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Abstract 

The most common problems with nonlinear programming that relate to 

system dependability optimization include integer variables. If each 

technology comprises ′k′ out of ′n factors, the configuration can be 

applied to ′k′ out of ′n systems. To precisely solve a dependability 

optimization problem using a heuristic approach, only specific structures 

of the objective function and limits can be used. Its usefulness decreases 

with the number of restrictions, making it ineffective for maximizing 

dependability in a large system. In this article the authors review the 

literature on system reliability optimization with redundancy and 

integrated reliability models with redundancy, and suggest further 

improvements. 
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1. Introduction: 

The complex’s reliability can be improved by either placing superfluous units, applying the 

element of greater reliability or by adopting the two methods at a time and both of them use 

extra resources. Optimizing complex reliability, and conditions to resource availability viz. 

size-component, cost-component, load-component are examined.  In general, reliability is 

tested as an element of cost; But, when tested with real-world problems, the invisible effect 

of other restraints such as load-component, size-component, etc. has a special effect on 

http://philstat.org.ph/
mailto:sakiri@gitam.edu
mailto:psubbar@gitam.edu


Vol. 71 No. 4 (2022) 
http://philstat.org.ph 

Mathematical Statistician and Engineering Applications 

  ISSN: 2094-0343 

2326-9865 

5603 

improving structural reliability [1]. The specific functionality of the over-reliability model 

with several limitations to optimize the recommended setup was examined to maximize the 

recommended setup.  

To establish and enhance the integrated reliability models [4,5] for redundant systems with 

multiple constraints, the heuristic approach [11] for the proposed mathematical functions 

under consideration is utilized. To design optimization, the present paper considers the case 

problem for the mathematical functions (refer to the equations like 2a, 2b, and 2c) using the 

component reliability values (rtj) and the number of components in each stage (Xtj) as inputs 

for a heuristic approach. This method is useful for optimizing the design [2] with integer 

values for (Xtj), which is highly applicable to the implementation of real-world problems.  

In literature, Integrated reliability models [15, 17] are enhanced by applying value restraints 

where there is a fixed association between cost-component and its reliability. A unique 

pattern of planned work is a deliberation of the load-component and size-component as 

supplementary restraints along with value to form and improve the superfluous reliability 

system for ′k′ out of ′n′ complex composition [9]. 

2. Methodology: 

2.1. Assumptions and Notations: 

• Each stage's elements are believed to be identical, i.e., all elements have the same level 

of reliability. 

• All elements are supposed to be statistically independent, meaning that their failure has 

no bearing on the performance of other elements in the complex. 

RCR = Complex Reliability 

RRM = Reliability of Moment, 0 <RRM< 1 

rtj = Reliability of each element in phage tj; 0 <rtj<1 

Xtj =  Number of components in phase tj 

CCtj =  Cost-Component in phase tj 

LCtj =  Load-Component in phase tj 

SCtj =  Size-Component in phase tj 

Ct0 =  Greatest allowable complex for Cost-Component 

Lt0 =  Greatest allowable complex for Load-Component  

St0 =  Greatest allowable complex for Size-Component  

Ctj; ∅tj; Ltj; μtj; Stj; ωtj are Constants. 
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2.2 Mathematical Analysis: 

The efficiency of the system to the provided cost-component function 

RCR =  ∑ B (m, i)pi (1 −  p)m−in
i=1       (1) 

The following relationship between cost-component and efficiency is used to calculate the 

cost coefficient of each unit in phase tj. 

CCtj = Ctj . e

[1−∅tj]( |rtj−rtj,min|)

rtj,max − rtj           (2a) 

Therefore  LCtj =  Ltj . e

[1−μtj](|rtj−rtj,min|)

rtj,max − rtj          (2b) 

SCtj =  Stj . e

[1−ωtj](|rtj−rtj,min|)

rtj,max − rtj           (2c) 

Since cost-components are linear in tj,  

  ∑ CCtj.  tjn
j = 1  ≤  CCt0       (3a) 

Similarly load-components and size-components are also linear in tj, 

∑ LCtj.  tjn
j = 1  ≤  LCt0       (3b) 

∑ SCtj.  tjn
j = 1  ≤  SCt0       (3c) 

Substituting (2a), (2b) & (2c) in (3a), (3b) & (3c) respectively. 

