Study of Some Results on the Factor Group $K(C_n \times S_3)$

Amer Khrija Abed¹, ¹Department of Mathematics, College of Education for Pure Science, Al-Muthanna University,Samawah, Iraq . ¹E-mail: amer.khrija@mu.edu.iq

Article Info	Abstract				
Page Number: 5475 - 5493	The main goal of this paper is to calculate the cyclic decomposition of the $n_1 - n_2$				
Publication Issue: Vol 71 No. 4 (2022)	finite commutative factor group $(C_n \times S_3)$, where $n = q_1^{\eta_1} \cdot q_2^{\eta_2} \dots q_m^{\eta_m}$, are distinct primes for all $i = 1, 2, 3, \dots, m$ and $\eta_1, \eta_2, \dots, \eta_m$ are positintegers then:				
	$K(C_n \times S_3) = \underset{i=1}{\overset{3}{\bigoplus}} K(C_n) \underset{i=1}{\overset{(\eta_1+1)(\eta_2+1)(\eta_3+1)\cdots(\eta_m+1)}{\bigoplus}} C_6 .$				
	We found the general table of irreducible characters for the group ($C_n \times S_3$).				
Article History					
Article Received: 15 September 202	22				
Revised : 1 October 2022					

Article Received: 15 September 202 Revised: 1 October 2022 Accepted: 13 October 2022 Publication: 10 November 2022

 $\underline{\text{Keywords:}}$ characters table, irreducible characters table, factor group, the groups $C_n and \ S_3$.

Introduction:

The commutative G group of all Z – valued characters of a finite G group constant of the Γ – classes forms a finitly generated a commutative group cf(G, Z) of a rank equal to the number of Γ -classes . Intersection of cf(G,Z) with the group of all generalized characters of G , is a normal subgroup of cf(G,Z) denoted by $\overline{R}(G)$, then cf(G,Z)/ $\overline{R}(G)$ is a finite commutative factor group that is set to be K(G). The matrix form $\overline{R}(G)$ consists of terms of the cf(G,Z)basis is \equiv^* (G). We use the theory of invariant factors to obtain the direct sum of the cyclic Z – module of orders the distinct invariant factors of \equiv^* (G) to find the cyclic decomposition of K(G)."M. S.Kirdar [11] studied the of K(C_n) in 1982". "The factor group cf(G,Z)/ $\overline{R}(G)$ for the special linear group SL(2,P)", was studied by N.S.Jasim [13] in 2005. AL-Harere.M.N and AL-

Heety.F.A [1] "had studied the primary decomposition of the factor group $K(Z_p^n)$ " in 2011. "The some combinatorial results on the factor group K(G)", had been studied by M.N.Yaqoob and A.A.Ali [10] in 2016. Finally, we would like to form the reader of this paper that we have found the $\equiv^* (C_n \times S_3)$, in addition to that we calculated the cyclic decomposition of the group $K(C_n \times S_3)$.

Definition(1.1): [3]

Suppose that the group GL(n, F) is a multiplicative group of all non-singular $n \times n$ matrices over the field F, the group GL(n, F) general linear group is called .

Definition(1.2): [4]

A homomorphism of G into GL(n, F), be a matrix representation of a group G ,where n is known as a degree of matrix representation T. In particular case, T is a unit representation (principal) if T(g) = 1, for all $G \ni g$.

Example (1.3) :

Assume the symmetric group S_3 , then we determine the matrix representation of the group.

 $\beta_1: S_3 \to GL(1, \mathbb{C})$ for all $g \in S_3$ (trivial representation)

 $\beta_2: S_3 \to GL(1, \mathbb{C}) \implies \rho_2(g) = \begin{cases} 1 & \text{if g is even} \\ -1 & \text{if g is odd} \end{cases}$ for all $g \in S_3$ (alternating representation) $\beta_3: S_3 \to GL(3, \mathbb{C}) \quad \text{for all } g \in S_3.....(\text{linear representation})$

$$\beta_3((I)) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \beta_3((12)) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \beta_3((13)) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

$$\beta_3((23)) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \beta_3((123)) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \ \beta_3((132)) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

Note that the actions are on column's represent reducible representation because there exist invertible matrix

$$\Gamma = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$
 such that

$$T.\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot T^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = (1) \oplus \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$T.\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot T^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 1 \end{pmatrix} = (1) \oplus \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix}$$
$$T.\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \cdot T^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = (1) \oplus \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$T.\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \cdot T^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & -1 \end{pmatrix} = (1) \oplus \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}$$
$$T.\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \cdot T^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & 0 \end{pmatrix} = (1) \oplus \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$$
$$T.\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \cdot T^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & 0 \end{pmatrix} = (1) \oplus \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$$

The following table includes the irreducible representation for each elements of S_3 :

S ₃	(1)(2)(3)	(123)	(132)	(12)(3)	(13)(1)	(23)(1)
ρ_1	[1]	[1]	[1]	[1]	[1]	[1]
ρ ₁	[1]	[1]	[1]	[—1]	[—1]	[-1]
ρ_1	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ -1 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ -1 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix}$

Table(1,1)

Definition (1.4): [4]

Let A is a matrix of the size $n \times n$ the sum of the main diagonal elements is said to be trace and denoted by tr(A).

