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Abstract 

   In this article, we suggest a new technique for solving oscillatory ordinary 

differential equations called Trigonometrically Fitted Improved Runge-

Kutta Nystrom (TFIRKN4) method, which has three stages and fourth 

order. The Improved Runge-Kutta Nystrom (IRKN4) method is extended 

with trigonometric calculations in the proposed approach. The coefficients 

of the proposed method are based on the frequency and step size. It is 

discovered that the new method is more precise when compared to the 

existing Runge-Kutta Nystrom and IRKN4 methods. The number of test 

problems for the second-order ordinary differential equations (ODEs) is 

solved to demonstrate the effectiveness of this approach. According to the 

computational experiments, the TFIRKN4 approach consistently 

outperforms the IRKN4 and existing Runge-Kutta Nystrom methods. 

Keywords: Trigonometrically-fitted, second-order initial value problems, 

oscillating solutions, improved numerical methods. 

 

1. Introduction 

The general form of special initial value problems (IVPs) of second-order is as follows:  

              𝑢′′(𝑡) = 𝑓(𝑡, 𝑢), 𝑢(𝑡0) = 𝑢0,     𝑢′(𝑡0) = 𝑢′0.                                               (1) 

IVPs contains oscillatory character in the solutions. This problem frequently happens in several 

fields of applied science, for example, quantum chemistry, quantum physical science, 

astrophysics, and elsewhere [1,2]. The classical approach to solve (1) is converted to the first 

order ODEs and hence utilizes a suitable technique [3]. On the other hand, (1) can be solved 

directly by utilizing the hybrid and Runge-Kutta Nystrom strategies [4,5]. There are several 

RKN methods that have been developed, such as [6,7,8]. In 2012, [9] built Improved Runge-

Kutta Nystrom (IRKN) method to solve second IVPs by introducing the novel terms  𝑞−𝑖 , 

which picks the  𝑞𝑖 , 𝑖 ≥ 2   from its prior steps. Exponentially and trigonometrically fitted 

techniques are used to develop new methods to solve oscillatory problems. In 2019, [10] 

presented a sixth-order hybrid formula to solve oscillation problems. Furthermore, in 2020, 

[11] built a two-derivative fifth-order Runge-Kutta formula to resolve oscillatory problems 

using phase-Lag properties. In addition, [12] derived a 5(3) pair RKN technique with an 

exponentially-fitted approach to resolve oscillatory second-order IVPs. Moreover, oscillating 

problems were solved using the developed optimized RKN technique of the sixth order [13].  

This paper derives a Trigonometrically-Fitted Improved Runge-Kutta Nystrom (TFIRKN4) 

fourth-order method to solve oscillatory problems. In Section 2, the TFIRKN4 method is 

derived. Test problems and numerical comparisons with existing 
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methods are given in Section 3 to show the capacity of the newly proposed method. Finally, 

conclusions are presented in Section 4.  

 

2. The Derivation of TFIRKN4 Method 
The general IRKN method for solving (1) is expressed as follows: [9]     

      𝑢𝑛+1 = 𝑢𝑛 +
3ℎ

2
𝑢𝑛

′ +
ℎ

2
𝑢𝑛−1

′ + ℎ2 ∑ 𝑑𝑖(𝑞𝑖 − 𝑞−𝑖),𝑠
𝑖=2                                   (2) 

     𝑢𝑛+1
′ = 𝑢𝑛

′ + ℎ(𝑏1𝑞1 − 𝑏−1𝑞−1 + ∑ 𝑏𝑖(𝑞𝑖 − 𝑞−𝑖),𝑠
𝑖=2                                    (3) 

     𝑞1 = 𝑓(𝑡𝑛, 𝑢𝑛),                                                                                               (4) 

    𝑞−1 = 𝑓(𝑡𝑛−1, 𝑢𝑛−1),                                                                                       (5) 

