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Abstract 

In this paper a class of singularly perturbed differential-

difference equation having boundary layer at one end is 

analysed to get its solution by numerical integration method. 

Taylor’s series expansion is applied on negative and positive 

shifts to get singularly perturbed differential equation. An 

asymptotically equivalent first order differential equation is 

obtained from SPDE using Taylor’s transformation. To 

integrate resulting equation, composite Simpson’s 1/3 rule is 

used to get three term recurrence relation. Thomas algorithm 

is used to get the solution of tridiagonal system of equations. 

Numerical solution obtained from this method approximates 

the available/exact solution very well. 

Keywords- Singular perturbation, boundary layer, numerical 

integration. 

 

1.INTRODUCTION 

Due to the availability of supercomputing and cloud computing, now Mathematicians are 

seriously concentrating on developing the robust numerical methods for solving most 

challenging problems like Boundary Layer Problems. In general, a region in which the 

solution of the problem changes rapidly is called Boundary Layer. In fact the solution 

changes rapidly to satisfy the given conditions in the problem. Any ordinary differential 

equation in which the highest order derivative is multiplied by a small positive parameter 

which is popularly known as singularly perturbation problem always exhibits the boundary 

layer phenomenon. Also, any differential equation which contains at least one delay/advance 

parameters which is popularly called as delay/differential-difference equation also exhibits 

the boundary layer phenomenon. Solving these problems is very difficult due to the boundary 

layer phenomenon. These problems arise in the modelling of various practical phenomena in 

bioscience, engineering, control theory, such as in variational problems in control theory, in 

describing the human pupil-light reflex, in a variety of models for physiological processes or 

diseases and first exit time problems in the modelling of the determination of expected time 

for the generation of action potential in nerve cells by random synaptic inputs in dendrites. To 

solve these problems, perturbation methods such as Matched Asymptotic Expansions, WKB 

method are used extensively. These asymptotic expansions of solutions require skill, insight, 
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and experimentation. Further, the Matching Principle: matching of the coefficients of the 

inner and outer regions solution expansions is also a demanding process. Hence, researchers 

started developing numerical methods. If we use the existing numerical methods with the step 

size more than the perturbation parameters, for solving these problems we get oscillatory 

solutions due to the presence of the boundary layer. Existing numerical methods will produce 

good results only when we take step size less than the perturbation parameters. This is very 

costly and time-consuming process.  Hence, the researchers are concentrating on developing 

robust numerical methods, which can work with a reasonable step size. In fact, these robust 

numerical methods should be independent of the parameters. The efficiency of such 

numerical method is determined by its accuracy, simplicity in computing the solution and its 

sensitivity to the parameters of the given problem. For a detailed theoretical and numerical 

treatment, one can see the books and papers: [1-31]. With this motivation, we, present here, 

in this paper, a class of singularly perturbed differential-difference equation having boundary 

layer at one end is analysed to get its solution by numerical integration method. Taylor’s 

series expansion is applied on negative and positive shifts to get singularly perturbed 

differential equation. An asymptotically equivalent first order differential equation is 

obtained from SPDE using Taylor’s transformation. To integrate resulting equation, 

composite Simpson’s 1/3 rule is used to get three term recurrence relation. Thomas algorithm 

is used to get the solution of tri-diagonal system of equations. Several model examples are 

solved to demonstrate the applicability of these methods. The solutions are tabulated and 

compared with the available/exact solutions. It is observed that our methods approximate the 

exact solution very well.  

 

2.0 DESCRIPTION OF THE FITTED METHOD 

2.1 TYPE-𝐈: DELAY DIFFERENTIAL EQUATION HAVING BOUNDARY LAYER 

Consider the delay differential equation of the form 

𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦′(𝑥 − 𝛿) + 𝑏(𝑥)𝑦(𝑥) = 𝑓(𝑥),     0 ≤ 𝑥 ≤ 1,                                   (1) 

with boundary conditions 

𝑦(𝑥) = 𝜑(𝑥) ,     − 𝛿 ≤ 𝑥 ≤ 0,                                                (2) 

and                                        𝑦(1) = 𝛽                     (3)           

where 0 < 𝜀 ≪ 1 is the perturbation parameter, 0 < 𝛿 = 𝑂(𝜀) is the small delay parameter, 

𝑎(𝑥), 𝑏(𝑥)and 𝑓(𝑥)are sufficiently differentiable functions in (0, 1).𝜑(𝑥) is also bounded 

continuous function on [0, 1] and 𝛽 is a finite constant.  

From the Taylor’s series expansion  𝑦′(𝑥 − 𝛿) ≈ 𝑦′(𝑥) − 𝛿𝑦′′(𝑥)              (4)         

Substitute equation (4) into equation (1), we get 

           𝜀′𝑦′′(𝑥) + 𝐴(𝑥)𝑦′(𝑥) + 𝐵(𝑥)𝑦(𝑥) = 𝑓(𝑥),0 ≤ 𝑥 ≤ 1                                (5) 

with boundary conditions 

  𝑦(0) = 𝛼                                                                                             (6) 

  𝑦(1) = 𝛽                                                                                             (7) 

where 𝜀′ = 𝜀 − 𝑎(𝑥)𝛿, 𝐴(𝑥) = 𝑎(𝑥), 𝐵(𝑥) = 𝑏(𝑥) and 𝛼 is a finite constant. Further it is 

established that, if𝑎(𝑥) ≥ 𝑀 > 0 in [0, 1], then equation (1) has unique solution and a 

boundary layer at 𝑥 = 0 and if𝑎(𝑥) ≤ 𝑀 < 0 in [0, 1], then equation (1) has unique solution 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 
5773 

Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

 

and a boundary layer at 𝑥 = 1, where 𝑀 is some positive number. Here we assume that 

𝑎(𝑥) = 𝑎 and 𝑏(𝑥) = 𝑏 are constants for computational point of view. 