Definition(1.5): [4]

Let G be a finite group over the field F, T be a matrix representation of degree n of the group G. The function $\partial : G \rightarrow F$ defined by $\partial(g) = tr(T(g))$ for all $g \in G$, ∂ is a character of degree n of T. In particular, the character of the principal representation ($\partial(g) = 1$, for all $g \in G$) is called the principal character.

Definition(1.6): [7]

 Γ –conjugate consists of two elements in group G ,if the cyclic subgroups of generate are conjugate in G, so we can define it as an equivalence relation on G. Its classes are called Γ – classes.

Definition(1.7): [9]

A irreducible characters of The G's irreducible characters which is denoted by ϑ has integer values which is called character ,such that $\vartheta(g) \in Z$, $\forall g \in G$.

Proposition (1.8):[11]

The number of Γ -classes on *G* equals to the number of all distinct irreducible characters of a finite group G.

<u>Theorem (1.9): [2]</u>

Let S_n be a symmetric group so it has a k is a subgroup $\ ,$ and the function $\zeta {:}\ G \to \mathbb{C}$ defined by the set:

 $\zeta_{(g)} = \operatorname{fix}(g) = \{ u: gu = u, \forall g \in S_n \}$

Then $\partial_{\zeta(g)} = |\operatorname{fix}(g)| - 1$ is an irreducible character of k.

Example (1.10):

Consider $S_3 \leq S_n$ and the elements of S_3 are known from [theorem (1.9)] Then:

 $\zeta((I)) = |\operatorname{fix}(I')| - 1 = 3 - 1 = 2.$

$$\zeta((12)(3)) = |\operatorname{fix}((12)(3))| - 1 = 1 - 1 = 0$$
 the same for (13)(2) and (23)(1).

 $\zeta((123)) = |\operatorname{fix}((123))| - 1 = 0 - 1 = -1$ the same for (132).

Then $\partial_{\zeta} = (2,0,-1)$ is irreducible character of S₃.

$$\langle \partial_{\zeta}, \partial_{\zeta} \rangle = \frac{1}{6} [(1)(1)(1) + (1)(1)(3) + (1)(1)(2)] = 1.$$

Example (1.11):

From example (1.3) we can calculate the irreducible characters and characters table for symmetric group S_3 ,

$$\partial'_{\beta_1} = (1,1,1,1,1,1), \ \partial'_{\beta_2} = (1,1,1,-1,-1,-1),$$

$\partial'_{\beta_1} = (2, -1, -1, 0, 0, 0)$.We construct the characters table for S_3	3.
---	----

CL_{lpha}	$[L_1]$	$[L_2]$	$[L_3]$
$ CL_{\alpha} $	1	2	3
$ C_G(CL_{\alpha}) $	6	3	2
∂'_1	1	1	1
∂'_1	1	1	-1
∂'_{1}	2	-1	0

Table (1,2)

Where $[L_1] = \{l'\}$, $[L_2] = \{(123)\}$, $[L_3] = \{(12)(3)\}$,

Character table of finite commutative group(1.12): [4]

Let C_n be a cyclic group with order n, which are generated by u. Then the Character table of C_n is given :

	CL_{α}	Ι	и	<i>u</i> ²	•••	u^{n-1}
$= (\mathbf{C}) -$	$ CL_{\alpha} $	1	1	1		1
$= (\mathbf{c}_n) -$	$ C_G(CL_\alpha) $	п	n	n	•••	n
	γ_1	1	1	1	•••	1
	γ_2	1	φ	φ^2	•••	φ^{n-1}
	γ_3	1	φ^2	$arphi^4$	•••	φ^{n-2}
	•	•	•	•	•.	:
	γ_n	1	φ^{n-1}	φ^{n-2}	•••	φ

where
$$\boldsymbol{\varphi} = \boldsymbol{e}^{2\pi i/n}$$

Theorem (1.10):[5]

Let G_1 and G_2 are two group .Suppose $T_1: G_1 \to GL(n_1, F)$ and $T_2: G_2 \to GL(n_2, F)$ are two irreducible representations of the groups G_1 and G_2 with characters ∂_1 and ∂_2 respectively, then $T^{_1} \otimes T^{_2}$ is irreducible representation of the group $G_1 \times G_2$ with the character $\partial_1 \cdot \partial_2$.

2. The Factor Group AC(G): We devote our work to study the group of Z – valued class function of a group G ,with its factor group on $\overline{R}(G)$ in this section , also we includes the irreducible characters tables of C_n and S_3 and the factor group $K(C_n)$ and $K(S_3)$.

Definition(2.1): [8]

A K-minor of T is the determinat of $K \times K$. where T is a matrix entries in a principle with domain **R**.

Definition(2.2): [8]

The greatest common divisor (g.c.d) of all K – minor is a K – th determinant divisor of T, denoted by DK(T).

Theorem (2.3): [8]

Suppose *N* and *M* are two matrices of degree *s* and *v* respectively, then $det(N \otimes M) = (det(N))^s (det(M))^v$.

