 2
nd

 step 

Perform two 1
st
 O.D.E. equivalents to equation (1) as: 

𝑑𝓏(𝓉)

𝑑𝓉
−
𝑑𝕒 𝓉 

𝑑𝓉
ℊ 𝓉 + 𝕓 𝓉 ℊ 𝓉 − 1 = ℱ 𝓉 ,    ∀𝓉 ∈  0,2 ,                          (5) 

and 

𝜀
𝑑ℊ 𝓉 

𝑑𝓉
+ 𝕒 𝓉 ℊ 𝓉 = 𝓏 𝓉 , ∀𝓉 ∈  0,2 ,                                                           (6) 

2.2.3. Major 3
rd

 step 

Perform the initial conditions (IC), by making use of bothℊ0 𝓉 and ℊ0 1 , the solution of the 

reduced problem appears in equation (6), leads to: 

𝓏 0 = −𝜀
𝑑ℊ0 0 

𝑑𝓉
+ 𝕒 0 ℊ0 0 ,                                                                          (7) 

In equation (7); 

𝑑ℊ0 0 

𝑑𝓉
=  

ℱ 0 −𝕓 0 ℝ −1 

𝕒 0 
 , 

 

and from the equation: 

𝕒 𝓉 
𝑑ℊ0 𝓉 

𝑑𝓉
= ℱ 𝓉 − 𝕓 𝓉 ℊ0 𝓉 − 1 , 

we can obtain: 

𝓏 1 = −𝜀
𝑑ℊ0 1 

𝑑𝓉
+ 𝕒 1 ℊ0 1 ,                                                              (8) 

Now it is important to remain the following: 

Equation (6), will be the IC of (5), whileℊ 2 , will be IC for Eq.(6). 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 
5113 

 
 

Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

 

 

2.2.4. Major 4
th

 step 

Getting pairs of initial value problems from equation (6), through replacing: 

ℊ 𝓉  by ℊ0 𝓉  and ℊ0 𝓉  by ℊ0 1 , leads to: 

−𝜀
𝑑ℊ 𝓉 

𝑑𝓉
+ 𝕒 𝓉 ℊ 𝓉 = 𝓏 𝓉 , ℊ 2 = 𝛽, ∀𝓉 ∈  1,2 ,                                    (9) 

 

and 

−𝜀
𝑑ℊ 𝓉 

𝑑𝓉
+ 𝕒 𝓉 ℊ 𝓉 = 𝓏 𝓉 , ℊ 1 = 𝛾, ∀𝓉 ∈  0,1 ,                                     (10) 

Thus, a pair of initial value problems (IVPs) have been substituted for the boundary value problem 

(BVP), given by equations (1), (2). In terms of integration, these IVPs go in the opposite direction, 

and the solution to the second problem (10) can only be determined by knowing the solution to the 

first one (9). Solving these IVPs provides us the solution over the interval [0,2].  

When it comes to addressing initial value issues, there are a variety of efficient strategies that may 

be used. In our numerical experiments, we apply the conventional fourth order Runge-Kutta 

technique to solve the IVPs that we encounter. With consideration for the possibility of using any 

conventional analytical or numerical techniques. 

3. Numerical results and discussions 

3.1.Test example 1 

In the present section, two common test problems are solved; each one is tested for two different 

values of the parameter𝜀,𝜀 = 2−8𝑎𝑛𝑑 2−10 ,to see the direct effect on the obtained results. consider 

a singular perturbed delay(SPD), governing differential equation(DEq) 

 𝜀
𝑑2ℊ 𝓉 

𝑑𝓉2
+ 3

𝑑ℊ 𝓉 

𝑑𝓉
− ℊ 𝓉 − 1 = 0, ∀𝓉 ∈  −1,2 ,

ℊ 𝓉 = 1, ∀𝓉 ∈  −1,0  𝑎𝑛𝑑ℊ 2 = 2,

  11  

 

The eccurate solution of the 2
nd

 ODE takes the following form: 

ℊ 𝓉 =

 
 
 
 

 
 