 

2.2 TYPE-II: DIFFERENTIAL-DIFFERENCE EQUATION HAVING BOUNDARY LAYER 

Consider the differential-difference equation of the form: 

𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦′(𝑥) + 𝑏(𝑥)𝑦(𝑥 − 𝛿) + 𝑐(𝑥)𝑦(𝑥) + 𝑑(𝑥)𝑦(𝑥 + 𝜂) = 𝑓(𝑥),                     (8) 

0 ≤ 𝑥 ≤ 1 with boundary conditions 

𝑦(𝑥) = 𝜑(𝑥),  on −𝛿 ≤ 𝑥 ≤ 0,                                                                                            (9) 

 

𝑦(𝑥) = 𝛾(𝑥),  on 1 ≤ 𝑥 ≤ 1 + 𝜂,                                                                                       (10) 

with the constant coefficients (i.e.,𝑎(𝑥) = 𝑎, 𝑏(𝑥) = 𝑏, 𝑐(𝑥) = 𝑐 and 𝑑(𝑥) = 𝑑 are constants) 

and 𝑓(𝑥), 𝜑(𝑥) and 𝛾(𝑥) are smooth functions. 0 < 𝜀 ≪ 1 is the perturbation parameter, 0 <

𝛿 = 𝑂(𝜀) and 0 < 𝜂 = 𝑂(𝜀) are the delay and advanced parameters respectively. 

From Taylor’s series expansion 

                                   𝑦(𝑥 − 𝛿) ≈ 𝑦(𝑥) − 𝛿𝑦′(𝑥) +
𝛿2

2
𝑦′′(𝑥)                                                   (11) 

                                     𝑦(𝑥 + 𝜂) ≈ 𝑦(𝑥) + 𝜂𝑦′(𝑥) +
𝜂2

2
𝑦′′(𝑥)                                                 (12) 

Substitute equations (11) and (12) into equation (8), we get  

𝜀′𝑦′′(𝑥) + 𝐴(𝑥)𝑦′(𝑥) + 𝐵(𝑥)𝑦(𝑥) = 𝑓(𝑥),0 ≤ 𝑥 ≤ 1                                                     (13) 

 

with boundary conditions 

     𝑦(0) = 𝛼                                                                  (14) 

     𝑦(1) = 𝛽                                                                  (15) 

where 

                                       𝜀′ = 𝜀 + 𝑏(𝑥)
𝛿2

2
+ 𝑑(𝑥)

𝜂2

2
                          (16)                                           

   𝐴(𝑥) =  𝑎(𝑥) − 𝛿𝑏(𝑥) + 𝜂𝑑(𝑥)                                                   (17) 

   𝐵(𝑥) =  𝑏(𝑥) + 𝑐(𝑥) + 𝑑(𝑥)               (18) 

 

Since 0 < 𝛿 ≪ 1 and 0 < 𝜂 ≪ 1, the transition fromequation (1) to equation (5) orequation 

(8) to equation (13) is admitted. For more details on the validity of this transition, one can 

refer El’sgolt’s and Norkin [11]. The behaviour of the boundary layer is given by the sign of 

𝐴(𝑥) and 𝐵(𝑥). Further it is established that, if 𝐵(𝑥) ≤ 0, 𝐴(𝑥) ≥ 𝑀 > 0 in [0, 1] then 

equation (8) has unique solution and a boundary layer at 𝑥 = 0and if 𝐵(𝑥) ≤ 0, 𝐴(𝑥) ≤

𝑀 < 0 in [0, 1] then equation (8) has unique solution and a boundary layer at 𝑥 = 1, where 

𝑀 is a positive number. 

 

2.3. CASE (I): FOR LEFT-END BOUNDARY LAYER 

Consider equation (5) or (13) with their boundary conditions 

 

𝜀′𝑦′′(𝑥) + 𝐴(𝑥)𝑦′(𝑥) + 𝐵(𝑥)𝑦(𝑥) = 𝑓(𝑥),0 ≤ 𝑥 ≤ 1                                              (19) 

    𝑦(0) = 𝛼                                                                          (20)   
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    𝑦(1) = 𝛽                                                                          (21) 

 

From Taylor’s series expansion about the deviating argument √𝜀′ in the neighbourhood of 

the point𝑥, we have 

                                 𝑦(𝑥 − √𝜀′) ≈ 𝑦(𝑥) − √𝜀′𝑦′(𝑥) +
𝜀′

2
𝑦′′(𝑥)                                                (22)  

From equation (19) and (22), we have 

                                         𝑦′(𝑥) = 𝑝(𝑥)𝑦(𝑥 − √𝜀′) + 𝑞(𝑥)𝑦(𝑥) + 𝑟(𝑥)                                    (23) 

where  

                                                           𝑝(𝑥) =
−2

2√𝜀′ + 𝐴(𝑥)
                                                               (24) 

                                                           𝑞(𝑥) =
2 − 𝐵(𝑥)

2√𝜀′ + 𝐴(𝑥)
                                                               (25) 

                                                           𝑟(𝑥) =
𝑓(𝑥)

2√𝜀′ + 𝐴(𝑥)
                                                               (26) 

The transition from equation (19) to (23) is valid, because of the condition that √𝜀′ is small. 

For more details on the validity of this transition, one can refer El’sgolt’s and Norkin [11].  

Now, we divide the interval [0, 1] into 𝑛 equal parts with constant mesh length ℎ = 1 𝑛⁄ .  

Let 0 = 𝑥0,  𝑥1, … , 𝑥𝑛 = 1 be the mesh points, then we have 𝑥𝑖 = 𝑖ℎ, 𝑖 = 0, 1, 2, … , 𝑛. From 

our earlier assumptions, 𝐴(𝑥) and 𝐵(𝑥) are constants. Therefore, 𝑝(𝑥) and 𝑞(𝑥) are 

constants. Equation (23) can be written as 

                                               𝑦′(𝑥) − 𝑞𝑦(𝑥) = 𝑝𝑦(𝑥 − √𝜀′) + 𝑟(𝑥)                                            (27) 

We take an integrating factor 𝑒−𝑞𝑥 to equation (27) and producing (as in McCartin [23]) 
𝑑

𝑑𝑥
[𝑒−𝑞𝑥𝑦(𝑥)] = 𝑒−𝑞𝑥[𝑝𝑦(𝑥 − √𝜀′) + 𝑟(𝑥)]                                                                            (28) 

On integrating equation (28) from 𝑥𝑖 to 𝑥𝑖+1, we get  

𝑒−𝑞𝑥𝑖+1𝑦𝑖+1 − 𝑒
−𝑞𝑥𝑖𝑦𝑖 = ∫ 𝑒−𝑞𝑥

𝑥𝑖+1
𝑥𝑖

𝑝𝑦(𝑥 − √𝜀′)𝑑𝑥 + ∫ 𝑒−𝑞𝑥
𝑥𝑖+1
𝑥𝑖

𝑟(𝑥)𝑑𝑥                        (29) 

We evaluate integrals present in right hand side of equation (16) by Composite Simpson’s 1/3 

rule on [𝑥𝑖𝑥𝑖+1].  