Theorem (2.4): [9]

Let N and M be non-singular matrices with rank α and m respectively ,on a principal domain \Re and let :

 $Q_1NJ_1 = D(N) = diag\{d_1(N), d_2(N), \dots, d_{\alpha}(N)\}$ and

 $Q_2MJ_2 = D(M) = diag\{d_1(M), d_2(M), \dots, d_m(M)\}$ the invariant factor matrices of N and M then, $(Q_1 \otimes Q_2)(N \otimes M)(J_1 \otimes J_2) = D(N) \otimes D(M)$ and from this we get that the invariant factor matrices of $N \otimes M$ can be written.

<u>Theorem(2.5): [4]</u>

Let *M* be a matrix with entries in a principal domain \Re then there is matrices Q, J, D such that Q and J are invertible, QMJ = D, *D* is diagonal matrix and then, $D_k(QDJ) = D_k(M)$ module the group of unites A.

Remark(2.6):[11]

Let $cf(G,Z) = Z^{l}$ basis is $\equiv^{*} (G)$.using theorem (2.5), we evaluate two matrices Q and J in addition a determent ∓ 1 where $Q \equiv^{*} (G) = D(\equiv^{*} (G)) = diag\{d_{1}, d_{2}, \dots, d_{\alpha}\}, d_{i} = \mp D_{i}(\equiv^{*} (G))/\mp D_{i-1}(\equiv^{*} (G))$.

The Z – module K(G) represent the direct sum of the cyclic sbmodules and with annihilating ideals $\langle d_1 \rangle, \langle d_2 \rangle, \dots, \langle d_l \rangle$.

 $\frac{\text{Theorem}(2.7): [11]}{|K(G)|} = det (\equiv^* (G)).$

Proposition (2.8): [11]

The basis of \overline{R} (G) is formed by irreducible characters $\vartheta_i = \sum_{\sigma \in Gal(Q(\gamma_i)/Q)} \sigma(\gamma_i) = \vartheta_i$ form,

where γ_i are the irreducible characters of G and their numbers are equal to the number of all distinct Γ – classes of G.

Theorem (2.9): [4]

The irreducible character table of the cyclic group $C_{q^{\delta}}$ of the rank $\delta + 1$ and where q is an prime number which is denoted by($\equiv^* (C_{p^{\delta}})$) given by:

Γ – classes	[1]	$[r^{q^{\delta-1}}]$	$[r^{q^{\delta-2}}]$	$[r^{q^{\delta-3}}]$	•••	[r ^q]	[r]
ϑ_1	$q^{\delta-1}(q-1)$	$-q^{\delta-1}$	0	0		0	0
ϑ_2	$q^{\delta-2}(q-2)$	$q^{\delta-2}(q-1)$	$-q^{\delta-2}$	0	•••	0	0
	$q^{\delta-3}(q-3)$	$q^{\delta-3}(q-2)$	$q^{\delta-3}(q-1)$	$-q^{\delta-3}$		0	0
ϑ_3							
•••	•••	:	•••	•••	•••	•••	•••
	q(q - 1)	q(q - 1)	q(q - 1)	q(q - 1)	•••	-q	0
•••							
	(q - 1)	(q - 1)	(q - 1)	(q - 1)	•••	(q - 1)	-1
ϑ_δ							
	1	1	1	1	•••	1	1
$\vartheta_{\delta+1}$							

Table (2.1)

Example (2.10):

For finding the irreducible character table of a cyclic group C_{49} by using theorem above as follows:

$\equiv^* (\mathcal{C}_{49}) =$	Γ-classes	[I]	[<i>r</i> ⁷]	[r]
$\equiv^* (\mathcal{C}_{7^2}) =$	∂_1	42	-7	0
	∂_2	6	6	-1
	∂_3	1	1	1
	Т	able(2.2)		

Let $n = \prod_{i=1}^{k} q_i^{\delta i}$, where q_i are distinct primes and δ is a positive integer then : $K(C_n) = \bigoplus \sum_{i=1}^{k} (\bigoplus \sum_{j \in I} K(C_{q_i^{\delta i}})) [\prod_{\substack{j \neq i \ i=1}}^{k} (\delta_j + 1)]$ time.

The group $(C_n \times S_3)$ (2.15):

The tensor product group $(C_n \times S_3)$, where $(C_n \text{ is a group of order } n \text{ and cyclic generated by } u)$ and S_3 is a group of order 6 and symmetric . The direct product group $(C_n \times S_3) = \{(q, c): q \in C_n, c \in S_3\}$ and $|C_n \times S_3| = |C_n| \cdot |S_3| = 6n$

3. The main results:

we devote our work to study irreducible character table of the group $(C_n \times S_3)$ and for finding the cyclic decomposition of the factor group $K(C_n \times S_3)$, in this section.

Proposition(2.11):[11]

If P is a prime number, then $\left(\equiv^* (C_{q^{\delta}})\right) = \{q^{\delta}, q^{\delta-1}, \cdots, q_{-1}, 1\}$.

