Study of Some Results on the Factor Group $K\left(C_{n} \times S_{3}\right)$

Amer Khrija Abed ${ }^{1}$,
${ }^{1}$ Department of Mathematics, College of Education for Pure Science, Al-Muthanna University,Samawah, Iraq.
${ }^{1}$ E-mail: amer.khrija@mu.edu.iq

Article Info

Page Number: 5475-5493
Publication Issue:
Vol 71 No. 4 (2022)

Article History

Article Received: 15 September 2022
Revised: 1 October 2022
Accepted: 13 October 2022
Publication: 10 November 2022

Abstract

The main goal of this paper is to calculate the cyclic decomposition of the finite commutative factor group $\left(C_{n} \times S_{3}\right)$, where $n=q_{1}^{\eta 1} \cdot q_{2}^{\eta 2} \ldots q_{m}^{\eta m}, q_{I}$ are distinct primes for all $i=1,2,3, \ldots, m$ and $\eta_{1}, \eta_{2}, \cdots, \eta_{m}$ are positive integers then: $$
\left.K\left(C_{n} \times S_{3}\right)=\underset{i=1}{\bigoplus_{i=1}} \mathrm{~K}\left(\mathrm{C}_{\mathrm{n}}\right) \mathrm{(} \mathrm{\eta}_{1}+1\right)\left(\eta_{2}+1\right)\left(\eta_{3}+1\right) \cdots\left(\eta_{m}+1\right) \mathrm{C}_{6}
$$

We found the general table of irreducible characters for the group $\left(C_{n} \times\right.$ S_{3}).

Keywords: characters table, irreducible characters table, factor group, the groups C_{n} and S_{3}.

Introduction:

The commutative G group of all Z - valued characters of a finite G group constant of the Γ - classes forms a finitly generated a commutative group $\mathrm{cf}(\mathrm{G}, \mathrm{Z})$ of a rank equal to the number of Γ-classes. Intersection of $\operatorname{cf}(\mathrm{G}, \mathrm{Z})$ with the group of all generalized characters of G , is a normal subgroup of $\operatorname{cf}(G, Z)$ denoted by $\bar{R}(G)$, then $\operatorname{cf}(G, Z) / \bar{R}(G)$ is a finite commutative factor group that is set to be $K(G)$.The matrix form $\bar{R}(G)$ consists of terms of the $\operatorname{cf}(G, Z)$ basis is $\equiv^{*}(\mathrm{G})$.We use the theory of invariant factors to obtain the direct sum of the cyclic Z - module of orders the distinct invariant factors of $\equiv^{*}(G)$ to find the cyclic decomposition of $K(G) . " M . S . K i r d a r ~[11] ~ s t u d i e d ~ t h e ~ o f ~ K\left(C_{n}\right)$ in 1982". "The factor group $c f(G, Z) / \bar{R}(G)$ for the special linear group SL(2,P)", was studied by N.S.Jasim [13] in 2005. AL-Harere.M.N and AL-

Heety.F.A [1] "had studied the primary decomposition of the factor group $K\left(Z_{p}^{n}\right)$ " in $20126-98965$ some combinatorial results on the factor group $\mathrm{K}(\mathrm{G})^{\prime \prime}$, had been studied by M.N.Yaqoob and A.A.Ali [10] in 2016 . Finally, we would like to form the reader of this paper that we have found the $\equiv^{*}\left(\mathrm{C}_{\mathrm{n}} \times \mathrm{S}_{3}\right)$, in addition to that we calculated the cyclic decomposition of the group $K\left(C_{n} \times S_{3}\right)$.

Definition(1.1): [3]

Suppose that the group $\mathbf{G L}(\mathbf{n}, \mathrm{F})$ is a multiplicative group of all non-singular $\mathbf{n} \times \mathbf{n}$ matrices over the field F, the group $\mathbf{G L}(\mathbf{n}, \mathrm{F})$ general linear group is called .

Definition(1.2): [4]

A homomorphism of G into $G L(n, F)$, be a matrix representation of a group G, where n is known as a degree of matrix representation T. In particular case, T is a unit representation (principal) if $\mathrm{T}(\mathrm{g})=1$, for all $\mathrm{G} \ni \mathrm{g}$.

Example (1.3):

Assume the symmetric group S_{3}, then we determine the matrix representation of the group.
$\beta_{1}: S_{3} \rightarrow G L(1, \mathbb{C})$ for all $g \in S_{3} \ldots .$. (trivial representation)
$\beta_{2}: S_{3} \rightarrow \mathrm{GL}(1, \mathbb{C}) \quad \Rightarrow \rho_{2}(\mathrm{~g})=\left\{\begin{array}{cl}1 & \text { if } \mathrm{g} \text { is even } \\ -1 & \text { if } \mathrm{g} \text { is odd }\end{array}\right.$
for all $g \in S_{-} 3 \ldots$....(alternating representation)
$\beta_{3}: S_{3} \rightarrow \mathrm{GL}(3, \mathbb{C})$ for all $g \in \mathrm{~S}_{3} \ldots \ldots$.(linear representation)
$\beta_{3}((\mathrm{I}))=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), \beta_{3}((12))=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right), \beta_{3}((13))=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$,
$\beta_{3}((23))=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right), \beta_{3}((123))=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right), \beta_{3}((132))=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$.

Note that the actions are on column's represent reducible representation because there exist invertible matrix

$$
\mathrm{T}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & -1
\end{array}\right) \text { such that }
$$

$$
\begin{aligned}
& \text { T. }\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot \mathrm{T}^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=(1) \oplus\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \text { T. }\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot \mathrm{T}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & -1 & 1
\end{array}\right)=(1) \oplus\left(\begin{array}{ll}
-1 & 0 \\
-1 & 1
\end{array}\right) \\
& \text { T. }\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \cdot \mathrm{T}^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)=(1) \oplus\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \text { T. }\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \cdot \mathrm{T}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & -1
\end{array}\right)=(1) \oplus\left(\begin{array}{ll}
1 & -1 \\
0 & -1
\end{array}\right) \\
& \text { T. }\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \cdot \mathrm{T}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 1 \\
0 & -1 & 0
\end{array}\right)=(1) \oplus\left(\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right) \\
& \text { T. }\left(\begin{array}{ll}
0 & 1
\end{array}\right) \\
& 0
\end{aligned} 0
$$

The following table includes the irreducible representation for each elements of S_{3} :

S_{3}	$(1)(2)(3)$	(123)	(132)	$(12)(3)$	$(13)(1)$	$(23)(1)$
ρ_{1}	$[1]$	$[1]$	$[1]$	$[1]$	$[1]$	$[1]$
ρ_{1}	$[1]$	$[1]$	$[1]$	$[-1]$	$[-1]$	$[-1]$
ρ_{1}	$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$	$\left[\begin{array}{ll}-1 & 0 \\ -1 & 1\end{array}\right]$	$\left[\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right]$	$\left[\begin{array}{ll}-1 & 0 \\ -1 & 1\end{array}\right]$	$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$	$\left[\begin{array}{ll}1 & -1 \\ 0 & -1\end{array}\right]$

Table(1,1)

Definition (1.4): [4]

Let A is a matrix of the size $\mathrm{n} \times \mathrm{n}$ the sum of the main diagonal elements is said to be trace and denoted by $\operatorname{tr}(\mathrm{A})$.