𝑒−𝑞𝑥𝑖+1𝑦𝑖+1 = 𝑒
−𝑞𝑥𝑖𝑦𝑖 +

𝑝ℎ

12
[𝑒−𝑞𝑥𝑖𝑦(𝑥𝑖 − √𝜀′) + 𝑒

−𝑞𝑥𝑖+1𝑦(𝑥𝑖+1 − √𝜀′) + 2𝑒
−𝑞𝑥

𝑖+
1
2𝑦 (𝑥

𝑖+
1

2

−

√𝜀′) + 4 {𝑒
−𝑞𝑥

𝑖+
1
4𝑦 (𝑥

𝑖+
1

4

− √𝜀′) + 𝑒
−𝑞𝑥

𝑖+
3
4𝑦 (𝑥

𝑖+
3

4

− √𝜀′)}] +
ℎ

12
[𝑒−𝑞𝑥𝑖𝑟𝑖 + 𝑒

−𝑞𝑥𝑖+1𝑟𝑖+1 +

2𝑒
−𝑞𝑥

𝑖+
1
2𝑟
𝑖+
1

2

+ 4 {𝑒
−𝑞𝑥

𝑖+
1
4𝑟
𝑖+
1

4

+ 𝑒
−𝑞𝑥

𝑖+
3
4𝑟
𝑖+
3

4

}]                                                                 (30) 

𝑦𝑖+1 = 𝑒
𝑞ℎ𝑦𝑖 +

𝑝ℎ

12
[𝑒𝑞ℎ𝑦(𝑥𝑖 − √𝜀′) + 𝑦(𝑥𝑖+1 − √𝜀′) + 2𝑒

𝑞ℎ

2 𝑦 (𝑥
𝑖+
1

2

− √𝜀′) +

4 {𝑒
3𝑞ℎ

4 𝑦 (𝑥
𝑖+
1

4

− √𝜀′) + 𝑒
𝑞ℎ

4 𝑦 (𝑥
𝑖+
3

4

− √𝜀′)}] +
ℎ

12
[𝑒𝑞ℎ𝑟𝑖 + 𝑟𝑖+1 + 2𝑒

𝑞ℎ

2 𝑟
𝑖+
1

2

+ 4 {𝑒
3𝑞ℎ

4 𝑟
𝑖+
1

4

+

𝑒
𝑞ℎ

4 𝑟
𝑖+
3

4

}]   (31)                                                                                      
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We approximate the terms involve in equation (31), from Taylor’s series expansion and finite 

difference approximation,  

                                      𝑦 (𝑥
𝑖+
1

2

− √𝜀′) ≈ (
3

2
−
√𝜀′

ℎ
)𝑦𝑖 − (

1

2
−
√𝜀′

ℎ
)𝑦𝑖−1                               (32) 

                                     𝑦 (𝑥
𝑖+
1

4

− √𝜀′) ≈ (
5

4
−
√𝜀′

ℎ
)𝑦𝑖 − (

1

4
−
√𝜀′

ℎ
)𝑦𝑖−1                                (33) 

                                     𝑦 (𝑥
𝑖+
3

4

− √𝜀′) ≈ (
7

4
−
√𝜀′

ℎ
)𝑦𝑖 − (

3

4
−
√𝜀′

ℎ
)𝑦𝑖−1                                (34) 

                                          𝑦(𝑥𝑖 − √𝜀′) ≈ (1 −
√𝜀′

ℎ
)𝑦𝑖 +

√𝜀′

ℎ
𝑦𝑖−1                                              (35) 

                                     𝑦(𝑥𝑖+1 − √𝜀
′) ≈ (1 −

√𝜀′

ℎ
)𝑦𝑖+1 +

√𝜀′

ℎ
𝑦𝑖                                               (36) 

                                         𝑟
𝑖+
1

2

≈
3

2
𝑟𝑖 −

1

2
𝑟𝑖−1                                                (37) 

                                              𝑟
𝑖+
1

4

≈
5

4
𝑟𝑖 −

1

4
𝑟𝑖−1                                        (38) 

                                          𝑟
𝑖+
3

4

≈
7

4
𝑟𝑖 −

3

4
𝑟𝑖−1                       (39)                                    

Substitute above equations into equation (31), we get  

                                     𝐸𝑖𝑦𝑖−1 − 𝐹𝑖𝑦𝑖 + 𝐺𝑖𝑦𝑖+1 = 𝐻𝑖,     𝑖 = 1,2, … , 𝑛 − 1                                 (40) 

where  

 𝐸𝑖 =
𝑝ℎ

12
[−
√𝜀′

ℎ
𝑒𝑞ℎ + 2𝑒

𝑞ℎ

2 (
1

2
−
√𝜀′

ℎ
) + 4𝑒

3𝑞ℎ

4 (
1

4
−
√𝜀′

ℎ
) + 4𝑒

𝑞ℎ

4 (
3

4
−
√𝜀′

ℎ
)] 

𝐹𝑖 = 𝑒
𝑞ℎ +

𝑝ℎ

12
[𝑒𝑞ℎ (1 −

√𝜀′

ℎ
) +

√𝜀′

ℎ
+ 2𝑒

𝑞ℎ

2 (
3

2
−
√𝜀′

ℎ
) + 4𝑒

3𝑞ℎ

4 (
5

4
−
√𝜀′

ℎ
)] 

𝐺𝑖 = 1 −
𝑝ℎ

12
(1 −

√𝜀′

ℎ
) 

𝐻𝑖 =
ℎ

12
[𝑒𝑞ℎ𝑟𝑖 + 𝑟𝑖+1 + 2𝑒

𝑞ℎ

2 {
3

2
𝑟𝑖 −

1

2
𝑟𝑖−1} + 4𝑒

3𝑞ℎ

4 {
5

4
𝑟𝑖 −

1

4
𝑟𝑖−1} + 4𝑒

𝑞ℎ

4 {
7

4
𝑟𝑖 −

3

4
𝑟𝑖−1}] 

This is a tridiagonal system of  𝑛 − 1  equations. We solve this tridiagonal system with given 

two boundary conditions by Thomas algorithm. 