Remark (2.12) :

Hence forth *if* $n = q_1^{\eta_1} \cdot q_2^{\eta_2} \dots \dots q_m^{\eta_m}$ where q_1, q_2, \dots, q_m are distinct primes then:

$$D(\equiv^* (C_n)) = D(\equiv^* (C_{q_1}^{\eta 1})) \otimes D(\equiv^* (C_{q_2}^{\eta 2})) \otimes \dots \dots D(\equiv^* (C_{q_m}^{\eta m})).$$

Theorem (2.13): [11]

Let δ is a positive integer and q be a prime number, then:

$$K\left(C_{q^{\delta}}\right) = \bigoplus \sum_{i=1}^{\delta} C_{q^{i}}.$$

Proposition(3,1): The general form of the irreducible character table of the group $(C_n \times S_3)$ is

given as follows:

$$\equiv^* (\mathcal{C}_n \times \mathcal{S}_3) =$$

Г-	$[I, L_1]$	[I, L ₂]	[I, L ₃]	$[x^{q^{\delta-1}}, L_1]$	$[x^{q^{\delta-1}}, L_2]$	$[x^{q^{\delta-1}}, L_3]$		$[x^q, L_3]$	$[x^q, L_3]$	$[x^q, L_3]$	[x, L ₃]	[x, L ₃]	[x, L ₃]
class						2 0							
es	\$ 1 4	\$ 1 4	\$ 1 4	<u> </u>	<u> </u>	\$ 1			-	0	0	-	-
$d_{(1,1)}$	q ⁰⁻¹ (q	q ⁰⁻¹ (q	q ⁰⁻¹ (q	$-q^{0-1}$	$-q^{0-1}$	$-q^{0-1}$	•••	0	0	0	0	0	0
	- I)	- I)	- I)	6 1	6 1	6 1			-	-	-		
$\partial_{(1,2)}$	q ^{₀-1} (q	q ^{٥-1} (q	$-q^{\delta-1}(q)$	$-q^{\delta-1}$	$-q^{\delta-1}$	$q^{\delta-1}$	•••	0	0	0	0	0	0
	-1)	-1)	-1)										
$\partial_{(1,3)}$	$2q^{\delta-1}(q)$	$-q^{\delta-1}(q)$	0	$-2q^{\delta-1}$	$q^{\delta-1}$	0		0	0	0	0	0	0
	-1)	-1)		1	-								
$\partial_{(2,1)}$	$q^{\delta-1}(q$	$q^{\delta-1}(q$	$q^{\delta-1}(q$	$q^{\delta-2}(q$	$q^{\delta-2}(q$	$q^{\delta-2}(q$	•••	0	0	0	0	0	0
	-1)	-1)	-1)	-1)	-1)	-1)							
$\partial_{(2,2)}$	$q^{\delta-1}(q$	$q^{\delta-1}(q$	$-q^{\delta-1}(q)$	$q^{\delta-2}(q$	$q^{\delta-2}(q$	$-q^{\delta-2}(q$		0	0	0	0	0	0
	-1)	- 1)	-1)	- 1)	-1)	- 1)							
$\partial_{(2,3)}$	$2q^{\delta-1}(q)$	$-q^{\delta-1}(\alpha)$	0	$2q^{\delta-2}(q$	$-q^{\delta-2}(q$	0	•••	0	0	0	0	0	0
	-1)	- 1)		- 1)	- 1)								
:	:	:	:	:	:	:	•.	:	:	:	:	:	:
$\partial_{(\delta,1)}$	(q	(q	(q	(q – 1)	(q – 1)	(q - 1)	•••	(q	(q	(q	-1	-1	-1
	-1)	- 1)	-1)					-1)	- 1)	- 1)			
$\partial_{(\delta,2)}$	(q	(q	-(q	(q - 1)	(q - 1)	-(q	•••	(q	(q	-(q	-1	-1	1
	- 1)	- 1)	- 1)			-1)		-1)	- 1)	- 1)			
$\partial_{(\delta,3)}$	2(q	-(q	0	2(q	-((q	0	•••	2(q	(q	0	-2	1	0
	-1)	-1)		- 1))	-1)			- 1(q	- 1)				
								- 1)					
$\partial_{(\delta+1,1)}$	1	1	1	1	1	1	•••	1	1	1	1	1	1
$\partial_{(\delta+1,2)}$	1	1	-1	1	1	-1		1	1	-1	1	1	-1
$\partial_{(\delta+1,3)}$	2	-1	0	2	-1	0	•••	2	-1	0	2	-1	0

Table(3,1)

<u>Theorem (3.2):</u>

The irreducible character table of the group $C_{q^{\delta}} \times S_3$ when q is an prime number and δ is a positive integer, given as follows:

$$\equiv^* (\mathcal{C}_{q^{\delta}} \times S_3) = \equiv^* (\mathcal{C}_{q^{\delta}}) \otimes \equiv^* (S_3) .$$

Proof:

Since $S_3 = \{(1)(2)(3), (12)(3), (13)(2), (23)(1), (123), (132)\}$ and the character table of S_3 :

CL_{α}	$[L_1]$	$[L_2]$	$[L_3]$
$ CL_{\alpha} $	1	2	3
$ C_G(CL_{\alpha}) $	6	3	2
∂'_1	1	1	1

$\equiv (S_3) =$	∂'_1	1	1	-1
	∂'_1	2	-1	0

Where $[L_1] = \{(l')\}, [L_2] = \{(123)\}, [L_3] = \{(12), (3)\}$ and the irreducible valued character of S_3 :

$\equiv^* S_3 =$	Γ-classes	$[L_1]$	$[L_2]$	$[L_3]$
	$ CL_{\alpha} $	1	2	3
	$ C_G(CL_{\alpha}) $	6	3	2
	ϑ'_1	1	1	1
	ϑ'_1	1	1	-1
	ϑ'_1	2	-1	0