    𝑞𝑖 = 𝑓(𝑡𝑛 + 𝑐𝑖ℎ, 𝑢𝑛 + ℎ𝑐𝑖𝑢𝑛
′ + ℎ2 ∑ 𝑎𝑖𝑗𝑞𝑗),𝑖−1

𝑗=1                                              (6) 

   𝑞−𝑖 = 𝑓(𝑡𝑛−1 + 𝑐𝑖ℎ, 𝑢𝑛−1 + ℎ𝑐𝑖𝑢𝑛−1
′ + ℎ2 ∑ 𝑎𝑖𝑗𝑞−𝑗).𝑖−1

𝑗=1                                (7) 

where   𝑐𝑖, 𝑏𝑖 , 𝑑𝑖 , 𝑏−1  and  𝑎𝑖𝑗  are real numbers and  𝑖, 𝑗 = 1,2, … , 𝑠. The associated 

Butcher tableau of the IRKN method (2)-(7) is as follows in Table 1: 

 

Table 1. IRKN method 

               

 

 

The general form of the three stages of the IRKN4 fourth-order method is illustrated 

by: 

   𝑢𝑛+1 = 𝑢𝑛 +
3ℎ

2
𝑢𝑛

′ +
ℎ

2
𝑢𝑛−1

′ + ℎ2(𝑑2(𝑞2 − 𝑞−2) + 𝑑3(𝑞3 − 𝑞−3)),                        (8) 

   𝑢𝑛+1
′ = 𝑢𝑛

′ + ℎ(𝑏1𝑞1 − 𝑏−1𝑞−1 + 𝑏2(𝑞2 − 𝑞−2) + 𝑏3(𝑞3 − 𝑞−3)),                        (9) 

       𝑞1 = 𝑓(𝑡𝑛, 𝑢𝑛),                                                                                                      (10) 

      𝑞−1 = 𝑓(𝑡𝑛−1, 𝑢𝑛−1),                                                                                              (11) 

       𝑞2 = 𝑓(𝑡𝑛 + 𝑐2ℎ, 𝑢𝑛 + ℎ𝑐2𝑢𝑛
′ + ℎ2𝑎21𝑞1),                                                           (12) 

      𝑞−2 = 𝑓(𝑡𝑛 + 𝑐2ℎ, 𝑢𝑛−1 + ℎ𝑐2𝑢𝑛−1
′ + ℎ2𝑎21𝑞−1),                                                 (13) 

      𝑞3 = 𝑓(𝑡𝑛 + 𝑐3ℎ, 𝑢𝑛 + ℎ𝑐3𝑢𝑛
′ + ℎ2(𝑎31𝑞1 + 𝑎32𝑞2),                                            (14) 

     𝑞−3 = 𝑓(𝑡𝑛 + 𝑐3ℎ, 𝑢𝑛−1 + ℎ𝑐3𝑢𝑛−1
′ + ℎ2(𝑎31𝑞−1 + 𝑎32𝑞−2),                                (15) 

If    𝑢(𝑡n)  is integrate exactly by IRKN4 method (8)-(15), then we have; 

                 𝑢n = 𝑢(𝑡n) = eiω𝑡n ,                                                                                     (16) 

                 𝑢𝑛
′ = iωeiω𝑡n ,                                                                                                (17) 

                 𝑢′𝑛
′ = −𝜔2eiω𝑡n = 𝑓(𝑡𝑛, 𝑢𝑛),                                                                       (18) 

                 𝑢n−1 = 𝑢(𝑡n−1) = eiω(𝑡n−ℎ),                                                                         (19) 

   0  

𝑐2 𝑎21 

𝑐3 𝑎31       𝑎32 

.   .            .         .  

.   .            .               . 

.   .            .                    . 