 

2.4. CASE (II): FOR RIGHT-END BOUNDARY LAYER 

Consider equation (5) or (13) with their boundary conditions 

 

𝜀′𝑦′′(𝑥) + 𝐴(𝑥)𝑦′(𝑥) + 𝐵(𝑥)𝑦(𝑥) = 𝑓(𝑥),0 ≤ 𝑥 ≤ 1                                                 (41) 

  

      𝑦(0) = 𝛼                                                   (42) 

 

                 𝑦(1) = 𝛽                                                   (43) 
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From Taylor’s series expansion about the deviating argument √𝜀′ in the neighbourhood of 

the point 𝑥, we have 

                                 𝑦(𝑥 + √𝜀′) ≈ 𝑦(𝑥) + √𝜀′𝑦′(𝑥) +
𝜀′

2
𝑦′′(𝑥)                                         (44)  

From equation (41) and (44), we have 

                                                     𝑦′(𝑥) = 𝑝(𝑥)𝑦(𝑥 + √𝜀′) + 𝑞(𝑥)𝑦(𝑥) + 𝑟(𝑥)             (45) 

where           𝑝(𝑥) =
−2

−2√𝜀′+𝐴(𝑥)
              (46)            

                                                     𝑞(𝑥) =
2−𝐵(𝑥)

−2√𝜀′+𝐴(𝑥)
                                                         (47)                   

                     𝑟(𝑥) =
𝑓(𝑥)

−2√𝜀′+𝐴(𝑥)
                                                        (48) 

Let 0 = 𝑥0,  𝑥1, … , 𝑥𝑛 = 1 be the mesh points, then we have 𝑥𝑖 = 𝑖ℎ, 𝑖 = 0, 1, 2, … , 𝑛. From 

our earlier assumptions, 𝐴(𝑥) and 𝐵(𝑥) are constants. Therefore, 𝑝(𝑥) and 𝑞(𝑥) are 

constants. Equation (45) can be written as  

                                                𝑦′(𝑥) − 𝑞𝑦(𝑥) = 𝑝𝑦(𝑥 + √𝜀′) + 𝑟(𝑥)                              (49) 

We take an integrating factor 𝑒−𝑞𝑥 to equation (49) and producing (as in Mc Cartin[23]) 

                                                
𝑑

𝑑𝑥
[𝑒−𝑞𝑥𝑦(𝑥)] = 𝑒−𝑞𝑥[𝑝𝑦(𝑥 + √𝜀′) + 𝑟(𝑥)]                   (50) 

On integrating equation (50) from 𝑥𝑖−1 to 𝑥𝑖, we get  

𝑒−𝑞𝑥𝑖𝑦𝑖 − 𝑒
−𝑞𝑥𝑖−1𝑦𝑖−1 = ∫ 𝑒−𝑞𝑥

𝑥𝑖
𝑥𝑖−1

𝑝𝑦(𝑥 + √𝜀′)𝑑𝑥 + ∫ 𝑒−𝑞𝑥
𝑥𝑖
𝑥𝑖−1

𝑟(𝑥)𝑑𝑥                      (51) 

We evaluate integrals present in right hand side of equation (51) by Composite Simpson’s 1/3 

rule on [𝑥𝑖−1𝑥𝑖].  

𝑦𝑖 = 𝑒
𝑞ℎ𝑦𝑖−1 +

𝑝ℎ

12
[𝑒𝑞ℎ𝑦(𝑥𝑖−1 + √𝜀′) + 𝑦(𝑥𝑖 + √𝜀′) + 2𝑒

𝑞ℎ

2 𝑦 (𝑥
𝑖−
1

2

+ √𝜀′)  

+   4 {𝑒
3𝑞ℎ

4 𝑦 (𝑥
𝑖−
3

4

+ √𝜀′) + 𝑒
𝑞ℎ

4 𝑦 (𝑥
𝑖−
1

4

+ √𝜀′)}]             

+
ℎ

12
[𝑒𝑞ℎ𝑟𝑖−1 + 𝑟𝑖 + 2𝑒

𝑞ℎ

2 𝑟
𝑖−
1

2

+  4 {𝑒
3𝑞ℎ

4 𝑟
𝑖−
3

4

+ 𝑒
𝑞ℎ

4 𝑟
𝑖−
1

4

}] 

                                                                                                                                   (52) 

We approximate the terms involve in equation (52), from Taylor’s series expansion and finite 

difference approximation,  

                                      𝑦 (𝑥
𝑖−
1

2

+ √𝜀′) ≈ (
3

2
−
√𝜀′

ℎ
)𝑦𝑖 − (

1

2
−
√𝜀′

ℎ
)𝑦𝑖+1                               (53) 

                                     𝑦 (𝑥
𝑖−
1

4

+ √𝜀′) ≈ (
5

4
−
√𝜀′

ℎ
)𝑦𝑖 − (

1

4
−
√𝜀′

ℎ
)𝑦𝑖+1                                (54) 

                                     𝑦 (𝑥
𝑖−
3

4

+ √𝜀′) ≈ (
7

4
−
√𝜀′

ℎ
)𝑦𝑖 − (

3

4
−
√𝜀′

ℎ
)𝑦𝑖+1                                (55) 

                                          𝑦(𝑥𝑖 + √𝜀′) ≈ (1 −
√𝜀′

ℎ
)𝑦𝑖 +

√𝜀′

ℎ
𝑦𝑖+1                                              (56) 

                                     𝑦(𝑥𝑖−1 + √𝜀′) ≈ (1 −
√𝜀′

ℎ
)𝑦𝑖−1 +

√𝜀′

ℎ
𝑦𝑖                                               (57) 
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                                                 𝑟
𝑖−
1