∑ Ctj . e

[1−∅tj]( |rtj−rtj,min|)

rtj,max − rtj  . tj −  CCt0  ≤ 0 n
j=1     (4a) 

∑ Ltj . e

[1−μtj] |rtj−rtj,min|

rtj,max − rtj . tj −  LCt0  ≤ 0 n
j=1      (4b) 

∑ Stj . e

[1−ωtj]( |rtj−rtj,min|)

rtj,max − rtj . tj −  SCt0  ≤ 0 n
j=1     (4c)  

The transformed equation through the relation tj =  
ln RRM

ln rtj
  (5) 

Where  RCR =  ∑ B (tj, k)(rtj)
kn

k=2 (1 − rtj)
tj−k    (6) 

Subject to the constraints 

∑ Ctj . e

[1−∅tj]( |rtj−rtj,min|)

rtj,max − rtj  .
ln RRM

ln rtj
−  CCt0  ≤ 0 n

j=1     (7a) 
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∑ Ltj . e

[1−μtj]( |rtj−rtj,min|)

rtj,max − rtj  .
ln RRM

ln rtj
− LCt0  ≤ 0 n

j=1     (7b) 

∑ Stj. e

[1−ωtj]( |rtj−rtj,min|)

rtj,max − rtj  .
ln RRM

ln rtj
−  SCt0  ≤ 0 n

j=1     (7c) 

Positivity restrictions tj ≥ 0, A Lagrangean function is defined as  

LF =  RCR +  β1 [∑ Ctj . e

[1−∅tj]( |rtj−rtj,min|)

rtj,max − rtj  .
ln RRM

ln rtj
−  CCt0

n
j=1 ] +

β2 [∑ Ltj . e

[1−μtj]( |rtj−rtj,min|)

rtj,max − rtj  .
ln RRM

ln rtj
−  LCt0

n
j=1 ]  + β3 [∑ Stj . e

[1−ωtj]( |rtj−rtj,min|)

rtj,max − rtj  .
ln RRM

ln rtj
−n

j=1

 SCt0]     (8) 

The Lagrangean function can be used to find the ideal point and separating it by RRM, rtj, δ1, 

δ2  

and δ3. 

∂LF

∂RSR
= 1 +  β1 [∑ Ctj . e

[1−∅tj]( |rtj−rtj,min|)

rtj,max − rtj  .
1

ln rtj

1

RRM

n

j=1

]

+ β2 [∑ Ltj . e

[1−μtj]( |rtj−rtj,min|)

rtj,max − rtj  .
1

ln rtj

1

RRM

n

j=1

]  

+ β3 [∑ Stj . e

[1−ωtj]( |rtj−rtj,min|)

rtj,max − rtj  .
1

ln rtj

1

RRM

n

j=1

] 

(09) 

∂LF

∂rtj
=  β1 [∑ Ctj .  e

[1−∅tj]( |rtj−rtj,min|)

rtj,max − rtj  .
ln RRM

ln rtj

n

j=1

] [
(rtj,max + rtj,min )(1−∅i)

(rtj,max − rtj)2
−

1

rtj ln rtj
] + 

 β2 [∑ Ltj . e

[1−μtj]( |rtj−rtj,min|)

rtj,max − rtj  .
ln RRM

ln rtj

n

j=1

] [
(rtj,max + rtj,min )(1−μi)

(rtj,   max − rtj)2
−

1

rtj ln rtj
] + 

β3 [∑ Stj . e

[1−ωtj]( |rtj−rtj,min|)

rtj,max − rtj  .
ln RRM

ln rtj

n
j=1 ] [

(rtj,max+rtj,min )(1−ωi)

(rtj,max−rtj)2
−

1

rtj ln rtj
]  (10)  
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∂LF

∂ β1
=  ∑ Ctj . e

[1−∅tj]( |rtj−rtj,min|)

rtj,max − rtj  .
ln RRM

ln rtj

n
j=1 −  Ct0     (11) 

∂LF

∂ β2
=  ∑ Ltj . e

[1−μtj]( |rtj−rtj,min|)

rtj,max − rtj  .
ln RRM

ln rtj
−  Lt0

n
j=1     (12) 

∂LF

∂ β3
=  ∑ Stj . e

[1−ωtj]( |rtj−rtj,min|)

rtj,max − rtj  .
ln RRM

ln rtj
−  St0

n
j=1     (13) 

Where β1, β2 and β3 are Lagrangean multipliers. 

The number of elements in each phase (Xtj), the best element reliability (rtj), the reliability of 

moment (RRM) and the complex reliability (RCR)  [7] are derived by using the Heuristic 

approach [12, 13]. This method provides a real (valued) solution concerning cost, weight and 

volume. 