𝑐𝑠 𝑎𝑠1       𝑎𝑠2          …        𝑎𝑠𝑠−1 

  𝑏−1  𝑏1         𝑏2           …        𝑏𝑠𝑠−1       𝑏𝑠 

             𝑑2           …        𝑑𝑠𝑠−1       𝑑𝑠 
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                𝑢𝑛−1
′ = iωeiω(𝑡n−ℎ),                                                                                       (20) 

                𝑢𝑛−1
′′ = −𝜔2eiω(𝑡n−ℎ) = 𝑓(𝑡𝑛−1, 𝑢𝑛−1),                                                       (21) 

                 𝑢n+1 = eiω(𝑡n+ℎ),                                                                                                            (22) 

Using Euler formula   𝑒𝑖𝑣 = cos(𝑣) + 𝑖𝑠𝑖𝑛(𝑣), and substituting the equations (16)-(22) into 

equation (8)-(15). We detach the real and the imaginary part, therefore, we gain the 

trigonometrically-fitting order conditions: 

  cos(𝑣) = 1 +
1

2
 𝑣 𝑠𝑖𝑛(𝑣) − 𝑣2 ∑ 𝑑𝑖(cos(𝑐𝑖𝑣) − cos(𝑐𝑖𝑣 − 𝑣))3

𝑖=2 ,                         (23) 

  sin(𝑣) =
3

2
𝑣 −

1

2
 𝑣 𝑐𝑜𝑠(𝑣) − 𝑣2 ∑ 𝑑𝑖(sin(𝑐𝑖𝑣) − sin(𝑐𝑖𝑣 − 𝑣))3

𝑖=2 ,                        (24)         

  cos(𝑣) = 1 − 𝑏−1 𝑣 𝑠𝑖𝑛(𝑣) − 𝑣 ∑ 𝑏𝑖(sin(𝑐𝑖𝑣) − sin(𝑐𝑖𝑣 − 𝑣))3
𝑖=2 ,                         (25)  

  sin(𝑣) = 𝑏1𝑣 − 𝑏−1 𝑣 𝑐𝑜𝑠(𝑣) − 𝑣 ∑ 𝑏𝑖(cos(𝑐𝑖𝑣) − cos(𝑐𝑖𝑣 − 𝑣))3
𝑖=2 .                     (26)    

where  𝑣 = 𝜔ℎ.  In this work, the three-stages of order four IRKN4 method is expressed 

as follows in Table 2 [9]: 

 

                                       Table 2. IRKN4 method 

 

 

 

 

 

 

 

 

 

 

To find the parameters of the TFIRKN4 method, we utilize the additional equations of order 

conditions for the IRKN4 method; 

           𝑏1 − 𝑏−1 = 1,                                                                                                     (27) 

          𝑏2 + 𝑏3 + 𝑏−1 =
1

2
,                                                                                              (28) 

Therefore, we have six equations with six unknowns. Let  𝑐2 =
1

4
,  and  𝑐3 =

3

4
  from Table 2, 

and choose  𝑏−1, 𝑏1, 𝑏2, 𝑏3, 𝑑2  and  𝑑3  as free parameters. Solving equations (23)-(28) 

simultaneously, we obtain  

   𝑏−1 =
2−2 cos(𝑣)−𝑣 sin(

1

4
𝑣)−𝑣 sin(

3

4
𝑣)

2𝑣(sin(𝑣)−sin(
1

4
𝑣)−sin(

3

4
𝑣))

,                                                             (29) 

 𝑏1 =
2+2𝑣 sin (𝑣)−2 cos(𝑣)−3𝑣 sin(

1

4
𝑣)−3𝑣 sin(

3

4
𝑣)

2𝑣(sin(𝑣)−sin(
1

4
𝑣)−sin(

3

4
𝑣))

,                                          (30) 

 𝑏2 =
−1

4𝑣 (− cos(
3

4 
𝑣)+cos (

1

4 
𝑣)) (sin(𝑣)−𝑠𝑖 𝑛(

1

4 
𝑣)−𝑠𝑖𝑛 (

3

4 
𝑣))