 1 + 𝐶1  𝑒𝑥𝑝  

3𝓉

𝑠
 − 1 +

𝓉

3
,                   0 ≤ 𝓉 ≤ 1  

 
 
 

 
 𝐶2 +

𝓉

3
+
 𝓉 − 1 2

18
+
𝜀𝓉

27
−
𝐶1𝓉

3
−
𝐶1𝓉

3
𝑒𝑥𝑝  

3 𝓉 − 1 

𝑠
 +

+𝑒𝑥𝑝  
3(𝓉 − 1)

𝑠
  

23

18
−

2𝜀

27
− 𝐶2 +

2𝐶1

3
+

2𝐶1

3
𝑒𝑥𝑝  

3

𝑠
  

 
 , 1 ≤ 𝓉

≤    2,                                                                                                                                 (12) 
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In equation (12): 

𝐶1 = 𝑒𝑥𝑝  
−6

𝜀
  

 
4𝜀

9
−

𝜀2

27
− 3 

{3 − 4𝑒𝑥𝑝  
−6

𝜀
 +

2𝜀

3
 𝑒𝑥𝑝  

−3

𝜀
 − 𝑒𝑥𝑝  

−6

𝜀
  }

 ,                                           (13) 
 

𝐶2

=
 1 −

22

18
𝑒𝑥𝑝  

−3

𝜀
 −

𝜀

27
− 3 + 𝐶1𝑒𝑥𝑝  

3

𝜀
  1 − 𝑒𝑥𝑝  

−3

𝜀
 −

2

3
𝑒𝑥𝑝  

−6

𝜀
  

 1 − 𝑒𝑥𝑝  
−3

𝜀
  

,                                   (14)
 

Now, by applying the solution procedure, as follows: 

From the 1st step, one can get the reduced form: 

3
𝑑ℊ0 𝓉 

𝑑𝓉
− ℊ0 𝓉 − 1 = 0,     ℊ0 0 = 1,  

𝑑ℊ0 𝓉 

𝑑𝓉
=
ℊ0 𝓉 − 1 

3
,    ∀𝓉 ∈  0,1 , ℊ0 0 = 1,  

Then, the solution takes the form: 

ℊ0 𝓉 =
𝓉

3
+ 1, 

3
𝑑ℊ0 𝓉 

𝑑𝓉
= ℊ0 𝓉 − 1 , 

𝑑ℊ0 𝓉 

𝑑𝓉
=
 
𝓉−1

3
+ 1 

3
, ∀𝓉 ∈  1,2 , ℊ0 1 =

4

3
 ,  

Then the solution will be: 

ℊ0 𝓉 =
𝓉2

18
+

2𝓉

9
+

19

18
 

Now, 

ℊ0 𝓉 =
𝓉

3
+ 1, ∀𝓉 ∈  1,2 ,  

ℊ0 𝓉 =
𝓉2

18
+

2𝓉

9
+

19

18
, ∀𝓉 ∈  1,2 . 

The two 1
st
 order equations of the 2

nd
 step; which are equivalent to equation (11) are: 

−𝜀
𝑑ℊ 𝓉 

𝑑𝓉
+ 3ℊ 𝓉 = 𝓏 𝓉 ,  

𝑑𝓏 𝓉 

𝑑𝓉
= −𝜀

𝑑2ℊ 𝓉 

𝑑𝓉
+ 3

𝑑ℊ 𝓉 

𝑑𝓉
,

𝑑𝓏 𝓉 

𝑑𝓉
= ℊ 𝓉 − 1  

From the 3
rd

 step, one can get: 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 
5115 

 
 

Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

 

 

𝓏 0 = −𝜀
𝑑ℊ0 𝓉 

𝑑𝓉
+ 3ℊ0 𝓉  

𝓏 0 = 3 −
𝜀

3
 

Its solution is: 

𝓏 𝓉 = 𝓉 + 3 −
𝜀

3
, ∀𝓉 ∈  0,1  

𝓏 1 = −𝜀
𝑑ℊ0 1 

𝑑𝓉
+ 3ℊ0 1 , 𝓏 1 = 4 −

𝜀

3
 

Therefore, the solution takes the form: 