2

≈
1

2
𝑟𝑖−1 +

1

2
𝑟𝑖                                                                       (58) 

                                                𝑟
𝑖−
1

4

≈
1

4
𝑟𝑖−1 +

3

4
𝑟𝑖                                                                        (59) 

                                               𝑟
𝑖−
3

4

≈
3

4
𝑟𝑖−1 +

1

4
𝑟𝑖                                                                        (60) 

Substitute above equations into equation (52), we get  

                                   𝐸𝑖𝑦𝑖−1 − 𝐹𝑖𝑦𝑖 + 𝐺𝑖𝑦𝑖+1 = 𝐻𝑖,     𝑖 = 1, 2, … , 𝑛 − 1                                (61) 

where    𝐸𝑖 = −𝑒
𝑞ℎ −

𝑝ℎ

12
𝑒𝑞ℎ (1 −

√𝜀′

ℎ
) 

𝐹𝑖 = −1 +
𝑝ℎ

12
[
√𝜀′

ℎ
𝑒𝑞ℎ + (1 −

√𝜀′

ℎ
) + 2𝑒

𝑞ℎ

2 (
3

2
−
√𝜀′

ℎ
) + 4𝑒

3𝑞ℎ

4 (
7

4
−
√𝜀′

ℎ
)

+ 4𝑒
𝑞ℎ

4 (
5

4
−
√𝜀′

ℎ
)] 

𝐺𝑖 = −
𝑝ℎ

12
[
√𝜀′

ℎ
− 2𝑒

𝑞ℎ

2 (
1

2
−
√𝜀′

ℎ
) − 4𝑒

3𝑞ℎ

4 (
3

4
−
√𝜀′

ℎ
) − 4𝑒

𝑞ℎ

4 (
1

4
−
√𝜀′

ℎ
)] 

               𝐻𝑖 =
ℎ

12
[
𝑒𝑞ℎ𝑟𝑖−1 + 𝑟𝑖 + 2𝑒

𝑞ℎ

2 {
1

2
𝑟𝑖−1 +

1

2
𝑟𝑖} + 4𝑒

3𝑞ℎ

4 {
3

4
𝑟𝑖−1 +

1

4
𝑟𝑖}

+4𝑒
𝑞ℎ

4 {
1

4
𝑟𝑖−1 +

3

4
𝑟𝑖}

] 

 

This is a tridiagonal system of  𝑛 − 1  equations. We solve this tridiagonal system with given 

two boundary conditions by Thomas algorithm. 

 

1. THOMAS ALGORITHM 

Consider a recurrence relation (see [3]) 

                                                           𝑦𝑖 = 𝒲𝑖𝑦𝑖+1 + 𝒯𝑖                                                        (62) 

where 𝒲𝑖 = 𝒲(𝑥𝑖) and 𝒯𝑖 = 𝒯(𝑥𝑖) are to be found. From equation (62), we have 

                                                             𝑦𝑖−1 = 𝒲𝑖−1𝑦𝑖 + 𝒯𝑖−1                                                  (63) 

From equation (40) or (61) and equation (63), we get         

                                               𝑦𝑖 =
𝐺𝑖

𝐹𝑖−𝐸𝑖𝒲𝑖−1
𝑦𝑖+1 +

𝐸𝑖𝒯𝑖−1−𝐻𝑖

𝐹𝑖−𝐸𝑖𝒲𝑖−1
                                             (64) 

On comparison of equations (62) and (64), we get  

                                                             𝒲𝑖 =
𝐺𝑖

𝐹𝑖 − 𝐸𝑖𝒲𝑖−1
                                                         (65) 

and  

                                                          𝒯𝑖 =
𝐸𝑖𝒯𝑖−1−𝐻𝑖

𝐹𝑖−𝐸𝑖𝒲𝑖−1
                                                                 (66) 

To find 𝒲𝑖 and 𝒯𝑖 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we require initial conditions for 𝒲0 and 𝒯0. This can be 

done by considering equation (20) or (42), we get 

                                                                 𝑦0 = 𝛼 = 𝒲0𝑦1 + 𝒯0                                                    (67) 

If we take 𝒲0 = 0 then 𝒯0 = 𝛼. Now, we determine 𝒲𝑖 and 𝒯𝑖 sequentially from equation 

(65) and (66). Hence, we compute 𝑦𝑖 in the reverse process from equation (62) and equation 

(21). Under following assumptions  

𝐸𝑖 > 0,                      𝐺𝑖 > 0,           𝐹𝑖 ≥ 𝐸𝑖 + 𝐺𝑖   and|𝐸𝑖| ≤ |𝐺𝑖|                                              (68) 
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the above scheme is stable (see [24]). Under the assumptions, 𝜀′ > 0, 𝐴(𝑥) > 0 and 𝐵(𝑥) <

0, it is easy to show that, the above equation (68) holds. Therefore, the invariant imbedding 

scheme is stable. 

 

4. ANALYSIS FOR STABILITY AND CONVERGENCE  

Theorem 4.1.With the assumptions𝐴(𝑥) ≥ ℳ > 0, 𝜀′ > 0, and 𝐵(𝑥) < 0, ∀0 ≤ 𝑥 ≤1, the 

solution of equation (40) with conditions given at boundary exists and it’s unique and also 

satisfies 

                                             ||𝑦||ℎ,∞ ≤ ℳ
−1||𝑓||ℎ,∞ + |𝛼 | + |𝛽|                                     (69) 

where 

||𝑥||ℎ,∞ = max |𝑥𝑖|⏟    
0≤𝑖≤𝑛

 is the discrete 𝑙∞ norm. 

Proof. To prove the above theorem, one can refer (Kadalbajoo and Sharma [16]). Theorem 

4.1. states that the solution from the above numerical method is uniformly bounded and 

independent from ℎ  and 𝜀. Therefore, method is stable. 