 (2 cos(𝑣)2 − 4 cos(𝑣) +

         2𝑣 sin(𝑣) + 2 − cos (
1

4
𝑣) 𝑣 sin(𝑣) − 2 cos (

1

4
𝑣) 𝑐𝑜𝑠 (𝑣) + 2 cos (

1

4
𝑣) +

   0  

1

4
 

1

32
 

3

4
  0           

9

32
 

  
1

18
  

19

18
        −

1

6
           

11

18
    

                
7  

24
            

1

8
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         cos (
3

4
𝑣) 𝑣 sin(𝑣) + 2 cos (

3

4
𝑣) 𝑐𝑜𝑠 (𝑣) − 2 cos (

3

4
𝑣) − 2 sin(𝑣)2 +

         2 sin(𝑣)  𝑠𝑖𝑛 (
1

4
𝑣) + 2 sin(𝑣)  𝑠𝑖𝑛 (

3

4
𝑣) + 𝑣 cos(𝑣)  𝑠𝑖𝑛 (

1

4
𝑣) +

                               𝑣 cos(𝑣)  𝑠𝑖𝑛 (
3

4
𝑣) − 3 𝑣 sin (

1

4
𝑣) − 3 𝑣 sin (

3

4
𝑣)  ),            (31) 

 𝑏3 =
1

4𝑣 (− cos(
3

4 
𝑣)+cos (

1

4 
𝑣)) (sin(𝑣)−𝑠𝑖 𝑛(

1

4 
𝑣)−𝑠𝑖𝑛 (

3

4 
𝑣))

 (2 cos(𝑣)2 − 4 cos(𝑣) +

         2𝑣 sin(𝑣) + 2 + cos (
1

4
𝑣) 𝑣 sin(𝑣) + 2 cos (

1

4
𝑣) 𝑐𝑜𝑠 (𝑣) − 2 cos (

1

4
𝑣) −

         cos (
3

4
𝑣) 𝑣 sin(𝑣) − 2 cos (

3

4
𝑣) 𝑐𝑜𝑠 (𝑣) + 2 cos (

3

4
𝑣) − 2 sin(𝑣)2 +

         2 sin(𝑣)  𝑠𝑖𝑛 (
1

4
𝑣) + 2 sin(𝑣)  𝑠𝑖𝑛 (

3

4
𝑣) + 𝑣 cos(𝑣)  𝑠𝑖𝑛 (

1

4
𝑣) +

                               𝑣 cos(𝑣)  𝑠𝑖𝑛 (
3

4
𝑣) − 3 𝑣 sin (

1

4
𝑣) − 3 𝑣 sin (

3

4
𝑣)  ),            (32) 

𝑑2 =
−1

4(𝑣2(sin(
1

4
𝑣)+sin(

3

4
𝑣))(cos(

1

4
𝑣)−cos(

3

4
𝑣)))

 (2 sin(𝑣) cos (
1

4
𝑣) − 2 sin(𝑣) cos (

3

4
𝑣) −

3𝑣 cos (
1

4
𝑣) + 3𝑣 cos (

3

4
𝑣) + 𝑣 cos(𝑣) cos (

1

4
𝑣) − 𝑣 cos(𝑣) cos (

3

4
𝑣) +

2 sin (
1

4
𝑣)  cos(𝑣) − 2 sin (

1

4
𝑣) + sin (

1

4
𝑣)  𝑣 sin(𝑣) + 2 sin (

3

4
𝑣)  cos(𝑣) −

                                                                              2 sin (
3

4
𝑣) + sin (

3

4
𝑣)  𝑣 sin(𝑣)),            (33) 

𝑑3 =
−1

4(𝑣2(sin(
1

4
𝑣)+sin(

3

4
𝑣))(cos(

1

4
𝑣)−cos(

3

4
𝑣)))