Then
$$\partial'_1(L_1) = \partial'_1(L_2) = \partial'_1(L_3) = \vartheta'_1(L_1) = \vartheta'_1(L_2) = \vartheta'_1(L_3)1$$
.
 $\partial'_2(L_1) = \partial'_2(L_2) = \vartheta'_2(L_1) = \vartheta'_2(L_2) = 1$,
 $\partial'_2(L_3) = \vartheta'_2(L_3) = -1$.
 $\partial'_3(L_1) = \vartheta'_3(L_1) = 2$, $\partial'_3(L_2) = \vartheta'_3(L_2) = -1$, $\partial'_3(L_3) = \vartheta'_3(L_3) = 0$
From the definition of $C_{q^{\delta}} \times S_3$, theorem(1.10)

$$\equiv (C_{q^{\delta}} \times S_3) = \equiv (C_{q^{\delta}}) \otimes \equiv (S_3).$$

Each element in $C_{q^s} \times S_3$.

 $L_{ng} = J_n L_g$, $\forall J_n \in C_{q^{\delta}}, L_g \in S_3$, $n = 1, 2, 3, \dots, \delta + 1$ and any irreducible character of $C_{q^{\delta}} \times S_3$ is $\partial(i, j) = \partial_i \partial_j$, where ∂_i represent an irreducible character of $C_{q^{\delta}}$ and ∂_j is an irreducible character S_3 ; then,

$$\partial_{(i,j)}(Lng) = \begin{cases} \partial_i(Ln) & \text{if } j = 1 \text{ and } g \in S_3 \\ \partial_i(Ln) & \text{if } j = 2 \text{ and } g \in \{l', (123), (132)\} \\ -\partial_i(Ln) & \text{if } j = 2 \text{ and } g \in \{(12)(3), (13)(2), (32)(1)\} \\ 2\partial_i(Ln) & \text{if } j = 3 \text{ and } g \in \{l'\} \\ -\partial_i(Ln) & \text{if } j = 3 \text{ and } g \in \{(123), (132)\} \\ 0 & \text{if } j = 3 \text{ and } g \in \{(12)(3), (13)(2), (23)(1)\} \end{cases}$$

From proposition(2.8)

 $\vartheta_{(i,j)} = \sum_{\sigma \in Gal(Q^{\partial_{(i,j)}}/)} \sigma(\partial_{(i,j)}) \text{ such that } \vartheta_{(i,j)} \text{ is an irreducible character of } C_{q^s} \times S_3 \text{ .}$

Then,
$$\vartheta_{(i,j)}(h_{ng}) = \sum_{\sigma \in Gal(Q^{\partial_{(i,j)}(h_{ng})}/Q)} \sigma(\partial_{(i,j)}(h_{ng}))$$
.

1- if = 1 and
$$g \in S_3$$
.
 $\vartheta_{(i,j)}(h_{ng}) = \sum_{\sigma \in Gal} (Q_{\partial_i(L_n)}/Q) \sigma(\partial_i(h_n)) = \vartheta_i(h_n) \cdot 1 = \vartheta_i(h_n) \cdot \vartheta'_j(L_g)$ where ϑ_i is an

Vol. 71 No. 4 (2022) http://philstat.org.ph

irreducible character of C_{q^s} .

2- (a)
$$j = 2and \ g \in \{l', (123), (132)\}$$
.
 $\vartheta_{(i,j)}(h_{ng}) = \sum_{\sigma \in Gal(Q^{\partial_i}(h_n)/Q)} \sigma(\partial_i(h_n)) = \vartheta_i(h_n) \cdot 1 = \vartheta_i(h_n) \cdot \vartheta'_j(L_g)$

(b)
$$j = 2$$
 and $g \in \{(12)(3), (13)(2), (23)(1)\}$.
 $\vartheta_{(i,j)}(h_{ng}) = \sum_{\sigma \in Gal \left(Q \partial_i(h_n)/Q \right)} \sigma(-\partial_i(h_n))$
 $= -\sum_{\sigma \in Gal \left(Q \partial_i(h_n)/Q \right)} \sigma(\partial_i(h_n))$
 $= \sum_{\sigma \in Gal \left(Q \partial_i(h_n)/Q \right)} \sigma(\partial_i(h_n)) \cdot -1 = \vartheta_i(h_n) \vartheta'_j(L_g)$

(3) (a)
$$j = 3$$
 and $g \in \{l'\}$.
 $\vartheta_{(i,j)}(h_{ng}) = \sum_{\sigma \in Gal \left(Q \partial_i(h_n)/Q \right)} \sigma(2\partial_i(h_n))$
 $= 2 \sum_{\sigma \in Gal \left(Q \partial_i(h_n)/Q \right)} \sigma(\partial_i(h_n))$
 $= \sum_{\sigma \in Gal \left(Q \partial_i(h_n)/Q \right)} \sigma(\partial_i(h_n)) \cdot 2 = \vartheta_i(h_n) \vartheta'_j(L_g)$