Equation (40) in matrix form, we get 

                                                                            𝐴𝑌 = 𝐶                                                                       (70) 

where 𝐴 = [𝑚𝑖𝑗] is a “tridiagonal matrix” of order 𝑛 − 1, 1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1 with  

𝑚𝑖𝑖+1 = 1 −
𝑝ℎ

12
(1 −

√𝜀′

ℎ
) 

𝑚𝑖𝑖 = −𝑒
𝑞ℎ −

𝑝ℎ

12
[𝑒𝑞ℎ (1 −

√𝜀′

ℎ
) +

√𝜀′

ℎ
+ 2𝑒

𝑞ℎ

2 (
3

2
−
√𝜀′

ℎ
) + 4𝑒

3𝑞ℎ

4 (
5

4
−
√𝜀′

ℎ
)

+ 4𝑒
𝑞ℎ

4 (
7

4
−
√𝜀′

ℎ
)] 

𝑚𝑖𝑖−1 =
𝑝ℎ

12
[−
√𝜀′

ℎ
𝑒𝑞ℎ + 2𝑒

𝑞ℎ

2 (
1

2
−
√𝜀′

ℎ
) + 4𝑒

3𝑞ℎ

4 (
1

4
−
√𝜀′

ℎ
) + 4𝑒

𝑞ℎ

4 (
3

4
−
√𝜀′

ℎ
)] 

𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑛−1)
𝑡 

and 𝐶 = (𝑑𝑖) is a column vector with  

𝑑𝑖 =
ℎ

12
[𝑒𝑞ℎ𝑟𝑖 + 𝑟𝑖+1 + 2𝑒

𝑞ℎ

2 {
3

2
𝑟𝑖 −

1

2
𝑟𝑖−1} + 4𝑒

3𝑞ℎ

4 {
5

4
𝑟𝑖 −

1

4
𝑟𝑖−1} + 4𝑒

𝑞ℎ

4 {
7

4
𝑟𝑖 −

3

4
𝑟𝑖−1}] 

where 𝑖 = 1,2, … , 𝑛 − 1 with truncation error 

𝑇𝑖(ℎ) = ℎ
2 [−

1

2
𝑝𝑞𝑦𝑖 −

1

2
𝑝𝑦𝑖

′ +
1

2
𝑝𝑞√𝜀′𝑦𝑖

′ −
5

12
𝑝√𝜀′𝑦𝑖

′′ +
1

2
𝑦𝑖
′′ −

1

2
𝑞𝑟𝑖] + 𝑂(ℎ

3)              (71) 

                                                                  𝐴𝑌̅ − 𝑇(ℎ) = 𝐶                                                                  (72) 

where 𝑌̅ = (𝑦1,̅̅̅̅ 𝑦2̅̅ ̅, … , 𝑦𝑛−1̅̅ ̅̅ ̅̅ )𝑡 denotes exact solution,  

𝑇(ℎ) = (𝑇1(ℎ), 𝑇2(ℎ),… , 𝑇𝑛−1(ℎ))
𝑡 denotes truncation error column vector. 

From equation (70) and (72), we obtain 

                                                                 𝐴(𝑌̅ − 𝑌) = 𝑇(ℎ)                                                                (73) 

Therefore, error equation becomes               𝐴𝐸 = 𝑇(ℎ)                                                     (74) 

here, 𝐸 = 𝑌̅ − 𝑌 = (𝑒1, 𝑒2, … , 𝑒𝑛−1)
𝑡. 

Assume that 𝑆𝑖 is the sum of 𝑖𝑡ℎ row elements of matrix 𝐴, we obtain 

𝑆𝑖 =
11

12
𝑝√𝜀′ + ℎ [−𝑞 −

17

12
𝑝 +

1

2
𝑝𝑞√𝜀′] + 𝑂(ℎ2) for 𝑖 = 1 
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𝑆𝑖 = ℎ[−𝑝 − 𝑞] + 𝑂(ℎ
2) for 𝑖 = 2,3, … , 𝑛 − 2 

𝑆𝑖 = −
1

12
𝑝√𝜀′ − 1 + ℎ [−𝑞 −

11

12
𝑝] + 𝑂(ℎ2) for 𝑖 = 𝑛 − 1 

Since1 ≫ 𝜀 > 0, 𝑂(𝜀) = 𝛿 > 0 and 𝑂(𝜀) = 𝜂 > 0, 𝐴 is irreducible and monotone for 

sufficiently small step size (see [27]). Then, 𝐴 becomes invertible and elements of 𝐴−1 are 

nonnegative. 

From equation (74), we obtain 

                                                                     𝐸 = 𝐴−1𝑇(ℎ)                                                                   (75) 

After taking norm on both sides, we get 

                                                          ||𝐸|| ≤ ||𝐴−1||. ||𝑇(ℎ)||                                                           (76) 

Consider  𝐴−1 = [𝑢𝑘𝑖], 1 ≤ 𝑘, 𝑖 ≤ 𝑛 − 1. As 𝑢𝑘𝑖 ≥ 0, hence from matrix analysis we have 

                                            ∑ 𝑢𝑘𝑖𝑆𝑖 = 1,     𝑘 = 1, 2, … , 𝑛 − 1                                       
𝑛−1
𝑖=1      (77)                            

From equation (77), we get 

                                            ∑ 𝑢𝑘𝑖
𝑛−1
𝑖=1 ≤

1

min𝑆𝑖⏟    
1≤𝑖≤𝑛−1

=
1

ℎ|ℜ|
                                                         (78) 

where ℜ is a constant which is not dependent on ℎ. 

We define ||𝐴−1|| = max∑ |𝑢𝑘𝑖|
𝑛−1
𝑖=1⏟        

1≤𝑘≤𝑛−1

 and ||𝑇(ℎ)|| = max|𝑇𝑖(ℎ)|⏟      
1≤𝑖≤𝑛−1

= ℎ2Ω                

where Ω is a constant independent from ℎ. 