Definition(1.5):[4]

Let G be a finite group over the field F, T be a matrix representation of degree n of the group G. The function $\partial: G \rightarrow F$ defined by $\partial(\mathrm{g})=\operatorname{tr}(\mathrm{T}(\mathrm{g}))$ for all $\mathrm{g} \in \mathrm{G}, \partial$ is a character of degree n of T . In particular, the character of the principal representation $(\partial(\mathrm{g})=1$, for all $\mathrm{g} \in$ $G)$ is called the principal character.

Definition(1.6): [7]

Γ-conjugate consists of two elements in group G , if the cyclic subgroups of generate are conjugate in G, so we can define it as an equivalence relation on G. Its classes are called Γ classes.

Definition(1.7): [9]

A irreducible characters of The G's irreducible characters which is denoted by ϑ has integer values which is called character , such that $\vartheta(\mathrm{g}) \in \mathrm{Z}, \forall \mathrm{g} \in \mathrm{G}$.

Proposition (1.8):[11]

The number of Γ-classes on G equals to the number of all distinct irreducible characters of a finite group G .

Theorem (1.9): [2]

Let S_{n} be a symmetric group so it has a k is a subgroup, and the function $\zeta: G \rightarrow \mathbb{C}$ defined by the set:

$$
\zeta_{(g)}=\operatorname{fix}(g)=\left\{\mathrm{u}: g \mathrm{u}=\mathrm{u}, \forall g \in \mathrm{~S}_{\mathrm{n}}\right\}
$$

Then $\partial_{\zeta(g)}=|\operatorname{fix}(g)|-1$ is an irreducible character of k .

Example (1.10):

Consider $S_{3} \leq S_{n}$ and the elements of S_{3} are known from [theorem (1.9)] Then:
$\zeta((\mathrm{I}))=\left|\mathrm{fix}\left(\mathrm{I}^{\prime}\right)\right|-1=3-1=2$.
$\zeta((12)(3))=|\operatorname{fix}((12)(3))|-1=1-1=0$ the same for $(13)(2)$ and $(23)(1)$.
$\zeta((123))=|f i x((123))|-1=0-1=-1$ the same for (132).

Then $\partial_{\zeta}=(2,0,-1)$ is irreducible character of S_{3}.
$\left\langle\partial_{\zeta} \cdot \partial_{\zeta}\right\rangle=\frac{1}{6}[(1)(1)(1)+(1)(1)(3)+(1)(1)(2)]=1$.

Example (1.11):

From example (1.3) we can calculate the irreducible characters and characters table for symmetric group S_{3},

$$
\partial_{\beta_{1}}^{\prime}=(1,1,1,1,1,1), \partial_{\beta_{2}}^{\prime}=(1,1,1,-1,-1,-1),
$$

$\partial_{\beta_{1}}^{\prime}=(2,-1,-1,0,0,0)$. We construct the characters table for S_{3}.

$C L_{\alpha}$	$\left[L_{1}\right]$	$\left[L_{2}\right]$	$\left[L_{3}\right]$
$\left\|C L_{\alpha}\right\|$	1	2	3
$\left\|C_{G}\left(C L_{\alpha}\right)\right\|$	6	3	2
$\partial^{\prime}{ }_{1}$	1	1	1
$\partial^{\prime}{ }_{1}$	1	1	-1
$\partial^{\prime}{ }_{1}$	2	-1	0

Table (1,2)

Where $\left[L_{1}\right]=\left\{I^{\prime}\right\},\left[L_{2}\right]=\{(123)\},\left[L_{3}\right]=\{(12)(3)\}$,

Character table of finite commutative group (1.12): [4]

Let C_{n} be a cyclic group with order n, which are generated by u. Then the Character table of C_{n} is given :

$\equiv\left(\boldsymbol{C}_{\boldsymbol{n}}\right)=$| $C L_{\alpha}$ | I | u | u^{2} | \cdots | u^{n-1} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\|C L_{\alpha}\right\|$ | 1 | 1 | 1 | \cdots | 1 |
| $\left\|C_{G}\left(C L_{\alpha}\right)\right\|$ | n | n | n | \cdots | n |
| | γ_{1} | 1 | 1 | 1 | \cdots |
| γ_{2} | 1 | φ | φ^{2} | \cdots | φ^{n-1} |
| γ_{3} | 1 | φ^{2} | φ^{4} | \cdots | φ^{n-2} |
| \vdots | \vdots | \vdots | \vdots | \ddots | \vdots |
| γ_{n} | 1 | φ^{n-1} | φ^{n-2} | \cdots | φ |

Table (1.3)
where $\varphi=e^{2 \pi i / n}$

Theorem (1.10):[5]

Let G_{1} and G_{2} are two group .Suppose $\mathrm{T}^{1}: \mathrm{G}_{1} \rightarrow \mathrm{GL}\left(n_{1}, \mathrm{~F}\right)$ and $\mathrm{T}^{2}: \mathrm{G}_{2} \rightarrow \mathrm{GL}\left(n_{2}, \mathrm{~F}\right)$ are two irreducible representations of the groups G_{1} and G_{2} with characters ∂_{1} and ∂_{2} respectively, then $\mathrm{T}^{1} \otimes \mathrm{~T}^{2}$ is irreducible representation of the group $\mathrm{G}_{1} \times \mathrm{G}_{2}$ with the character $\partial_{1} \cdot \partial_{2}$.

2. The Factor Group AC(G):

We devote our work to study the group of Z - valued class function of a group G , with its factor group on $\bar{R}(G)$ in this section ,also we includes the irreducible characters tables of C_{n} and S_{3} and the factor group $K\left(C_{n}\right)$ and $K\left(S_{3}\right)$.

Definition(2.1): [8]

A K - minor of T is the determinat of $\mathrm{K} \times \mathrm{K}$. where T is a matrix entries in a principle with domain \mathfrak{R}.

Definition(2.2): [8]

The greatest common divisor (g.c.d) of all K-minor is a K-th determinant divisor of T , denoted by $D K(T)$.

Theorem (2.3): [8]

Suppose N and M are two matrices of degree s and v respectively, then $\operatorname{det}(N \otimes M)=$ $(\operatorname{det}(N))^{s} \cdot(\operatorname{det}(M))^{v}$.

Theorem (2.4): [9]

Let N and M be non-singular matrices with rank α and m respectively, on a principal domain \mathfrak{R} and let :
$Q_{1} N J_{1}=D(N)=\operatorname{diag}\left\{d_{1}(N), d_{2}(N), \cdots, d_{\alpha}(N)\right\}$ and
$Q_{2} M J_{2}=D(M)=\operatorname{diag}\left\{d_{1}(M), d_{2}(M), \cdots, d_{m}(M)\right\}$ the invariant factor matrices of N and M then, $\left(Q_{1} \otimes Q_{2}\right)(N \otimes M)\left(J_{1} \otimes J_{2}\right)=D(N) \otimes D(M)$ and from this we get that the invariant factor matrices of $N \otimes M$ can bewritten.

Theorem(2.5): [4]

Let M be a matrix with entries in a principal domain \Re then there is matrices Q, J, D such that Q and J are invertible, $Q M J=D, D$ is diagonal matrix and then, $D_{k}(Q D J)=D_{k}(M)$ module the group of unites A.