 (2 sin(𝑣) cos (
1

4
𝑣) − 2 sin(𝑣) cos (

3

4
𝑣) −

3𝑣 cos (
1

4
𝑣) + 3𝑣 cos (

3

4
𝑣) + 𝑣 cos(𝑣) cos (

1

4
𝑣) − 𝑣 cos(𝑣) cos (

3

4
𝑣) −

2 sin (
1

4
𝑣)  cos(𝑣) + 2 sin (

1

4
𝑣) − sin (

1

4
𝑣)  𝑣 sin(𝑣) − 2 sin (

3

4
𝑣)  cos(𝑣) +

                                                                                 2 sin (
3

4
𝑣) − sin (

3

4
𝑣)  𝑣 sin(𝑣)).         (34) 

Thus, for the small value of  𝑣 , the corresponding Taylor series expansions are presented as 

follows: 

 𝑏−1 =
1

18
−

1

2160
 𝑣2 −

29

2903040
 𝑣4 −

71

464486400
 𝑣6 −

2603

1177194332160
 𝑣8  

                                                                       −
8127943

257099242143744000
 𝑣10 + ⋯,     (35) 

  𝑏1 =
19

18
−

1

2160
 𝑣2 −

29

2903040
 𝑣4 −

71

464486400
 𝑣6 −

2603

1177194332160
 𝑣8 

                                                                          −
8127943

257099242143744000
 𝑣10 + ⋯,       (36) 

 𝑏2 = −
1

6
+

1

576
 𝑣2 −

29

258048
 𝑣4 −

311

123863040
 𝑣6 −

102233

1569592442880
 𝑣8 + ⋯,                 (37) 

𝑏3 =
11

18
−

11

8640
 𝑣2 +

203

1658880
 𝑣4 +

707

265420800
 𝑣6 +

317111

4708777328640
 𝑣8 + ⋯,                 (38) 

𝑑2 =
7

24
−

7

11520
 𝑣2 +

1243

15482880
 𝑣4 +

5809

2477260800
 𝑣6 +

2292401

31391848857600
 𝑣8 + ⋯,          (39) 

𝑑3 =
1

8
+

7

3840
 𝑣2 +

127

1720320
 𝑣4 +

1951

825753600
 𝑣6 +

152891

2092789923840
 𝑣8 + ⋯,                  (40) 

For  𝑣 → 0, TFIRKN4 method is reduced to the original IRKN4 method. 
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3. Numerical Results and Discussion 

 To assess the accuracy of the TFIRKN4 method, we have presented four problems that have 

vacillating solutions. The maximum absolute error is. 

                        𝑀𝑎𝑥𝐸𝑟𝑟𝑜𝑟 = 𝑚𝑎𝑥(|𝑢(𝑡𝑛) − 𝑢𝑛|).  

where  𝑢(𝑡𝑛)  is the exact solution and  𝑢𝑛  is the numerical solution. Figs. 1 to 4 reveal the 

competence curves of  𝐿𝑜𝑔10(𝑀𝑎𝑥𝐸𝑟𝑟𝑜𝑟)   against the step length ℎ. In the comparison, we 

used the following methods: 

 

• TFIRKN4: The new IRKN formula derived herein. 

• IRKN4: The three-stage fourth-order IRKN4 given in [9]. 

• RKN4G: RKN4 method is presented in [14].  

• RKN4X: RKN 4 code is given in [15].  

• RKN4D: RKN4 code is given in [16]. 

 

Problem 1: [17]  

                        𝑢′′(𝑡) = −𝑢(𝑡) + 𝑡,   𝑢(0) = 1, 𝑢′(𝑡) = 2. 

Exact solution:  𝑢(𝑡) = sin(𝑡) + cos(𝑡) + 𝑡. 