From equation (75), we get the error at 𝑘𝑡ℎ tuple  

 𝑒𝑘 = ∑ 𝑢𝑘𝑖
𝑛−1
𝑖=1 𝑇𝑖(ℎ), 𝑘 = 1, 2, … , 𝑛 − 1                                                                           (79) 

From equation (68), we obtain 

                                              ||𝐸|| ≤ max∑|𝑢𝑘𝑖|

𝑛−1

𝑖=1⏟        
1≤𝑘≤𝑛−1

. max|𝑇𝑖(ℎ)|⏟      
1≤𝑖≤𝑛−1

                                                 (80) 

Substitute equation (78) into equation (80), we get  

                                ||𝐸|| = max |𝑒𝑖|⏟    
1≤𝑖≤𝑛−1

= |𝑒𝑗| ≤
1

ℎ|ℜ|
ℎ2Ω = ℎ𝒦                                            (81) 

where 𝒦 is a constant which is not dependent on ℎ and   

|𝑒𝑗| = max(|𝑒1|, |𝑒2|, … , |𝑒𝑛−1|)
𝑡.  

Hence, ||𝐸|| = 𝑂(ℎ). 

Hence, proposed method is of first order convergence for uniform ℎ. 

 

5. NUMERICAL EXPERIMENTS 

In this section, six model examples are solved and the solutions are compared with the 

exact/available solutions. The exact solution of equation (8) is given by (with assumptions. 

𝑓(𝑥) = 𝑓, 𝜑(𝑥) = 𝜑 and 𝛾(𝑥)= 𝛾 are constant) 

                                     𝑦(𝑥) = 𝑐1𝑒
𝑚1𝑥 + 𝑐2𝑒

𝑚2𝑥 + 𝑓 𝑐′⁄                                                    (82) 

 

where 

𝑐′ = 𝑏 + 𝑐 + 𝑑 

       𝑚1 = [−(𝑎 − 𝛿𝑏 + 𝜂𝑑) + √(𝑎 − 𝛿𝑏 + 𝜂𝑑)2 − 4𝜀𝑐′] 2⁄ 𝜀 
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                                𝑚2 = [−(𝑎 − 𝛿𝑏 + 𝜂𝑑) − √(𝑎 − 𝛿𝑏 + 𝜂𝑑)2 − 4𝜀𝑐′] 2⁄ 𝜀 

𝑐1 = [−𝑓 + 𝛾𝑐
′ + 𝑒𝑚2(𝑓 − 𝜑𝑐′)] [(𝑒𝑚1 − 𝑒𝑚2)𝑐′]⁄  

𝑐2 = [𝑓 − 𝛾𝑐
′ + 𝑒𝑚1(−𝑓 + 𝜑𝑐′)] [(𝑒𝑚1 − 𝑒𝑚2)𝑐′]⁄  

Example 1.Consider the delay differential equation having left boundary layer: 

𝜀𝑦′′(𝑥) + 𝑦′(𝑥 − 𝛿) − 𝑦(𝑥) = 0, 0 ≤ 𝑥 ≤ 1;with𝑦(0) = 1 and 𝑦(1) = 1. 

The exact solution is given by 

𝑦 = ((1 − 𝑒𝑚2)𝑒𝑚1𝑥 + (𝑒𝑚1 − 1)𝑒𝑚2𝑥)/(𝑒𝑚1 − 𝑒𝑚2) 

where 

𝑚1 =
−1 − √1 + 4(𝜀 − 𝛿)

2(𝜀 − 𝛿)
and𝑚2 =

−1 + √1 + 4(𝜀 − 𝛿)

2(𝜀 − 𝛿)
 

Numerical solution, exact solution, comparison solution and boundary layer action are shown 

in their respective tables and graphs. 

Example 2.Consider the differential-differential equation having left boundary layer: 

𝜀𝑦′′(𝑥) + 𝑦′(𝑥) − 2𝑦(𝑥 − 𝛿) − 5𝑦(𝑥) + 𝑦(𝑥 + 𝜂) = 0, 0 ≤ 𝑥 ≤ 1;  

with 𝑦(0) = 1 and  𝑦(1) = 1. 

Numerical solution, exact solution, comparison solution and boundary layer action are shown 

in their respective tables and graphs. 

Example 3.Consider the differential-differential equation having left boundary layer: 

𝜀𝑦′′(𝑥) + 𝑦′(𝑥) − 3𝑦(𝑥) + 2𝑦(𝑥 + 𝜂) = 0, 0 ≤ 𝑥 ≤ 1; with 𝑦(0) = 1 and  𝑦(1) = 1. 

Numerical solution, exact solution, comparison solution and boundary layer action are shown 

in their respective tables and graphs. 

Example 4.Now we consider the delay differential equation having right boundary layer:    

𝜀𝑦′′(𝑥) − 𝑦′(𝑥 − 𝛿) − 𝑦(𝑥) = 0, 0 ≤ 𝑥 ≤ 1;  with 𝑦(0) = 1 and𝑦(1) = −1. 

The exact solution is given by 

 

𝑦 = ((1 + 𝑒𝑚2)𝑒𝑚1𝑥 − (𝑒𝑚1 + 1)𝑒𝑚2𝑥)/(𝑒𝑚2 − 𝑒𝑚1) 

where 

𝑚1 =
1 − √1 + 4(𝜀 + 𝛿)

2(𝜀 + 𝛿)
and𝑚2 =

1 +√1 + 4(𝜀 + 𝛿)

2(𝜀 + 𝛿)
 

Numerical solution, exact solution, comparison solution and boundary layer action are shown 

in their respective tables and graphs. 

Example 5.Consider the differential-differential equation having right boundary layer: 

𝜀𝑦′′(𝑥) − 𝑦′(𝑥) − 2𝑦(𝑥 − 𝛿) + 𝑦(𝑥) − 2𝑦(𝑥 + 𝜂) = 0, 0 ≤ 𝑥 ≤ 1;  

with 𝑦(0) = 1 and  𝑦(1) = −1. 

Numerical solution, exact solution, comparison solution and boundary layer action are shown 

in their respective tables and graphs. 

Example 6.Consider the differential-differential equation having right boundary layer: 

𝜀𝑦′′(𝑥) − 𝑦′(𝑥) + 𝑦(𝑥) − 2𝑦(𝑥 + 𝜂) = 0, 0 ≤ 𝑥 ≤ 1; with 𝑦(0) = 1 and  𝑦(1) = −1. 