Remark(2.6):[11]

Let $c f(G, Z)=Z^{l}$ basis is $\equiv^{*}(G)$.using theorem (2.5), we evaluate two matrices Q and J in addition $\quad \mathrm{a}$ determent ∓ 1 where $\quad Q . \equiv^{*}(G) . J=D\left(\equiv^{*}(G)\right)=\operatorname{diag}\left\{d_{1}, d_{2}, \cdots, d_{\alpha}\right\}, d_{i}=$ $\mp D_{i}\left(\equiv^{*}(G)\right) / \mp D_{i-1}\left(\equiv^{*}(G)\right)$.
The Z - module $K(\mathrm{G})$ represent the direct sum of the cyclic sbmodules and with annihilating ideals $\left.\left.\left.<d_{1}\right\rangle,<d_{2}\right\rangle, \cdots,<d_{l}\right\rangle$.

Theorem(2.7): [11]

$|K(\mathrm{G})|=\operatorname{det}\left(\equiv^{*}(G)\right)$.

Proposition (2.8): [11]

The basis of $\bar{R}(\mathrm{G})$ is formed by irreducible characters $\vartheta_{i}=\sum_{\sigma \in G a l}\left(Q\left(\gamma_{i}\right) / Q\right) \sigma\left(\gamma_{i}\right)=\vartheta_{i}$ form, where γ_{i} are the irreducible characters of G and their numbers are equal to the number of all distinct Γ - classes of G.

Theorem (2.9): [4]

The irreducible character table of the cyclic group $C_{q^{\delta}}$ of the rank $\delta+1$ and where q is an prime number which is denoted by $\left(\equiv^{*}\left(C_{\mathrm{P} \delta}\right)\right.$) given by:

Γ - classes	[1]	$\left[\mathrm{r}^{\text {q-1 }}\right]$	$\left[\mathrm{r}^{8-2}\right]$	$\left[\mathrm{r}^{\mathrm{q}^{8-3}}\right]$	\cdots	[$\mathrm{r}^{\text {q }}$]	[r]
ϑ_{1}	$\mathrm{q}^{\delta-1}(\mathrm{q}-1)$	$-q^{\delta-1}$	0	0	\cdots	0	0
ϑ_{2}	$\mathrm{q}^{\delta-2}(\mathrm{q}-2)$	$\mathrm{q}^{\delta-2}(\mathrm{q}-1)$	$-q^{\delta-2}$	0	...	0	0
ϑ_{3}	$\mathrm{q}^{8-3}(\mathrm{q}-3)$	$\mathrm{q}^{\delta-3}(\mathrm{q}-2)$	$q^{\delta-3}(q-1)$	$-q^{8-3}$	\cdots	0	0
:	:	!	!	!	...	!	!
	$q(q-1)$	$q(q-1)$	$q(q-1)$	$q(q-1)$	\cdots	-q	0
ϑ_{δ}	$(\mathrm{q}-1)$	$(q-1)$	$(q-1)$	$(q-1)$...	($q-1$)	-1
$\vartheta_{\delta+1}$	1	1	1	1	...	1	1

Table (2.1)

Example (2.10):

For finding the irreducible character table of a cyclic group C_{49} by using theorem above as follows:

| $\equiv^{*}\left(C_{49}\right)=$ |
| :--- | :--- | :--- | :--- | :--- |
| $\equiv^{*}\left(C_{7^{2}}\right)=$ |$|$| -classes | $[\mathrm{I}]$ | $\left[r^{7}\right]$ |
| ---: | :--- | :--- |
| ∂_{1} | 42 | -7 |
| ∂_{2} | 6 | 6 |
| ∂_{3} | 1 | 1 |

Table(2.2)

Let $n=\prod_{i=1}^{k} q_{i}^{\delta i}$, where q_{i} are distinct primes and δ is a positive integer then :
$K\left(C_{n}\right)=\oplus \sum_{i=1}^{k}\left(\oplus \sum K\left(C_{q_{i}^{\delta i}}\right)\right)\left[\prod_{\substack{j \neq i \\ j=1}}^{k}\left(\delta_{j}+1\right)\right]$ time.

The group $\left(C_{n} \times S_{3}\right)$ (2.15):

The tensor product group $\left(C_{n} \times S_{3}\right)$, where (C_{n} is a group of order n and cyclic generated by u) and S_{3} is a group of order 6 and symmetric . The direct product group $\left(C_{n} \times S_{3}\right)=\{(\mathrm{q}, \mathrm{c}): \mathrm{q} \in$ $\left.C_{n}, \mathrm{c} \in \mathrm{S}_{3}\right\}$ and
$\left|C_{n} \times S_{3}\right|=\left|C_{n}\right| \cdot\left|S_{3}\right|=6 \mathrm{n}$

3. The main results:

we devote our work to study irreducible character table of the group ($C_{n} \times S_{3}$) and for finding the cyclic decomposition of the factor group $K\left(C_{n} \times S_{3}\right)$, in this section .

Proposition(2.11):[11]

If P is a prime number, then $\left(\equiv^{*}\left(\mathrm{C}_{\mathrm{q}^{\delta}}\right)\right)=\left\{\mathrm{q}^{\delta}, \mathrm{q}^{\delta-1}, \cdots, \mathrm{q}, 1\right\}$.

Remark (2.12) :

Hence forth if $n=q_{1}^{\eta 1} \cdot q_{2}^{\eta 2} \ldots \ldots \ldots . q_{m}^{\eta m}$ where $q_{1}, q_{2}, \ldots \ldots ., q_{m}$ are distinct primes then:
$D\left(\equiv^{*}\left(C_{n}\right)\right)=D\left(\equiv^{*}\left(C_{q_{1}}^{\eta 1}\right)\right) \otimes D\left(\equiv^{*}\left(C_{q_{2}}^{\eta 2}\right)\right) \otimes \ldots \ldots . . D\left(\equiv^{*}\left(C_{q_{m}}^{\eta m}\right)\right)$.

Theorem (2.13): [11]

Let δ is a positive integer and q be a prime number, then:

$$
K\left(C_{q^{\delta}}\right)=\oplus \sum_{i=1}^{\delta} C_{q^{i}}
$$

Proposition(3,1): The general form of the irreducible character table of the group $\left(C_{n} \times S_{3}\right)$ is given as follows:

$$
\equiv^{*}\left(C_{n} \times S_{3}\right)=
$$

$\begin{aligned} & \hline \Gamma- \\ & \text { class } \\ & \text { es } \end{aligned}$	[I, L_{1}]	[I, L ${ }_{2}$]	[I, L L_{3}]	$\left[\mathrm{x}^{\text {q }}\right.$ (${ }^{\text {a }}, \mathrm{L}_{1}$	$\left[\mathrm{x}^{\mathrm{q}^{\delta-1}}, \mathrm{~L}_{2}\right.$	$\left[\mathrm{x}^{\mathrm{q}^{\delta-1}}, \mathrm{~L}_{3}\right.$	\cdots	$\left[\mathrm{x}^{\mathrm{q}}, \mathrm{L}_{3}\right]$	$\left[\mathrm{x}^{\mathrm{q}}, \mathrm{L}_{3}\right]$	$\left[\mathrm{x}^{\mathrm{q}}, \mathrm{L}_{3}\right]$	[x, L3]	[$\left.\mathrm{x}, \mathrm{L}_{3}\right]$	[x, L_{3}]
$\partial_{(1,1)}$	$\begin{aligned} & \mathrm{q}^{\delta-1}(\mathrm{q} \\ & -1) \end{aligned}$	$\begin{aligned} & \mathrm{q}^{\delta-1}(\mathrm{q} \\ & -1) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{q}^{\delta-1}(\mathrm{q} \\ & -1) \end{aligned}$	$-q^{\delta-1}$	$-q^{\delta-1}$	$-q^{\delta-1}$	\cdots	0	0	0	0	0	0
$\partial_{(1,2)}$	$\begin{aligned} & \mathrm{q}^{\delta-1}(\mathrm{q} \\ & -1) \end{aligned}$	$\begin{aligned} & \mathrm{q}^{\delta-1}(\mathrm{q} \\ & -1) \end{aligned}$	$\begin{aligned} & -q^{\delta-1}(¢ \\ & -1) \end{aligned}$	$-q^{\delta-1}$	$-q^{\delta-1}$	$\mathrm{q}^{\delta-1}$	\cdots	0	0	0	0	0	0
$\partial_{(1,3)}$	$\begin{aligned} & 2 q^{\delta-1}(q \\ & -1) \end{aligned}$	$\begin{aligned} & -q^{\delta-1}(\emptyset \\ & -1) \end{aligned}$	0	$-2 q^{8-1}$	$\mathrm{q}^{\delta-1}$	0	...	0	0	0	0	0	0
$\partial_{(2,1)}$	$\begin{aligned} & \mathrm{q}^{\delta-1}(\mathrm{q} \\ & -1) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{q}^{\delta-1}(\mathrm{q} \\ & -1) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{q}^{\delta-1}(\mathrm{q} \\ & -1) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{q}^{\delta-2}(\mathrm{q} \\ & -1) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{q}^{\delta-2}(\mathrm{q} \\ & -1) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{q}^{\delta-2}(\mathrm{q} \\ & -1) \\ & \hline \end{aligned}$	\cdots	0	0	0	0	0	0
$\partial_{(2,2)}$	$\begin{aligned} & \mathrm{q}^{\delta-1}(\mathrm{q} \\ & -1) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{q}^{\delta-1}(\mathrm{q} \\ & -1) \\ & \hline \end{aligned}$	$\begin{aligned} & -q^{\delta-1}(\\ & -1) \end{aligned}$	$\begin{aligned} & \mathrm{q}^{\delta-2}(\mathrm{q} \\ & -1) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{q}^{\delta-2}(\mathrm{q} \\ & -1) \\ & \hline \end{aligned}$	$\begin{aligned} & -q^{\delta-2}(q \\ & -1) \\ & \hline \end{aligned}$	\cdots	0	0	0	0	0	0
$\partial_{(2,3)}$	$\begin{aligned} & 2 q^{\delta-1}(\\ & -1) \end{aligned}$	$\begin{aligned} & -q^{\delta-1}(\\ & -1) \end{aligned}$	0	$\begin{aligned} & 2 q^{\delta-2}(q \\ & -1) \end{aligned}$	$\begin{aligned} & -q^{\delta-2}(q \\ & -1) \end{aligned}$	0	\cdots	0	0	0	0	0	0
:	!	!	:	:	:	:	\because	:	:	!	!	:	:
$\partial_{(\delta, 1)}$	$\begin{aligned} & (q \\ & -1) \end{aligned}$	$\begin{aligned} & (q \\ & -1) \end{aligned}$	$\begin{aligned} & (q \\ & -1) \end{aligned}$	($q-1$)	($q-1$)	($q-1$)	\cdots	$\begin{aligned} & (q \\ & -1) \end{aligned}$	$\begin{aligned} & (q \\ & -1) \end{aligned}$	$\begin{aligned} & \hline(q \\ & -1) \end{aligned}$	-1	-1	-1
$\partial_{(\delta, 2)}$	$\begin{aligned} & \hline(\mathrm{q} \\ & -1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline(\mathrm{q} \\ & -1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-(q) \\ & -1) \\ & \hline \end{aligned}$	($q-1$)	($q-1$)	$\begin{aligned} & \hline-(q) \\ & -1) \\ & \hline \end{aligned}$	\cdots	$\begin{aligned} & \hline(q \\ & -1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline(q \\ & -1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-(q) \\ & -1) \\ & \hline \end{aligned}$	-1	-1	1
$\partial_{(\delta, 3)}$	$\begin{aligned} & 2(q \\ & -1) \end{aligned}$	$\begin{aligned} & -(q \\ & -1) \end{aligned}$	0	$\begin{aligned} & \text { 2(q } \\ & -1)) \end{aligned}$	$\begin{aligned} & -((q \\ & -1) \end{aligned}$	0	\cdots	$\begin{aligned} & \hline \text { 2(q } \\ & -1(q \\ & -1) \\ & \hline \end{aligned}$	$\begin{aligned} & (q \\ & -1) \end{aligned}$	0	-2	1	0
$\partial_{(\delta+1,1)}$	1	1	1	1	1	1	...	1	1	1	1	1	1
$\partial_{(\delta+1,2)}$	1	1	-1	1	1	-1	...	1	1	-1	1	1	-1
$\boldsymbol{\partial}_{(\delta+1,3}$	2	-1	0	2	-1	0	...	2	-1	0	2	-1	0

Table(3,1)

Theorem (3.2):

The irreducible character table of the group $C_{q} \delta \times S_{3}$ when q is an prime number and δ is a positive integer, given as follows:
$\equiv^{*}\left(C_{q^{\delta}} \times S_{3}\right)=$ $^{*}\left(C_{q^{\delta}}\right) \otimes \equiv{ }^{*}\left(S_{3}\right)$.

Proof:

Since $S_{3}=\{(1)(2)(3),(12)(3),(13)(2),(23)(1),(123),(132)\}$ and the character table of S_{3} :

$C L_{\alpha}$	$\left[L_{1}\right]$	$\left[L_{2}\right]$	$\left[L_{3}\right]$
$\left\|C L_{\alpha}\right\|$	1	2	3
$\left\|C_{G}\left(C L_{\alpha}\right)\right\|$	6	3	2
$\partial^{\prime}{ }_{1}$	1	1	1

$$
\equiv \quad\left(S_{3}\right)=
$$

$\partial^{\prime}{ }_{1}$	1	1	-1
$\partial^{\prime}{ }_{1}$	2	-1	0

Where $\left[L_{1}\right]=\left\{\left(I^{\prime}\right)\right\},\left[L_{2}\right]=\{(123)\},\left[L_{3}\right]=\{(12),(3)\}$ and the irreducible valued character of S_{3} :
$\equiv^{*} S_{3}=$

Γ-classes	$\left[L_{1}\right]$	$\left[L_{2}\right]$	$\left[L_{3}\right]$
$\left\|C L_{\alpha}\right\|$	1	2	3
$\left\|C_{G}\left(C L_{\alpha}\right)\right\|$	6	3	2
$\boldsymbol{\vartheta}^{\prime}{ }_{1}$	1	1	1
$\vartheta^{\prime}{ }_{1}$	1	1	-1
$\vartheta^{\prime}{ }_{1}$	2	-1	0