(b)
$$j = 3$$
 and $g \in \{(123), 132\}\}$.
 $\vartheta_{(i,j)}(h_{ng})$

$$= \sum_{\sigma \in Gal \left(\frac{Q\partial_i(h_n)}{Q}\right)} \sigma(-\partial_i(h_n))$$

$$= -\sum_{\sigma \in Gal \left(\frac{Q\partial_i(h_n)}{Q}\right)} \sigma(\partial_i(h_n))$$

$$= \sum_{\sigma \in Gal \left(\frac{Q\partial_i(h_n)}{Q}\right)} \sigma(\partial_i(h_n)) \cdot -1 = \vartheta_i(h_n) \vartheta'_j(L_g)$$

Mathematical Statistician and Engineering Applications ISSN: 2094-0343 2326-9865

(c)
$$j = 3$$
 and $g \in \{(12)(3), (13)(2), (23)(1)\}$
 $\vartheta_{(i,j)}(h_{ng})$

$$= \sum_{\sigma \in Gal \left(Q \partial_i(h_n)/Q \right)} \sigma(0, \partial_i(h_n))$$

$$= 0. \sum_{\sigma \in Gal \left(Q \partial_i(h_n)/Q \right)} \sigma(\partial_i(h_n))$$

$$= \sum_{\sigma \in Gal \left(Q \partial_i(h_n)/Q \right)} \sigma(\partial_i(h_n)) \cdot 0 = 0 = \vartheta_i(h_n) \vartheta'_j(L_g)$$

From (1),(2)and (3) we have:

1

$$\vartheta_{(i,j)} = \vartheta_i \cdot \vartheta'_j .$$

Hence $\equiv^* (C_{q^{\delta}} \times S_3) = \equiv^* (C_{q^{\delta}}) \otimes \equiv^* (S_3)$

Example(3.3):

To find the irreducible character of $C_{5^2} \times S_3$ by use theorem (3.2).

	Γ-classes	[<i>I</i>]	$[x^{5}]$	[<i>x</i>]
	ϑ_1'	20	-5	0
$\equiv^{*} (C_{5^2}) =$	ϑ_2'	4	4	-1
	ϑ'_3	1	1	1

	Γ-classes	$[L_1]$	$[L_2]$	$[L_3]$
And	ϑ_1'	1	1	1
$\equiv^* (S_3) =$	ϑ_2'	1	1	-1
	ϑ'_3	2	-1	0

Then: $\equiv^* (C_{5^2} \times S_3) =$

Г- classes	$[I, L_1]$	[<i>I</i> , <i>L</i> ₂	[<i>I</i> , <i>L</i> ₃	[x ⁵ , L	[x ⁵ , L ₂	$[x^5, L_3]$	$[x, L_1]$	$[x, L_2]$	[x, L ₃
$\vartheta_{(1,1)}$	20	20	20	-5	-5	-5	0	0	0
$\vartheta_{(1,2)}$	20	20	-20	-5	-5	5	0	0	0
$\vartheta_{(1,3)}$	40	-20	0	10	-5	0	0	0	0
$\vartheta_{(2,1)}$	4	4	4	4	4	4	-1	-1	-1
$\vartheta_{(2,2)}$	4	4	-4	4	4	-4	-1	-1	1

Vol. 71 No. 4 (2022) http://philstat.org.ph

Mathematical Statistician and Engineering Applications ISSN: 2094-0343

	2226.006							-	
$\vartheta_{(2,3)}$	8	-4	0	8	-4	0	-2	1	0
$\vartheta_{(3,1)}$	1	1	1	1	1	1	1	1	1
$\vartheta_{(3,2)}$	1	1	-1	1	1	-1	1	1	-1
$\vartheta_{(3,3)}$	2	-1	0	2	-1	0	2	-1	0

Table(3.2)

Proposition(3.4):

If q is a prime number and δ is a positive integer, then:

$$M(C_{q^{\delta}} \times S_{3}) = \begin{bmatrix} \Re & \Re & \Re & \cdots & \Re \\ \Im & \Re & \Re & \cdots & \Re \\ \Im & \Im & \Re & \cdots & \Re \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \Im & \Im & \Im & \Im & \Re \end{bmatrix}$$

and

$$\mathbb{W}(C_{q^{\delta}} \times S_{3}) = \begin{bmatrix} B & -B & \Im & \Im & \Im & \cdots & \Im & \Im \\ \Im & B & -B & \Im & \Im & \cdots & \Im & \Im \\ \Im & \Im & B & -B & \Im & \cdots & \Im & \Im \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \Im & \Im & \Im & \Im & \Im & \cdots & B & -B \\ \Im & \Im & \Im & \Im & \Im & \cdots & \Im & B \end{bmatrix}$$

which is of the size $3(\delta + 1) \times 3(\delta + 1)$, where $\Re = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$, $\Im = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$.

Theorem(3.5):

Let *q* be aprime number and δ is a positive integer then :

$$K(\mathcal{C}_{q^{\delta}} \times S_3) = \bigoplus \sum_{i=1}^{3\delta} (\mathcal{C}_{q^{\delta}} \times S_3) = \bigoplus_{i=1}^{3\delta} K(\mathcal{C}_{q^{\delta}}) \bigoplus_{i=1}^{\delta} K(\mathcal{C}_6).$$

Proof:

To prove the theorem ,by proposition(3.1) we obtain $\equiv^* (C_{q^{\delta}} \times S_3)$ and by proposition (3.4) we obtain $M(C_{q^{\delta}} \times S_3)$ and $W(C_{q^{\delta}} \times S_3)$.