𝓏 𝓉 =
𝓉2

6
−
𝓉

3
+ 𝓉 +

19

6
−
𝜀

3
, ∀𝓉 ∈  1,2  

Hence, the pair of IVPs, is: 

−𝜀
𝑑ℊ 𝓉 

𝑑𝓉
+ 3ℊ 𝓉 = 𝓏 𝓉 , ℊ 2 = 2, ∀𝓉 ∈  1,2  

−𝜀
𝑑ℊ 𝓉 

𝑑𝓉
+ 3ℊ 𝓉 = 𝓏 𝓉 , ℊ 1 =

4

3
, ∀𝓉 ∈  0,1  

3.1.1. Results and analysis of test problem 1, case 1 

The first case results for
82 are shown in Table 1, where a comparison between the exact and 

the computed results due to the proposed method. 

 

Table 1.Test problem 1, case I- comparison between the exact and present 

𝓉 ℊ 𝓉  Exact solution Present solution Abs. Error Min & Max 

error 0 1.0000 1.0000 1.0000 0.0000  

0.01 1.0033 1.0034 1.0035 0.0001 0.0001 

0.02 1.0067 1.0077 1.0078 0.0001  

0.03 1.0100 1.0102 1.0104 0.0002  

0.04 1.0133 1.0136 1.0139 0.0003  

0.05 1.0177 1.0182 1.0187 0.0005  

0.06 1.6886 1.6897 1.6906 0.0009  

0.07 1.6941 1.6932 1.6841 0.0009  

0.08 1.7044 1.7066 1.7076 0.0010  

0.09 1.7053 1.7076 1.7088 0.0012  

1.00 1.7069 1.7099 1.7115 0.0016 0.0016 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 
5116 

 
 

Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

 

 

1.20 1.7110 1.7120 1.7130 0.0010  

1.30 1.7154 1.7156 1.7158 0.0002  

1.40 1.7261 1.7265 1.7269 0.0004  

1.50 1.7282 1.7285 1.7289 0.0004  

1.60 1.7429 1.7439 1.7449 0.0010  

1.70 1.7629 1.7635 1.7641 0.0006  

1.80 1.8001 1.8005 1.8009 0.0004  

1.90 1.9708 1.9710 1.9712 0.0002  

2.00 2.0000 2.0000 2.0000 0.0000  

 

As it is clear from Table 1, the absolute error ranges from 0.0001 to maximum value of 0.0016, also 

we should remember that the values at the extremes remain fixed as boundary conditions. The error 

variations versus horizontal axis for the present case are plotted in Figure 1. 

 

 

Figure 1. Error variations for test problem 1,case 1. 

3.1.2. Results and analysis of test problem 1, case 2. 

The first case results for
102 are shown in Table 2, where a comparison between the exact and 

the computed results due to the proposed method. 
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Table 2. Test problem 1, case II- comparison between the exact and present 

𝓉 ℊ 𝓉  Exact solution Present solution Abs. Error Min & Max 

error 0 1.0000 1.0000 1.00000 0.00000  

0.01 1.0033 1.0034 1.00341 0.00001 0.00001 

0.02 1.0067 1.0077 1.00771 0.00001  

0.03 1.0100 1.0102 1.01022 0.00002  

0.04 1.0133 1.0136 1.01363 0.00003  

0.05 1.0177 1.0182 1.01825 0.00005  

0.06 1.6886 1.6897 1.68979 0.00009 0.00009 

0.07 1.6941 1.6932 1.69329 0.00009  

0.08 1.7044 1.7066 1.70661 0.00001  

0.09 1.7053 1.7076 1.70762 0.00002  

1.00 1.7069 1.7099 1.70996 0.00006  

1.20 1.7110 1.7120 1.71201 0.00001  

1.30 1.7154 1.7156 1.71562 0.00002  

1.40 1.7261 1.7265 1.72654 0.00004  

1.50 1.7282 1.7285 1.72854 0.00004  

1.60 1.7429 1.7439 1.74393 0.00003  

1.70 1.7629 1.7635 1.76352 0.00002  

1.80 1.8001 1.8005 1.80052 0.00002  

1.90 1.9708 1.9710 1.97102 0.00002  

2.00 2.0000 2.0000 2.00000 0.00000  

 

According to Table 2, the absolute error ranges from 0.00001 to maximum value of 0.00009, also 

we should remember that the values at the extremes remain fixed as boundary conditions. The error 

variations versus horizontal axis for the present case are plotted in Figure 2. As we see the error 

bounds decreased significantly due to the apparent decrease of the parameter  . 
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Figure 2. Error variations for test problem 1, case 2. 