2.3 Case Problem: 

To derive the multiple parameters of a given mechanical system [10] using optimization 

techniques, where all the assumptions like cost-component, load-component and size-

component are directly proportional to system reliability has been considered in this research 

work. The same logic may not be true in the case of electronic systems. Hence, the optimal 

element accuracy (rtj) [3], phase reliability (RRM), Number of elements in each phase (Xtj), 

and complex accuracy (RCR) [6] can be evaluated in any given mechanical system. In this 

work, an attempt has been made to evaluate the Complex accuracy of a special purpose 

machine that is used for single phase turbo-charged generators assembly. 

The machine is used for the assembly of 3 or 4 components on the base of the turbo-charged   

generators. The machine's approximate worth was $15000, which is considered a complex 

cost, the load of the machine is 1000 pounds which is the load-component of the complex, 

and the space occupied by the machine is 500 cm3, which is the volume or size-component of 

the complex. To attract the authors from different cross sections, the authors attempted to use 

hypothetical numbers, which can be changed according to the environment.   

2.4 Constants: 

The data required for the constants for the case problem are provided in Table 1. 

Table 1: Worth, Load and Size Pre-fixed Constant Values 

Phase 
Worth 

Constants 

Load 

Constants 

Size 

Constants 

 Ctj ∅tj Ltj μtj Stj ωtj 

1 1000 0.72 60 0.69 30 0.85 

2 1200 0.84 70 0.87 40 0.88 

3 1400 0.94 80 0.94 50 0.92 
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The efficiency of each factor, phase, and number of factors in each stage, as well as the 

structural efficiency, are shown in the tables below. 

2.4.1 The Details of Cost-Component Constraint by using Lagrangean Multiplier Method 

without Rounding-Off 

The value-related efficiency design is described in the Table 2. 

Table 2: Cost Constraint Analysis by using Lagrangean Multiplier Method 

Phase Ctj ∅tj rtj Log rtj RRM Log RRM Xtj CCtj

=  Ctj . e

[1−∅tj](rtj−rtj,min)

rtj,max − rtj  

CCtj . Xtj 

01 1000 0.85 0.8741 -0.0584 0.6777 -0.1690 2.89 1343 3883 

02 1200 0.88 0.8445 -0.0734 0.6487 -0.1880 2.56 1207 3091 

03 1400 0.91 0.8456 -0.0728 0.5461 -0.2627 3.61 1403 5061 

Final Worth-Component 12035 

 

 

2.4.2 The Details of Load-Component Constraint by using Lagrangean Multiplier Method 

without Rounding-Off 

The equivalent results for the load are shown in the Table 3. 

Table 3: Load Constraint Analysis by using Lagrangean Multiplier Method 

Phase Ltj μtj rtj Log rtj RRM Log RRM Xtj LCtj

=  Ltj . e

[1−μtj](rtj−rtj,min)

rtj,max − rtj  

LCtj . Xtj 

01 100 0.92 0.8741 -0.0584 0.6777 -0.1690 2.89 83 240 

02 80 0.88 0.8445 -0.0734 0.6487 -0.1880 2.56 70 179 

03 60 0.91 0.8456 -0.0728 0.5461 -0.2627 3.61 82 296 

Final Load-Component 715 

 

 

2.4.3 The Details of Size-Component Constraint by using Lagrangean Multiplier Method 

without Rounding-Off 

The equivalent results for size are described in the Table 4. 

Table 4: Size Constraint Analysis by using Lagrangean Multiplier Method 

Phase Stj ωtj rtj Log rtj RRM Log RRM Xtj SCtj

=  Stj. e

[1−ωtj](rtj−rtj,min)

rtj,max − rtj  

SCtj . Xtj 
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01 30 0.94 0.8741 -0.0584 0.6777 -0.1690 2.89 35 101 

02 40 0.89 0.8445 -0.0734 0.6487 -0.1880 2.56 40 102 

03 50 0.86 0.8456 -0.0728 0.5461 -0.2627 3.61 52 188 

Final Size-Component 391 

 

3. Efficiency Design by using Lagrangean Multiplier Method: 

The efficiency design [14] summarizes the ejvalues as integers (rounding the value of  tj to 

the nearest integer), and the acceptable outcomes for the worth, load, and size are listed in the 

tables. Calculate variance due to cost-component, load-component and size-component, 

construction capacity (before and after rounding off  tj to the nearest integer) to obtain 

information. 