Now we use remark (2.6) and theorem (2.7) we obtain:

$$M(C_{q^{\delta}} \times S_3) = *(C_{q^{\delta}} \times S_3) W(C_{q^{\delta}} \times S_3) =$$

Vol. 71 No. 4 (2022) http://philstat.org.ph

Mathematical Statistician and Engineering Applications ISSN: 2094-0343 2326-9865

$$\{6q^{\delta}, q^{\delta}, -q^{\delta}, 6q^{\delta-1}, q^{\delta-1}, -q^{\delta-1}, \cdots, 6q^{2}, q^{2}, -q^{2}, 6q, q, -q, -q, 6, 1, -1\}$$

$$K\left(C_{q^{\delta}} \times S_{3}\right) = C_{6q^{\delta}} \oplus C_{q^{\delta}} \oplus C_{q^{\delta}} \oplus C_{6q^{\delta-1}} \oplus C_{q^{\delta-1}} \oplus C_{q^{\delta-1}} \oplus \cdots \oplus C_{6q^{2}} \oplus C_{q} \oplus C_{q} \oplus C_{q}$$

$$= \bigoplus \sum_{i=1}^{3\delta} (C_{q^{i}}) \oplus \sum_{i=1}^{\delta} (C_{6})$$

$$= \bigoplus K(C_{q^{\delta}}) \bigoplus_{i=1}^{\delta} K(C_{6})$$

$$= 1$$

$$K(C_{q^{\delta}}) \bigoplus_{i=1}^{\delta} K(C_{6})$$

<u>Theorem(3.6):</u>

Let $n = \prod_{i=1}^{k} q_i^{\eta_i}$ where q_i are distinct primes and η_i are positive integers, where $i = 1, 2, \cdots$, k,then:

$$K(C_n \times S_3) = \bigoplus \sum_{i=1}^{k} (\bigoplus \sum K(C_{q^{\eta_i}} \times S_3) \left[\prod_{\substack{i \neq 1 \\ j=1}}^{k} (\eta_i + 1) \right] \text{time.}$$

Proof:

$$K(C_n \times S_3) = \underbrace{K\left(C_{q_1^{\eta_1}} \times s_3\right) \oplus \cdots \oplus K\left(C_{q_1^{\eta_k}} \times s_3\right)}_{(\eta_2+1)(\eta_3+1)\cdots(\eta_k+1)\text{time}} \oplus \underbrace{K\left(C_{q_2^{\eta_2}} \times s_3\right) \oplus \cdots \oplus K\left(C_{q_2^{\eta_k}} \times s_3\right)}_{(\eta_1+1)(\eta_3+1)\cdots(\eta_k+1)\text{time}}$$

$$\oplus \cdots \oplus \underbrace{K(C_{q_k^{\eta_1}} \times s_3) \oplus \cdots \oplus K(q_k^{\eta_{k-1}} \times s_3)}_{(\eta_1+1)(\eta_2+1)\cdots(\eta_{k-1}+1)\text{time}}$$

By theorem (2.12) we can find .

Theorem (3.7):

Suppose $n = q_1^{\eta_1} \cdot q_2^{\eta_2} \dots \dots q_m^{\eta_m}$, where q_1, q_2, \dots, q_m are distinct primes and η_i are positive integers, $i = 1, 2, \cdots$, m then :

$$K(C_n \times S_3) = \begin{array}{c} 3 & (\eta_2 + 1)(\eta_3 + 1) \cdots (\eta_k + 1) \\ \bigoplus \\ i = 1 & i = 1 \end{array} K(C_6)$$

Vol. 71 No. 4 (2022) http://philstat.org.ph

proof:

using theorem (3.2) and proposition (2.4) we obtain:

$$D(\equiv^{*} (C_{q^{\delta}} \times S_{3})) = D(\equiv^{*} (C_{q^{\delta}})) \otimes D(\equiv^{*} (S_{3})).$$

By proposition(2.11) we obtain:
$$(D \equiv^{*} (C_{n})) \text{, then:}$$
$$D(\equiv^{*} (C_{n} \times S_{3})) = [D(\equiv^{*} (C_{n} \times S_{3}))] \otimes \begin{bmatrix} 6 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 6D(\equiv^{*} (C_{n}) & 0 \\ D(\equiv^{*} (C_{n})) \\ 0 & -D(\equiv^{*} (C_{n})) \end{bmatrix}$$
$$= \{6d_{1}, 6d_{2}, \dots, 6d_{(\eta_{1}+1)(\eta_{2}+1)\dots(\eta_{m}+1)}, d_{1}, d_{2}, \dots, d_{(\eta_{1}+1)(\eta_{2}+1)\dots(\eta_{m}+1)}, -d_{1}, -d_{2}, \dots, -d_{(\eta_{1}+1)(\eta_{2}+1)\dots(\eta_{m}+1)} \}$$