Then $\partial^{\prime}{ }_{1}\left(L_{1}\right)=\partial^{\prime}{ }_{1}\left(L_{2}\right)=\partial^{\prime}{ }_{1}\left(L_{3}\right)=\vartheta^{\prime}{ }_{1}\left(L_{1}\right)=\vartheta^{\prime}{ }_{1}\left(L_{2}\right)=\vartheta^{\prime}{ }_{1}\left(L_{3}\right) 1$.
$\partial^{\prime}{ }_{2}\left(L_{1}\right)=\partial^{\prime}{ }_{2}\left(L_{2}\right)=\vartheta^{\prime}{ }_{2}\left(L_{1}\right)=\vartheta^{\prime}{ }_{2}\left(L_{2}\right)=1$,
$\partial^{\prime}{ }_{2}\left(L_{3}\right)=\vartheta^{\prime}{ }_{2}\left(L_{3}\right)=-1$.
$\partial^{\prime}{ }_{3}\left(L_{1}\right)=\vartheta^{\prime}{ }_{3}\left(L_{1}\right)=2, \partial^{\prime}{ }_{3}\left(L_{2}\right)=\vartheta^{\prime}{ }_{3}\left(L_{2}\right)=-1, \partial^{\prime}{ }_{3}\left(L_{3}\right)=\vartheta^{\prime}{ }_{3}\left(L_{3}\right)=0$.
From the definition of $C_{q} \delta \times S_{3}$,theorem (1.10)
$\equiv\left(C_{q^{\delta}} \times S_{3}\right)=\equiv\left(C_{q^{\delta}}\right) \otimes \equiv\left(S_{3}\right)$.
Each element in $C_{q^{s}} \times S_{3}$.
$L_{n g}=J_{n} . L_{g}, \forall J_{n} \in C_{q^{\delta}}, L_{g} \in S_{3}, n=1,2,3, \cdots, \delta+1$ and any irreducible character of $C_{q^{\delta}} \times S_{3}$ is $\partial(i, j)=\partial_{i} . \partial^{\prime}{ }_{j}$ where ∂_{i} represent an irreducible character of $C_{q^{\delta}}$ and $\partial^{\prime}{ }_{\mathrm{j}}$ is an irreducible character S_{3};then ,

$$
\partial_{(i, j)}(\operatorname{Lng})=\left\{\begin{array}{cc}
\partial_{i}(L n) & \text { if } j=1 \text { and } g \in S_{3} \\
\partial_{i}(L n) & \text { if } j=2 \text { and } g \in\left\{I^{\prime},(123),(132)\right\} \\
-\partial_{i}(L n) & \text { if } j=2 \text { and } g \in\{(12)(3),(13)(2),(32)(1)\} \\
2 \partial_{i}(L n) & \text { if } j=3 \quad \text { and } g \in\left\{I^{\prime}\right\} \\
-\partial_{i}(L n) & \text { if } j=3 \text { and } g \in\{(123),(132)\} \\
0 & \text { if } j=3 \text { and } g \in\{(12)(3),(13)(2),(23)(1)\}
\end{array}\right.
$$

From proposition(2.8)
$\vartheta_{(i, j)}=\sum_{\sigma \in \operatorname{Gal}\left({ }^{\left.Q \partial_{(i, \mathrm{j})}\right)}\right.} \sigma\left(\partial_{(i, \mathrm{j})}\right)$ such that $\vartheta_{(\mathrm{i}, \mathrm{j})}$ is an irreducible character of $C_{q^{s}} \times S_{3}$.

Then, $\left.\vartheta_{(\mathrm{i}, j)}\left(h_{n g}\right)=\sum_{\sigma \in G a l(} Q \partial_{(\mathrm{i}, \mathrm{j})}\left(h_{n g}\right) / Q\right) \quad \sigma\left(\partial_{(i, j)}\left(h_{n g}\right)\right)$.

1- if $=1$ and $g \in S_{3}$.
$\vartheta_{(i, j)}\left(h_{n g}\right)=\sum_{\sigma \in G a l\left(Q \partial_{i}\left(L_{n}\right) / Q\right)} \sigma\left(\partial_{i}\left(h_{n}\right)\right)=\vartheta_{i}\left(h_{n}\right) \cdot 1=\vartheta_{i}\left(h_{n}\right) \cdot \vartheta^{\prime}{ }_{j}\left(L_{g}\right)$ where ϑ_{i} is an
irreducible character of $C_{q^{s}}$.
$2-$ (a) $j=2$ and $g \in\left\{I^{\prime},(123),(132)\right\}$.

$$
\vartheta_{(i, j)}\left(h_{n g}\right)=\sum_{\sigma \in G a l\left(Q_{i}\left(h_{n}\right) / Q\right)} \sigma\left(\partial_{i}\left(h_{n}\right)\right)=\vartheta_{i}\left(h_{n}\right) \cdot 1=\vartheta_{i}\left(h_{n}\right) \cdot \vartheta^{\prime}{ }_{j}\left(L_{g}\right)
$$

(b) $j=2$ and $g \in\{(12)(3),(13)(2),(23)(1)\}$.

$$
\begin{aligned}
\vartheta_{(i, j)}\left(h_{n g}\right) & \\
& =\sum_{\sigma \in \operatorname{Gal}\left({ }^{Q \partial_{i}\left(h_{n}\right)} / Q\right)} \sigma\left(-\partial_{i}\left(h_{n}\right)\right) \\
& =-\sum_{\sigma \in \operatorname{Gal}\left(\partial_{i}\left(h_{n}\right) / Q\right)} \sigma\left(\partial_{i}\left(h_{n}\right)\right) \\
& =\sum_{\sigma \in \operatorname{Gal}\left({ }^{Q \partial_{i}\left(h_{n}\right)} / Q\right)} \sigma\left(\partial_{i}\left(h_{n}\right)\right) \cdot-1=\vartheta_{i}\left(h_{n}\right) \vartheta^{\prime}{ }_{j}\left(L_{g}\right)
\end{aligned}
$$

(3) (a) $j=3$ and $g \in\left\{I^{\prime}\right\}$.

$$
\begin{aligned}
\vartheta_{(i, j)}\left(h_{n g}\right) & \\
& =\sum_{\sigma \in \operatorname{Gal}\left(\sum_{\left(\partial_{i}\left(h_{n}\right)\right.}\right)} \sigma\left(2 \partial_{i}\left(h_{n}\right)\right) \\
& =2 \sum_{\sigma \in \operatorname{Gal}\left({ }^{Q \partial_{i}\left(h_{n}\right)} / Q\right)} \sigma\left(\partial_{i}\left(h_{n}\right)\right) \\
& =\sum_{\sigma \in \operatorname{Gal}\left({ }^{Q \partial_{i}\left(h_{n}\right)} / Q\right)} \sigma\left(\partial_{i}\left(h_{n}\right)\right) \cdot 2=\vartheta_{i}\left(h_{n}\right) \vartheta^{\prime}{ }_{j}\left(L_{g}\right)
\end{aligned}
$$

(b) $j=3$ and $g \in\{(123), 132)\}$.

$$
\begin{aligned}
\vartheta_{(i, j)}\left(h_{n g}\right) & \\
& =\sum_{\sigma \in \operatorname{Gal}\left({ }^{Q \partial_{i}\left(h_{n}\right)} / Q\right)} \sigma\left(-\partial_{i}\left(h_{n}\right)\right) \\
& =-\sum_{\sigma \in \operatorname{Gal}\left({ }^{Q \partial_{i}\left(h_{n}\right)} / Q\right)} \sigma\left(\partial_{i}\left(h_{n}\right)\right) \\
& =\sum_{\sigma \in \operatorname{Gal}\left({ }^{Q \partial_{i}\left(h_{n}\right)} / Q\right)} \sigma\left(\partial_{i}\left(h_{n}\right)\right) \cdot-1=\vartheta_{i}\left(h_{n}\right) \vartheta^{\prime}{ }_{j}\left(L_{g}\right)
\end{aligned}
$$