 

Problem 2: [18] 

𝑢1
′′(𝑡) = −

101

2
𝑢1(𝑡) +

99

2
𝑢2(𝑡) +

93

2
 𝑐𝑜𝑠(2𝑡) −

99

2
 𝑠𝑖𝑛(2𝑡), 𝑢1(0) = 0, 𝑢1

′ (0) = −10, 

 𝑢2
′′(𝑡) =

99

2
 𝑢1(𝑡) −

101

2
 𝑢2(𝑡) +

93

2
 𝑠𝑖𝑛(2𝑡) −

99

2
 𝑐𝑜𝑠(2𝑡),  𝑢2(0) = 1, 𝑢2

′ (0) = 12. 

Exact solution:  

     𝑢1(𝑡) = − cos(10𝑡) − sin(10𝑡) + cos(2𝑡), 
     𝑢2(𝑡) = cos(10𝑡) + sin(10𝑡) + sin(2𝑡). 

 

Problem 3: [19]  

 𝑢1
′′(𝑡) = −400 𝑢1(𝑡) + (400 + 0.0025)𝑒−0.05𝑡, 𝑢1(0) = 1.1, 𝑢1

′ (0) = −0.05, 

 𝑢2
′′(𝑡) = −400 𝑢2(𝑡) + (400 + 0.0025)𝑒−0.05𝑡, 𝑢2(0) = 1.0, 𝑢2

′ (0) = 1.95 

Exact solution:  

               𝑢1(𝑡) = 0.1 cos(20 𝑡) + 𝑒−0.05 𝑡 , 

               𝑢1(𝑡) = 0.1 sin(20 𝑡) + 𝑒−0.05 𝑡 . 

 

Problem 4: [20]  

 𝑢1
′′(𝑡) + 𝑢1(𝑡) = 0.001 cos(𝑡),   𝑢1(0) = 1,    𝑢1

′ (0) = 0, 

 𝑢2
′′(𝑡) + 𝑢2(𝑡) = 0.001 sin(𝑡),   𝑢2(0) = 0,    𝑢2

′ (0) = 0.9995. 

 

Exact solution: 

  𝑢1(𝑡) = cos(𝑡) +0.0005 𝑡 sin(𝑡),   

  𝑢2(𝑡) = sin(𝑡) −0.0005 𝑡 cos(𝑡).  
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     Fig. 1: Competence curves with step size ℎ =
0.1

2𝑟 , 𝑟 = 0,1,2,4. for problem1 

 

  Fig. 2: Competence curves with step size ℎ =
0.01

2𝑟 , 𝑟 = 0,1,2,3. for problem 2 
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    Fig. 3: Competence curves with step size ℎ =
0.01

2𝑟 , 𝑟 = 0,1,2,3. for problem 3 

       

 Fig. 4: Competence curves with step size ℎ =
0.03125

2𝑟 , 𝑟 = 0,1,2,3. for problem 4 

 

In Figs. 1-4, numerical results are displayed for solving second-order ODEs with integration 

interval [0, 1000], and the TFIRKN4 approach is compared to the existing IRKN4, RKN4G, 

RKN4X, and RKN4D methods. As the number of step sizes ℎ decreases, it is obvious that the 

maximum global error reduces. In solving four different numerical tests, the suggested method, 

TFIRKN4, has the least maximum global error of the four methods. We show the effectiveness 

of the suggested method for the 
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inhomogeneous problem in Fig. 1, and the methods of TFIRKN4, IRKN4, RKN4D,RKN4X, 

and RKN4G are shown in decreasing order of efficiency. We demonstrate the efficacy of the 

five techniques for the nonlinear nonhomogeneous system in Figs. 2 to 4. We note that the new 

TFIRKN4 approach is more effective than IRKN4, RKN4D, RKN4X, and RKN4G methods 

in terms of accuracy. 

 

4. Conclusions 

In this article, we derived trigonometrically-fitted conditions of the IRKN method for solving 

oscillatory problems. Consequently, we constructed a trigonometrically-fitted three-stage 

fourth-order IRKN method denoted as the TFIRKN4 method. Numerical results are presented 

which show that the TFIRKN4 method is more accurate and effective than current methods for 

solving second-order IVPs that have oscillatory solutions. 
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