 

3.2.Test example 2 

Consider a singular perturbed delay(SPD) governing differential equation (DEq) of the following 

form: 

𝜀
𝑑2ℊ 𝓉 

𝑑𝓉2
+ 3

𝑑ℊ 𝓉 

𝑑𝓉
− 5ℊ 𝓉 − 1 = 0, ∀𝓉 ∈  −1,2 , 𝑤𝑖𝑡ℎ, ℊ 𝓉 = 1, ∀𝓉 ∈  −1,0  𝑎𝑛𝑑 ℊ 2 

= 2,                                                                                           (15)  

By applying the solution procedure, as follows: 

From the 1st step, one can get the reduced form: 

2
𝑑ℊ0 𝓉 

𝑑𝓉
− 5ℊ0 𝓉 − 1 = 0, ℊ0 0 = 1,  

𝑑ℊ0 𝓉 

𝑑𝓉
=

5ℊ0 𝓉 − 1 

2
, ∀𝓉 ∈  0,1 , ℊ0 0 = 1  

The solution takes the following form: 

ℊ0 𝓉 =
5𝓉

2
+ 1 

2
𝑑ℊ0 𝓉 

𝑑𝓉
= 5ℊ0 𝓉 − 1  

𝑑ℊ0 𝓉 

𝑑𝓉
=

25 𝓉 − 1 

4
+

5

2
, ∀𝓉 ∈  1,2 , ℊ0 1 =

7

2
 

0
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Then the solution will be: 

ℊ0 𝓉 =
25

4
 
𝓉2

2
− 𝓉 +

5𝓉

2
+

33

8
 

Now, 

ℊ0 𝓉 =
5𝓉

2
+ 1, ∀𝓉 ∈  0,1  

ℊ0 𝓉 =
25

4
 
𝓉2

2
− 𝓉 +

5𝓉

2
+

33

8
  , ∀𝓉 ∈  1,2  

From the 2nd step; the two 1st order equations equivalent to equation (15) are: 

−𝜀
𝑑ℊ 𝓉 

𝑑𝓉
+ 2ℊ 𝓉 = 𝓏 𝓉 , 

𝑑𝓏 𝓉 

𝑑𝓉
= −𝜀

𝑑2ℊ 𝓉 

𝑑𝓉2
+ 2

𝑑ℊ 𝓉 

𝑑𝓉
,

𝑑𝓏 𝓉 

𝑑𝓉
= 5ℊ 𝓉 − 1 ,  

From the 3rd step, one can get: 

= −𝜀
𝑑ℊ0 0 

𝑑𝓉
+ 2ℊ0 0  , 

𝓏 0 =
4 − 5𝜀

2
, 

Its solution is: 

𝓏 𝓉 = 5𝓉 +
4 − 5𝜀

2
, 

3.2.1. Results and analysis of test problem 2, case 1 

The first case results for
82 are shown in Table 3, where a comparison between the exact and 

the computed results due to the proposed method. 

 

Table 3. Test problem 2, case I- comparison between the exact and present 

𝓉 ℊ 𝓉  Exact solution Present solution Absolute Error Min & Max 

error 0 1.000 1.0000 1.0000 0.0000  

0.01 1.0049 1.0050 1.0051 0.0001 0.0001 

0.02 1.0099 1.0100 1.0101 0.0001  

0.03 1.0399 1.0496 1.0503 0.0007  

0.04 1.0799 1.0810 1.0811 0.0001  

0.05 1.2049 1.2052 1.2055 0.0003  

0.06 1.3249 1.3259 1.3265 0.0006  
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0.07 1.3889 1.3898 1.3907 0.0009  