(c) $j=3$ and $g \in\{(12)(3),(13)(2),(23)(1)\}$

$$
\vartheta_{(i, j)}\left(h_{n g}\right)
$$

$$
=\sum_{\sigma \in \operatorname{Gal}\left(Q \partial_{i}\left(h_{n}\right) / Q\right)} \sigma\left(0 . \partial_{i}\left(h_{n}\right)\right)
$$

$$
=0 . \sum_{\sigma \in \operatorname{Gal}\left({ }^{Q \partial_{i}\left(h_{n}\right)} / Q\right)} \sigma\left(\partial_{i}\left(h_{n}\right)\right)
$$

$$
=\sum_{\sigma \in G a l\left({ }^{\left(\partial_{i}\left(h_{n}\right)\right.} / Q\right)} \sigma\left(\partial_{i}\left(h_{n}\right)\right) .0=0=\vartheta_{i}\left(h_{n}\right) \vartheta^{\prime}{ }_{j}\left(L_{g}\right)
$$

From (1),(2)and (3) we have:
$\vartheta_{(i, j)}=\vartheta_{i} \cdot \vartheta^{\prime}{ }_{j}$.
Hence $\equiv^{*}\left(C_{q} \delta \times S_{3}\right)=\equiv^{*}\left(C_{q} \delta\right) \otimes \equiv^{*}\left(S_{3}\right)$

Example(3.3):

To find the irreducible character of $C_{5^{2}} \times S_{3}$ by use theorem (3.2).

$$
\equiv^{*}\left(C_{5^{2}}\right)=
$$

Γ-classes	$[I]$	$\left[x^{5}\right]$	$[x]$
ϑ_{1}^{\prime}	20	-5	0
ϑ_{2}^{\prime}	4	4	-1
ϑ_{3}^{\prime}	1	1	1

And

$$
\equiv^{*}\left(S_{3}\right)=
$$

Γ-classes	$\left[L_{1}\right]$	$\left[L_{2}\right]$	$\left[L_{3}\right]$
ϑ_{1}^{\prime}	1	1	1
ϑ_{2}^{\prime}	1	1	-1
ϑ_{3}^{\prime}	2	-1	0

Then: $\equiv^{*}\left(C_{5^{2}} \times S_{3}\right)=$

$\Gamma-$ classes	$\left[I, L_{1}\right]$	$\left[I, L_{2}\right.$	$\left[I, L_{3}\right.$	$\left[x^{5}, L\right.$	$\left[x^{5}, L_{2}\right.$	$\left[x^{5}, L_{3}\right]$	$\left[x, L_{1}\right]$	$\left[x, L_{2}\right]$	$\left[x, L_{3}\right.$,
$\vartheta_{(1,1)}$	20	20	20	-5	-5	-5	0	0	0
$\vartheta_{(1,2)}$	20	20	-20	-5	-5	5	0	0	0
$\vartheta_{(1,3)}$	40	-20	0	10	-5	0	0	0	-1
$\vartheta_{(2,1)}$	4	4	4	4	4	4	-1	-1	
$\vartheta_{(2,2)}$	4	4	-4	4	4	-4	-1	1	

Vol. 71 No. 4 (2022)
http://philstat.org.ph

$\vartheta_{(2,3)}$	8	-4	0	8	-4	0	-2	$2326-9865$ 1	0
$\vartheta_{(3,1)}$	1	1	1	1	1	1	1	1	1
$\vartheta_{(3,2)}$	1	1	-1	1	1	-1	1	1	-1
$\vartheta_{(3,3)}$	2	-1	0	2	-1	0	2	-1	0

Table(3.2)

Proposition(3.4):

If q is a prime number and δ is a positive integer, then:
$M\left(C_{q^{\delta}} \times S_{3}\right)=\left[\begin{array}{ccccc}\mathfrak{R} & \mathfrak{R} & \mathfrak{R} & \cdots & \mathfrak{R} \\ \mathfrak{I} & \mathfrak{R} & \mathfrak{R} & \cdots & \mathfrak{R} \\ \mathfrak{I} & \mathfrak{I} & \mathfrak{R} & \cdots & \mathfrak{R} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathfrak{I} & \mathfrak{I} & \mathfrak{I} & \mathfrak{I} & \mathfrak{R}\end{array}\right]$
and
$\mathrm{W}\left(C_{q^{g}} \times S_{3}\right)=\left[\begin{array}{cccccccc}B & -B & \mathfrak{I} & \mathfrak{I} & \mathfrak{I} & \cdots & \mathfrak{I} & \mathfrak{I} \\ \mathfrak{I} & B & -B & \mathfrak{I} & \mathfrak{I} & \cdots & \mathfrak{I} & \mathfrak{I} \\ \mathfrak{I} & \mathfrak{I} & B & -B & \mathfrak{I} & \cdots & \mathfrak{I} & \mathfrak{I} \\ \vdots & \vdots & \vdots & & \vdots & \ddots & & \vdots \\ \mathfrak{I} & \mathfrak{J} & \mathfrak{J} & \mathfrak{I} & \mathfrak{I} & \cdots & B & -B \\ \mathfrak{I} & \mathfrak{I} & \mathfrak{I} & \mathfrak{I} & \mathfrak{I} & \cdots & \mathfrak{I} & B\end{array}\right]$
which is of the size $3(\delta+1) \times 3(\delta+1)$, where $\mathfrak{R}=\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$, $\mathfrak{J}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $B=$ $\left[\begin{array}{ccc}1 & 0 & 0 \\ -4 & 1 & 0 \\ 3 & 0 & 1\end{array}\right]$.

Theorem(3.5):

Let q be aprime number and δ is a positive integer then :
$K\left(C_{q^{\delta}} \times S_{3}\right)=\oplus \sum_{i=1}^{3 \delta}\left(C_{q^{\delta}} \times S_{3}\right)=\stackrel{3 \delta}{\underset{i=1}{\oplus}} K\left(C_{q^{\delta}}\right) \stackrel{\delta}{i=1} \oplus_{i=1}^{\delta} K\left(C_{6}\right)$.

Proof:

To prove the theorem , by proposition(3.1) we obtain $\equiv^{*}\left(\mathrm{C}_{\mathrm{q}} \delta \mathrm{S}_{3}\right)$ and by proposition (3.4) we obtain $M\left(\mathrm{C}_{\mathrm{q}} \delta \times \mathrm{S}_{3}\right)$ and $\mathrm{W}\left(\mathrm{C}_{\mathrm{q}} \delta \times \mathrm{S}_{3}\right)$.
Now we use remark (2.6) and theorem (2.7) we obtain:
$M\left(\mathrm{C}_{\mathrm{q}} \delta \times \mathrm{S}_{3}\right) \cdot \equiv^{*}\left(\mathrm{C}_{\mathrm{q}} \delta \times \mathrm{S}_{3}\right) \cdot \mathrm{W}\left(\mathrm{C}_{\mathrm{q}^{\delta}} \times \mathrm{S}_{3}\right)=$
$\left\{6 \mathrm{q}^{\delta}, \mathrm{q}^{\delta},-\mathrm{q}^{\delta}, 6 \mathrm{q}^{\delta-1}, \mathrm{q}^{\delta-1},-\mathrm{q}^{\delta-1}, \cdots, 6 \mathrm{q}^{2}, \mathrm{q}^{2},-\mathrm{q}^{2}, 6 \mathrm{q}, \mathrm{q},-\mathrm{q}, 6,1,-1\right\}$
$K\left(\mathrm{C}_{\mathrm{q}^{\delta}} \times \mathrm{S}_{3}\right)=\mathrm{C}_{6 \mathrm{q}^{\delta}} \oplus \mathrm{C}_{\mathrm{q}^{\delta}} \oplus \mathrm{C}_{\mathrm{q}^{\delta}} \oplus \mathrm{C}_{6 \mathrm{q}^{\delta-1}} \oplus \mathrm{C}_{\mathrm{q}^{\delta-1}} \oplus \mathrm{C}_{\mathrm{q}^{\delta-1}} \oplus \cdots \oplus \mathrm{C}_{6 \mathrm{q}^{2}} \oplus \mathrm{C}_{\mathrm{q}} \oplus \mathrm{C}_{\mathrm{q}} \oplus$ C_{6}

$$
\begin{aligned}
& =\oplus \sum_{\mathrm{i}=1}^{3 \delta}\left(\mathrm{C}_{\mathrm{q}^{\mathrm{i}}}\right) \oplus \sum_{\mathrm{i}=1}^{\delta}\left(\mathrm{C}_{6}\right) \\
& =\underset{ }{3 \delta} \mathrm{~K}\left(\mathrm{C}_{\mathrm{q}^{\delta}}\right) \stackrel{\delta}{\delta} \mathrm{i}=1
\end{aligned}
$$