3.1 Efficiency Design by using Lagrangean Multiplier Method Concerning Cost, Load and 

Size with Rounding-Off 

Table 5: Cost, Load and Size Constraint Analysis by using Lagrangean Multiplier Method 

with Rounding Off 

Phase rtj RRM Xtj CCtj Ctj . Xtj LCtj LCtj . Xtj SCtj SCtj . Xtj 

01 0.8741 0.6777 3 1343 4029 83 249 35 105 

02 0.8445 0.6487 3 1207 3621 70 210 45 120 

03 0.8456 0.5461 4 1403 5612 82 328 52 208 

Total Cost, Load and Size 13262 787 433 

Complex Reliability (RCR) 0.9562 

 

Deviation in Cost-Component = 
Total Cost with rounding off−Total Cost  without rounding off

Total Cost without rounding off
 = 

10.19%           

Deviation in Load-Component = 
Total Load with rounding off−Total Load without rounding off

Total Load without rounding off
 = 

10.07%             

Deviation in Size-Component = 
 Total Size with rounding off−Total Size without rounding off

Total Size without rounding off
  = 

10.69%             

4. Heuristic Approach: 

In the majority of cases, a heuristic technique [9] provides the optimal solution with minimal 

additional computational effort, but the result may not be optimal. In 1971, Sharma J. and 

Venkateswaran K.V. [18] devised a simple computational method, which need not be linear, 

to distribute redundancy across subsystems in order to maximize the reliability of a 

multistage system subject to numerous constraints. Aggarwal K.K. et al. published a new 

algorithm for the heuristic solution of redundancy optimization problems in 1975. 1976 also 
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saw the creation of a redundancy allocation mechanism for generic systems by Aggarwal K.K 

[19]. 

The Lagrangean method [13] may be difficult to apply due to several drawbacks, such as the 

requirement to specify the number of components required at each step (Xtj)) in real numbers. 

The widely used method of rounding down the value causes changes in the cost-component, 

weight-component, and volume-component, compromising system reliability and having a 

significant impact on the model's efficiency design. This issue could be considered, in which 

case the author suggests a different empirical implementation that uses the Heuristic approach 

[16] instead of the Lagrangean technique and leverages the latter to generate an integer 

solution by using the latter's solutions as parameters. 

4.1 New Heuristic Algorithm: 

Step1:  Initialize the necessary input parameters, then enter their values. 

Step2:  Enter the most components possible (tj). 

Step3:  Set the first stage's component count to one and compute the first stage's system cost 

(CCtj), load (LCtj), and size (SCtj). 

Step4:  Set the second stage's component count at one and compute the second stage's system 

cost (CCtj), load (LCtj) and size (SCtj). 

Step5:  Set the third stage's component count to 1 and determine the third stage's system cost 

(CCtj), load (LCtj) and size (SCtj).  

(i)  Totalize all the values. CCtj, LCtj,  , SCtj for all three phases. 

(ii)  Determine the Reliability of the System (RCR).  

(iii)  Examine the restrictions.  

Step6:   

i. If the constraints are satisfied, output the corresponding values for the number of 

components and system reliability (RCR). 

ii. Proceed to STEP 5 and increase the number of stage three components by one if the 

constraints are not met 

iii. Continue in this manner until the total number of components in all three phases is 

equal to or less than the maximum number of components (tj). 

5. Results:  

5.1 The Details of Cost-Component Constraint by using Heuristic Approach: 

The value-related efficiency design is described in the Table 6. 
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Table 6: The Details of Worth-Component constraint by using Heuristic Approach 

Phase Ctj φtj rtj Log rtj RRM Log RRM Xtj CCtj

=  Ctj . e

[1−∅tj](rtj−rtj,min)

rtj,max − rtj  

CCtj . Xtj 

01 1000 0.85 0.9256 -0.0008 0.7928 -0.0024 3 1175 3525 

02 1200 0.88 0.9347 -0.0116 0.8164 -0.0348 3 1212 3636 

03 1400 0.91 0.9199 -0.0048 0.7163 -0.0190 4 1428 5712 

Final Worth-Component 12873 

 

5.2 The Details of Load-Component Constraint by using Heuristic Approach: 

The equivalent results for the load are shown in the Table 7. 