0.08 1.4299 1.4315 1.4324 0.0009  

0.09 1.4645 1.4648 1.4650 0.0002  

1.00 1.4749 1.4752 1.4755 0.0003  

1.20 7.7020 7.7025 7.7030 0.0005  

1.30 7.8880 7.8890 7.8890 0.0009  

1.40 7.9665 7.9668 7.9671 0.0003  

1.50 8.2707 8.2709 8.2711 0.0002  

1.60 8.4675 8.4685 8.4694 0.0009  

1.70 8.6674 8.6685 8.6695 0.0010 0.0010 

1.80 8.7355 8.7359 8.7363 0.0004  

1.90 9.0241 9.0243 9.0245 0.0002  

2.00 2.0000 2.0000 2.0000 0.0000  

 

In Table 3,shows that the absolute error ranges from 0.0001 to maximum value of 0.0010, also we 

should remember that the values at the extremes remain fixed as boundary conditions. The error 

variations versus horizontal axis for the present case are plotted in Figure 2. As we see the error 

bounds decreased significantly due to the apparent decrease of the parameter  . 

 

Figure 3. Error variations for test problem 2, case 1 
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3.2.2. Results and analysis of test problem 2, case 2 

The first case results for
102 are shown in Table 2, where a comparison between the exact and 

the computed results due to the proposed method. 

 

Table 4. Test problem 2, case II- comparison between the exact and present 

𝓉 ℊ 𝓉  Exact solution Present solution Absolute Error Min & Max 

error 0 1.000 1.000 1.00000 0.00000  

0.01 1.0049 1.0050 1.00501 0.00001 0.00001 

0.02 1.0099 1.0100 1.01001 0.00001  

0.03 1.0399 1.0496 1.04967 0.00007  

0.04 1.0799 1.0810 1.08109 0.00009 0.00009 

0.05 1.2049 1.2052 1.20523 0.00003  

0.06 1.3249 1.3259 1.32595 0.00005  

0.07 1.3889 1.3898 1.38983 0.00003  

0.08 1.4299 1.4315 1.43153 0.00003  

0.09 1.4645 1.4648 1.46482 0.00002  

1.00 1.4749 1.4752 1.47523 0.00003  

1.20 7.7020 7.7025 7.70255 0.00005  

1.30 7.8880 7.8890 7.88901 0.00001  

1.40 7.9665 7.9668 7.96683 0.00003  

1.50 8.2707 8.2709 8.27092 0.00002  

1.60 8.4675 8.4685 8.46851 0.00001  

1.70 8.6674 8.6685 8.66851 0.00001  

1.80 8.7355 8.7359 8.73594 0.00004  

1.90 9.0241 9.0243 9.02432 0.00002  

2.00 2.0000 2.0000 2.00000 0.00000  

 

Based on Table 4, it is clear that the absolute error ranges from 0.00001 to maximum value of 

0.00009, also we should remember that the values at the extremes remain fixed as boundary 

conditions. The error variations versus horizontal axis for the present case are plotted in Figure 2. 

As we see the error bounds decreased significantly due to the apparent decrease of the parameter  . 
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Figure 4. Error variations for test problem 2, case 2. 

Table 5. Overall Max and Min errors 

Error type Test problem (1) Test problem (2) 

Case (1) Case (2) Case (1) Case (2) 

Minimum error 0.0001 0.00001 0.0001 0.00001 

Maximum error 0.0016 0.00009 0.0010 0.00009 

 

From Table 5, it is clear that the parameter has direct effect on decreasing the error significantly, 

meanwhile, even 82 gave a good approximation, and it can be used well. 

4. Conclusion 

In this paper, the reduction of order method has presented and illustrated for solving singular 

perturbed D.D.E. The computed results are computed numerically by solving a pair of initial value 

problems, which are deduced from the original problem. The paper also has implemented the 

present method on two examples. The classical fourth order Runge-Kuttamethod have used to 

solve the IVPs. Taking into account that we can use any standard analytical or numerical method. 

It can be observed from the tables that present method agrees very well with exact solution, which 

shows the method's effectiveness. 
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