Theorem(3.6):

Let $\mathrm{n}=\prod_{\mathrm{i}=1}^{\mathrm{k}} q_{\mathrm{i}}^{\eta_{\mathrm{i}}}$ where q_{i} are distinct primes and η_{i} are positive integers, where $\mathrm{i}=$ 1,2, \cdots, k,then:
$K\left(C_{n} \times S_{3}\right)=\oplus \sum_{i=1}^{k}\left(\oplus \sum K\left(C_{q^{\eta_{i}}} \times S_{3}\right)\left[\prod_{\substack{i \neq 1 \\ j=1}}^{k}\left(\eta_{i}+1\right)\right]\right.$ time.

Proof:

$$
\mathrm{K}\left(\mathrm{C}_{\mathrm{n}} \times \mathrm{S}_{3}\right)=\underbrace{\mathrm{K}\left(\mathrm{C}_{\mathrm{q}_{1}^{\eta_{1}}} \times \mathrm{s}_{3}\right) \oplus \cdots \oplus \mathrm{K}\left(\mathrm{C}_{\mathrm{q}_{1}} \times \mathrm{s}_{3}\right)}_{\left(\eta_{2}+1\right)\left(\eta_{3}+1\right) \cdots\left(\eta_{\mathrm{k}}+1\right) \text { time }} \oplus \underbrace{\mathrm{K}\left(\mathrm{C}_{\mathrm{q}_{2}}^{\eta_{2}} \times \mathrm{s}_{3}\right) \oplus \cdots \oplus \mathrm{K}\left(\mathrm{C}_{\mathrm{q}_{2}} \times \mathrm{s}_{3}\right)}_{\left(\eta_{1}+1\right)\left(\eta_{3}+1\right) \cdots\left(\eta_{\mathrm{k}}+1\right) \text { time }}
$$

$$
\oplus \cdots \oplus \underbrace{K\left(C_{q_{k} \eta_{1}} \times s_{3}\right) \oplus \cdots \oplus K\left(q_{k}^{\eta_{k-1}} \times s_{3}\right)}_{\left(\eta_{1}+1\right)\left(\eta_{2}+1\right) \cdots\left(\eta_{k-1}+1\right) \text { time }}
$$

By theorem (2.12) we can find.

Theorem (3.7):

Suppose $\mathrm{n}=\mathrm{q}_{1}^{\eta 1} \cdot \mathrm{q}_{2}^{\eta 2} \ldots \ldots \ldots . \mathrm{q}_{\mathrm{m}}^{\eta \mathrm{m}}$, where $\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots \ldots, \mathrm{q}_{\mathrm{m}}$ are distinct primes and η_{i} are positive integers , $\mathrm{i}=1,2, \cdots, \mathrm{~m}$ then :
$K\left(C_{n} \times S_{3}\right)=\underset{i=1}{3} K\left(C_{n}\right) \quad\left(\eta_{2}+1\right)\left(\eta_{3}+1\right) \cdots\left(\eta_{\mathrm{k}}+1\right) \quad \mathrm{i}=1.0\left(C_{6}\right)$

$$
\begin{aligned}
& K\left(C_{n} \times S_{3}\right)=\begin{array}{c}
3\left(\eta_{2}+1\right)\left(\eta_{3}+1\right) \cdots\left(\eta_{k}+1\right) \\
\underset{i=1}{\oplus}
\end{array} \quad K\left(C_{q_{1}}^{\eta_{1}}\right){\underset{i=1}{\left(\eta_{2}+1\right)\left(\eta_{3}+1\right) \cdots\left(\eta_{k}+1\right)} K\left(C_{6}\right) .}_{\oplus}^{i=1} \quad K \\
& \oplus \cdots \oplus \underset{\substack{\oplus \\
i=1}}{3\left(\eta_{1}+1\right)\left(\eta_{2}+1\right) \cdots\left(\eta_{k-1}+1\right)} k\left(C_{q_{q_{k}}}\right){ }_{i=1}^{\left(\eta_{1}+1\right)\left(\eta_{2}+1\right) \cdots\left(\eta_{k-1}+1\right)} k\left(C_{6}\right) . \\
& \left.=\begin{array}{c}
3\left(\eta_{2}+1\right)\left(\eta_{3}+1\right) \cdots\left(\eta_{\mathrm{k}}+1\right) \\
\oplus
\end{array} \mathrm{K}_{\mathrm{C}}^{\mathrm{q}_{\mathrm{i}}}{ }_{\eta_{\mathrm{i}}}\right){ }_{\left(\eta_{2}+1\right)\left(\eta_{3}+1\right) \cdots\left(\eta_{\mathrm{k}}+1\right)}^{\oplus} \mathrm{K}\left(\mathrm{C}_{6}\right) . \\
& i=1 \quad i=1
\end{aligned}
$$

proof:
using theorem(3.2) and proposition(2.4) we obtain:
$D\left(\equiv^{*}\left(C_{q^{\delta}} \times S_{3}\right)\right)=D\left(\equiv^{*}\left(C_{q} \delta\right)\right) \otimes D\left(\equiv^{*}\left(S_{3}\right)\right)$.
By proposition(2.11) we obtain:
($\mathrm{D} \equiv^{*}\left(\mathrm{C}_{\mathrm{n}}\right)$), then:

$$
\begin{aligned}
& D\left(\equiv^{*}\left(C_{n} \times S_{3}\right)\right)=\left[D\left(\equiv^{*}\left(C_{n} \times S_{3}\right)\right)\right] \otimes\left[\begin{array}{ccc}
6 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
6 D\left(\equiv^{*}\left(C_{n}\right)\right. & 0 \\
0 & D\left(\equiv^{*}\left(C_{n}\right)\right) \\
& -D\left(\equiv^{*}\left(C_{n}\right)\right)
\end{array}\right] \\
& =\left\{6 d_{1}, 6 d_{2}, \ldots, 6 d_{\left.\left(\eta_{1}+1\right)\left(\eta_{2}+1\right) \ldots\left(\eta_{m}+1\right), d_{1}, d_{2}, \ldots, d_{\left(\eta_{1}+1\right)\left(\eta_{2}+1\right) \ldots\left(\eta_{m}+1\right)}\right)} \begin{array}{r}
\left.\quad-d_{1},-d_{2}, \ldots,-d_{\left(\eta_{1}+1\right)\left(\eta_{2}+1\right) \ldots\left(\eta_{m}+1\right)}\right\}
\end{array}\right.
\end{aligned}
$$