Table 7: The Details of Load- Component constraint by using Heuristic Approach 

Phase Ltj μtj rtj Log rtj RRM Log RRM Xtj LCtj

=  Ltj . e

[1−μtj](rtj−rtj,min)

rtj,max − rtj  

LCtj . Xtj 

01 100 0.92 0.9256 -0.0008 0.7928 -0.0024 3 72 216 

02 80 0.88 0.9347 -0.0116 0.8164 -0.0348 3 87 261 

03 60 0.91 0.9199 -0.0048 0.7163 -0.0190 4 101.5 406 

Final Load-Component 883 

 

5.3 The Details of Size-Component Constrain by using Heuristic Approach: 

The equivalent results for size are described in the Table 8. 

Table 8: The Details of Size- Component constraint by using Heuristic Approach 

Phase Stj ωtj rtj Log rtj RRM Log RRM Xtj SCtj

=  Stj .  e

[1−ωtj](rtj−rtj,min)

rtj,max − rtj  

SCtj . Xtj 

01 100 0.94 0.9256 -0.0008 0.7928 -0.0024 3 33 98 

02 90 0.89 0.9347 -0.0116 0.8164 -0.0348 3 49 148 

03 80 0.86 0.9199 -0.0048 0.7163 -0.0190 4 52 209 

Final Size-Component  455 

Complex Reliability (RCR) 0.9864 

 

5.4 Comparison of Optimization of Integrated Redundant Reliability ′k′ out of ′n′ systems – 

LMM with rounding-off and Heuristic Approach for Cost-Component 
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Table 9: Results Correlated LMM with rounding off approach and Heuristic approach for 

Worth 

 With Rounding Off  Heuristic Approach 

Phase Xtj rtj RRM CCtj CCtj . Xtj rtj RRM CCtj CCtj . Xtj 

01 3 0.8741 0.6777 1343 4029 0.9256 0.7928 1175 3525 

02 3 0.8445 0.6487 1207 3621 0.9347 0.8164 1212 3636 

03 4 0.8456 0.5461 1403 5612 0.9199 0.7163 1428 5712 

Total Worth 13262 12873 

Complex 

Efficiency 

With Rounding Off 

(RCR) 

0.9987 Heuristic Approach 

(RCR) 

0.9999 

 

5.5 Comparison of Optimization of Integrated Redundant Reliability ′k′ out of ′n′ systems – 

LMM with rounding-off and Heuristic approach for Load-Component 

Table 10: Results Correlated with LMM rounding off approach and Heuristic approach for 

Load 

 With Rounding Off  Heuristic Approach 

Phase Xtj rtj RRM LCtj LCtj . Xtj rtj RRM LCtj LCtj . Xtj 

01 3 0.8741 0.6777 83 249 0.9256 0.7928 72 216 

02 3 0.8445 0.6487 70 210 0.9347 0.8164 87 261 

03 4 0.8456 0.5461 82 328 0.9199 0.7163 101.5 406 

Total Load 787 883 

Complex 

Reliability 

With Rounding Off 

(RCR) 

0.9987 Heuristic Approach 

(RCR) 

0.9999 

 

5.6 Comparison of Optimization of Integrated Redundant Reliability ′k′ out of ′n′ systems – 

LMM with rounding-off and Heuristic approach for Size-Component 

Table 11: Results Correlated LMM with rounding off approach and Heuristic approach for 

Size 

 With Rounding Off  Heuristic Approach 

Phase Xtj rtj RRM SCtj SCtj . Xtj rtj RRM SCtj SCtj . Xtj 

01 3 0.8741 0.6777 35 105 0.9256 0.7928 33 98 

02 3 0.8445 0.6487 45 120 0.9347 0.8164 49 148 

03 4 0.8456 0.5461 52 208 0.9199 0.7163 52 209 

Total Size 433 455 

Complex 

Reliability 

With Rounding Off 

(RCR) 

0.9987 Heuristic Approach 

(RCR)  

0.9999 
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6. Discussion:  

An integrated reliability model for a ′𝐤′ out of ′𝐧′ configuration system with numerous 

efficiency requirements is proposed in this work. The Lagrangean multiplier approach is used 

to calculate the number of components (𝐗𝐭𝐣), efficiencies (𝐫𝐭𝐣), phase efficiency (𝐑𝐑𝐌), and 

system efficiency (𝐑𝐂𝐑) once it is realized that the data are in reals. In order to achieve 

practical applicability, the Lagrangean method inputs are used in conjunction with the 

Heuristic approach to provide an integer solution. 

When a ′𝐤′ out of ′𝐧′ configuration IRM with reliability engineer redundancy is required in 

real-world circumstances, the IRM produced in this way is highly valuable. The suggested 

approach is extremely useful for the dependability design engineer to construct high-quality 

and efficient materials in situations where the system value is low. 
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