Where d_i is the invariant factor of $\equiv^* (C_n)$; then by using theorem (2.12) we have:

$$\begin{split} & \mathsf{K}(\mathsf{C}_{n}\times\mathsf{S}_{3}) \\ & (\eta_{1}+1)(\eta_{2}+1)(\eta_{3}+1)\cdots(\eta_{m}+1) \\ & = \bigoplus_{i=1}^{m} \mathsf{C}_{6d_{i}} (\eta_{1}+1)(\eta_{2}+1)(\eta_{3}+1)\cdots(\eta_{m}+1) \\ & \bigoplus_{i=1}^{m} \mathsf{C}_{d_{i}} \\ & (\eta_{1}+1)(\eta_{2}+1)(\eta_{3}+1)\cdots(\eta_{m}+1) \\ & \bigoplus_{i=1}^{m} \mathsf{C}_{6d_{i}} (\eta_{1}+1)(\eta_{2}+1)(\eta_{3}+1)\cdots(\eta_{m}+1) \\ & \bigoplus_{i=1}^{m} \mathsf{C}_{6d_{i}} (\eta_{1}+1)(\eta_{2}+1)\cdots(\eta_{m}+1) \\ & \bigoplus_{i=1}^{m} \mathsf{C}_{d_{i}} (\eta_{1}+1)(\eta_{2}+1)(\eta_{3}+1)\cdots(\eta_{m}+1) \\ & \oplus_{i=1}^{m} \mathsf{C}_{d_{i}} (\eta_{1}+1)(\eta_{2}+1)(\eta_{2}+1)(\eta_{3}+1)\cdots(\eta_{m}+1) \\ & \oplus_{i=1}^{m} \mathsf{C}_{d_{i}} (\eta_{1}+1)(\eta_{2}+1)($$

By theorems (3.5)and (3.6),we obtain:

Vol. 71 No. 4 (2022) http://philstat.org.ph

Mathematical Statistician and Engineering Applications ISSN: 2094-0343 2326-9865

$$K(C_n \times S_3) = i \bigoplus_{i=1}^{3} K(C_n) \qquad \begin{array}{c} (\eta_1 + 1)(\eta_2 + 1)(\eta_3 + 1) \cdots (\eta_m + 1) \\ \bigoplus_{i=1}^{m} C_6 \end{array}$$

Example (3.8):

To find the cyclic decomposition $(C_{25} \times S_3)$, $K(C_{1125} \times S_3)$ and $K(C_{1157625} \times S_3)$ By Theorem (3.7):

$$K(\mathcal{C}_{25} \times S_3) = K(\mathcal{C}_{5^2} \times S_3) = \underset{i=1}{\overset{3}{\bigoplus}} \underset{i=1}{\overset{K(\mathcal{C}_{5^2})}{\underset{i=1}{\bigoplus}} \underset{i=1}{\overset{G}{\bigoplus}} K(\mathcal{C}_{5^2}) \underset{i=1}{\overset{G}{\bigoplus}} \mathcal{C}_6$$

$$K(C_{1125} \times S_3) = K(C_{3^2,5^5} \times S_3) = \bigoplus_{i=1}^{3} K(C_{3^2,5^5}) \bigoplus_{i=1}^{(2+1)(5+1)} C_6$$

$$= \bigoplus_{i=1}^{3} K(C_{3^2.5^5}) \bigoplus_{i=1}^{18} C_6.$$

$$K(C_{1157625} \times S_3) = K(C_{3^3.5^3.7^3} \times S_3)$$

Conclusion:

According to this paper we have found a new method companied with a new results for the cyclic decomposition of the factor group $K(C_n \times S_3)$, for that we can extend this paper in future work .

References:

- [1] AL.Harere.M.N.and AL-Heety.F.A " The primary decomposition of the factor group $K(Z_p^n)$ ", Eng & Tech. Journal, Vol 29, No.9, 2011.
- [2] A. M. Basheer, "Representation Theory of Finite Group", AIMS, south Africa, 2006.
- [3] A. S. Abid, "Artin Characters Table of Dihedral Group for Odd Number", M. Sc. thesis University of Kufa, 2006.
- [4] C. Curits and I. Reiner, "Methods of Representation Theory with Application to Finite Groups and order", John Wiley & Sons, New York ,1981.
- [5] D. Serra " Matrices : Theory and Applications " Gradute Text in Mathematics 216, Springer – Verlag New York, Inc, 2002.
- [6] J. J. Rotman, "Introduction to The Theory of Groups ", prentice Hall; .
- [7] J.P.Serre, "Liner Representation of Finite Groups", Springer-Verlage, 1977.
- [8] K.Knwabusz, "Some Definitions of Artin's Exponent of Finite Groups", USA, National foundation Math, GR, 1996.
- [9] K.Sekigvchi, "Extensions and The Irreducibilities of The Induced Charcters of Cyclic p- Group ",Hiroshima math Journal, p 165-178,2002.
- [10] M.N.Yaqoob and A.A.A.Omran"some combinatorial Results on the factor Group K(G), Journal of kufa for Mathematics and computer ,Vol.3,No.2,pp 11-17,Des, 2016.
- [11] M.S.Kirdar,"The Factor Group of the Z-valued Class Function Modulo The Group of the Generalized Characters",Ph.D. thesis, University of Birmingham, 1982.

- [12] N. R. Mahamood " The Cyclic Decomposition of the Factor Group $cf(Q_{2m},Z)/\overline{R}$ (Q_{2m})", M.Sc. thesis, University of Technology, 1995.
- [13] N.S.Jasim"The factor group $cf(G,Z)/\overline{R}(G)$ for the special linear group SL(2,P)".IN 2005.