Where d_{i} is the invariant factor of $\equiv^{*}\left(C_{n}\right)$;then by using theorem (2.12) we have:

$$
\begin{aligned}
& K\left(C_{n} \times S_{3}\right) \\
& =\begin{array}{c}
\underset{i=1}{\oplus}\left(\eta_{1}+1\right)\left(\eta_{2}+1\right)\left(\eta_{3}+1\right) \cdots\left(\eta_{m}+1\right) \\
\mathrm{C}_{6 \mathrm{~d}_{\mathrm{i}}}
\end{array}\left(\eta_{1}+1\right)\left(\eta_{2}+1\right)\left(\eta_{3}+1\right) \cdots\left(\eta_{m}+1\right){ }_{\mathrm{i}=1}^{\oplus} \mathrm{C}_{\mathrm{d}_{\mathrm{i}}} \\
& \left(\eta_{1}+1\right)\left(\eta_{2}+1\right)\left(\eta_{3}+1\right) \cdots\left(\eta_{m}+1\right) \\
& \oplus \quad C_{d_{i}} \\
& i=1 \\
& =\begin{array}{c}
\left(\eta_{1}+1\right)\left(\eta_{2}+1\right)\left(\eta_{3}+1\right) \cdots\left(\eta_{m}+1\right) \\
\underset{i=1}{\oplus} \\
\mathrm{C}_{6 \mathrm{~d}_{\mathrm{i}}}
\end{array} 2\left(\eta_{1}+1\right)\left(\eta_{2}+1\right)\left(\eta_{3}+1\right) \cdots\left(\eta_{m}+1\right){ }_{\mathrm{i}}^{\oplus} \mathrm{C}_{\mathrm{d}_{\mathrm{i}}} \\
& \left(\eta_{1}+1\right)\left(\eta_{2}+1\right)\left(\eta_{3}+1\right) \cdots\left(\eta_{m}+1\right) \quad\left(\eta_{1}+1\right)\left(\eta_{2}+1\right) \cdots\left(\eta_{m}+1\right) \\
& \underset{i=1}{\oplus} \quad \mathrm{C}_{\mathrm{d}_{\mathrm{i}}} \quad \oplus \\
& 2\left(\eta_{1}+1\right)\left(\eta_{2}+1\right)\left(\eta_{3}+1\right) \cdots\left(\eta_{m}+1\right) \\
& \oplus \quad \mathrm{C}_{\mathrm{d}_{\mathrm{i}}} \\
& \mathrm{i}=1 \\
& =\begin{array}{c}
\underset{i=1}{\oplus}\left(\eta_{1}+1\right)\left(\eta_{2}+1\right)\left(\eta_{3}+1\right) \cdots\left(\eta_{m}+1\right) \\
C_{d_{i}}
\end{array} \quad\left(\eta_{1}+1\right)\left(\eta_{2}+1\right)\left(\eta_{3}+1\right) \cdots\left(\eta_{m}+1\right) C_{6}^{\oplus}
\end{aligned}
$$

By theorems (3.5) and (3.6), we obtain:

Example (3.8):

To find the cyclic decomposition $\left(C_{25} \times S_{3}\right), K\left(C_{1125} \times S_{3}\right)$ and $K\left(C_{1157625} \times S_{3}\right)$
By Theorem (3.7) :

$$
\begin{aligned}
& K\left(C_{25} \times S_{3}\right)=K\left(C_{5^{2}} \times S_{3}\right)=\stackrel{3}{\bigoplus_{\mathrm{i}=1}^{\oplus}} K\left(C_{5^{2}}\right) \stackrel{(2+1)}{\mathrm{i}=1}{ }^{3} C_{6} \\
& =\underset{\mathrm{i}=1}{\oplus} K\left(C_{5^{2}}\right) \stackrel{3}{\mathrm{i}=1} \bigoplus_{6} .
\end{aligned}
$$

$$
K\left(C_{1125} \times S_{3}\right)=K\left(C_{3^{2} .5^{5}} \times S_{3}\right)=\underset{\mathrm{i}=1}{\bigoplus_{\mathrm{i}}^{=1}} K\left(C_{\left.3^{2} .5^{5}\right)}^{(2+1)(5+1)}{ }_{6}\right.
$$

$$
=\underset{\mathrm{i}=1}{\oplus} K\left(C_{3^{2} .5^{5}}\right) \stackrel{18}{\bigoplus_{\mathrm{i}=1}} C_{6} .
$$

$$
K\left(C_{1157625} \times S_{3}\right)=K\left(C_{3^{3} .5^{3} .7^{3}} \times S_{3}\right)
$$

$$
3 \quad(3+1)(3+1)(3+1)
$$

$$
=\oplus K\left(C_{3^{3} \cdot 5^{3} \cdot 7^{3}}\right) \oplus C_{6}
$$

$$
i=1
$$

$$
i=1
$$

$$
=\underset{\mathrm{i}=1}{\oplus} K\left(C_{3^{3} \cdot 5^{3} \cdot 7^{3}}\right) \stackrel{64}{\mathrm{i}=1}{ }^{-1} C_{6} .
$$

Conclusion:

According to this paper we have found a new method companied with a new results for the cyclic decomposition of the factor group $K\left(C_{n} \times S_{3}\right)$,for that we can extend this paper in future work .
[1] AL.Harere.M.N.and AL-Heety.F.A " The primary decomposition of the factor groupK $\left(Z_{p}^{n}\right) "$,Eng \&Tech. Journal,Vol 29,No.9, 2011.
[2] A. M. Basheer, "Representation Theory of Finite Group", AIMS, south Africa, 2006.
[3] A. S. Abid, "Artin Characters Table of Dihedral Group for Odd Number", M. Sc. thesis University of Kufa, 2006.
[4] C. Curits and I. Reiner, "Methods of Representation Theory with Application to Finite Groups and order", John Wiley \& Sons, New York ,1981.
[5] D. Serra " Matrices : Theory and Applications " Gradute Text in Mathematics 216 , Springer - Verlag New York ,Inc , 2002 .
[6] J. J. Rotman, " Introduction to The Theory of Groups ",prentice Hall ; .
[7] J.P.Serre, "Liner Representation of Finite Groups",Springer-Verlage,1977.
[8] K.Knwabusz, "Some Definitions of Artin's Exponent of Finite Groups",USA,National foundation Math, GR, 1996.
[9] K.Sekigvchi , " Extensions and The Irreducibilities of The Induced Charcters of Cyclic p-Group " ,Hiroshima math Journal , p 165178,2002.
[10] M.N.Yaqoob and A.A.A.Omran"some combinatorial Results on the factor Group $K(G)$,Journal of kufa for Mathematics and computer, Vol.3,No.2,pp 1117,Des, 2016.
[11] M.S.Kirdar,"The Factor Group of the Z-valued Class Function Modulo The Group of the Generalized Characters",Ph.D. thesis, University of Birmingham, 1982.
[12] N. R. Mahamood " The Cyclic Decomposition of the Factor Group cf($\left.\mathrm{Q}_{2 \mathrm{~m}}, \mathrm{Z}\right) / \bar{R}$ $\left(\mathrm{Q}_{2 \mathrm{~m}}\right)^{\prime \prime}$, M.Sc. thesis, University of Technology, 1995.
[13] N.S.Jasim"The factor group $c f(G, Z) / \bar{R}(G)$ for the special linear group SL(2,P)" .IN 2005 .