Numerical solution, exact solution, comparison solution and boundary layer action are shown 

in their respective tables and graphs. 
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6. Conclusion 

A numerical integration method is presented to solve a class of singularly perturbed 

differential-difference equation having boundary layer at one end. Stability and convergence 

analysis of the method is also discussed. Method is simple and easy to implement on the class 

of singularly perturbed differential-difference equations having layer at one end.  This 

method is implemented on six standard model examples and found that the numerical 

solutions are in agreement with available or exact solutions. Computational results, available 

or exact results and layer action are presented in their respective tables and graphs. 

 

Table-1: Example 1: ℎ = 0.01, 𝜀 = 0.02 and 𝛿 = 0.001  

𝑥 Numerical Solution 
𝑦(𝑥) 

 Exact Solution 
𝑦1(𝑥) 

Result by [13] 
𝑦𝑐(𝑥) 

0.0 1.00000000 1.00000000 1.00000000 

0.02 0.40030832 0.59611217 0.37627796 

0.04 0.38470877 0.46292256 0.38302924 

0.06 0.39155769 0.42247446 0.39076295 

0.08 0.39941373 0.41386729 0.39865395 

0.1 0.40746127 0.41626092 0.40670430 

0.2 0.45020470 0.45597316 0.44946123 

0.3 0.49743206 0.50299126 0.49671321 

0.4 0.54961366 0.55487431 0.54893279 

0.5 0.60726922 0.61210911 0.60664224 

0.6 0.67097295 0.67524764 0.67041870 

0.7 0.74135933 0.74489885 0.74089999 

0.8 0.81912938 0.82173453 0.81879100 

0.9 0.90505767 0.90649574 0.90487070 

1.0 1.00000000 1.00000000 1.00000000 

 

Fig.1 
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Table-2: Example 1: ℎ = 0.01, 𝜀 = 0.001 and 𝛿 = 0.0002 

𝑥 Numerical Solution 

𝑦(𝑥) 

 Exact Solution 

𝑦1(𝑥) 

Result by [13] 

𝑦𝑐(𝑥) 

0.0 1.00000000 1.00000000 1.00000000 

0.02 0.37656838 0.37560498 0.37538059 

0.04 0.38305980 0.38318659 0.38292012 

0.06 0.39079269 0.39092122 0.39065503 

0.08 0.39868365 0.39881199 0.39854620 

0.1 0.40673394 0.40686202 0.40659676 

0.2 0.44949034 0.44961616 0.44935559 

0.3 0.49674136 0.49686302 0.49661105 

0.4 0.54895946 0.54907470 0.54883603 

0.5 0.60666680 0.60677293 0.60655312 

0.6 0.67044041 0.67053424 0.67033991 

0.7 0.74091798 0.74099575 0.74083468 

0.8 0.81880425 0.81886155 0.81874288 

0.9 0.90487803 0.90490969 0.90484412 

1.0 1.00000000 1.00000000 1.00000000 

 

Fig. 2. 
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 Table-3: Example 2: ℎ = 0.01, 𝜀 = 0.001, 𝛿 = 0.0003 and 𝜂 = 0.0004 

𝑥 Numerical Solution 

𝑦(𝑥) 

 Exact Solution 

𝑦1(𝑥) 

Result by [18] 

𝑦𝑐(𝑥) 

0.0 1.00000000 1.00000000 1.00000000 

0.02 0.00497361 0.00291068 0.00427704 

0.04 0.00322821 0.00327906 0.00209920 

0.06 0.00363304 0.00369407 0.00238035 

0.08 0.00409428 0.00416160 0.00270679 

0.1 0.00461410 0.00468830 0.00307801 

0.2 0.00838751 0.00850730 0.00585264 

0.3 0.01524682 0.01543718 0.01112841 

0.4 0.02771565 0.02801199 0.02115992 

0.5 0.05038148 0.05082999 0.04023417 

0.6 0.09158339 0.09223506 0.07650258 

0.7 0.16648018 0.16736785 0.14546451 

0.8 0.30262748 0.30370226 0.27659100 

0.9 0.55011588 0.55109188 0.52591919 

1.0 1.00000000 1.00000000 1.00000000 
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Fig.3. 

 

Table-4: Example 2: ℎ = 0.01, 𝜀 = 0.0003, 𝛿 = 0.0001 and 𝜂 = 0.0002 

𝑥 Numerical Solution 

𝑦(𝑥) 

 Exact Solution 

𝑦1(𝑥) 

Result by [18] 

𝑦𝑐(𝑥) 

0.0 1.00000000 1.00000000 1.00000000 

0.02 0.00332373 0.00283102 0.03402341 

0.04 0.00318521 0.00319113 0.00144049 

0.06 0.00359023 0.00359704 0.00039356 

0.08 0.00404708 0.00405459 0.00042170 

0.1 0.00456205 0.00457034 0.00049785 

0.2 0.00830336 0.00831676 0.00115893 

0.3 0.01511287 0.01513422 0.00269805 

0.4 0.02750682 0.02754011 0.00628120 

0.5 0.05006494 0.05011543 0.01462298 

0.6 0.09112278 0.09119629 0.03404307 

0.7 0.16585181 0.16595215 0.07925407 

0.8 0.30186550 0.30198724 0.18450765 

0.9 0.54942288 0.54953365 0.42954354 

1.0 1.00000000 1.00000000 1.00000000 

 

Fig. 4. 
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Table-5: Example 3:ℎ = 0.01, 𝜀 = 0.01, 𝛿 = 0.002 and 𝜂 = 0.002 

𝑥 Numerical Solution 

𝑦(𝑥) 

 Exact Solution 

𝑦1(𝑥) 

Result by [18] 

𝑦𝑐(𝑥) 

0.0 1.00000000 1.00000000 1.00000000 

0.02 0.37836202 0.37714362 0.37255229 

0.04 0.38454949 0.38472418 0.38009154 

0.06 0.39227954 0.39245711 0.38782922 

0.08 0.40016818 0.40034547 0.39572443 

0.1 0.40821546 0.40839239 0.40378036 

0.2 0.45094539 0.45111912 0.44658778 

0.3 0.49814808 0.49831600 0.49393350 

0.4 0.55029171 0.55045070 0.54629865 

0.5 0.60789346 0.60803982 0.60421537 

0.6 0.67152468 0.67165402 0.66827223 

0.7 0.74181649 0.74192364 0.73912018 

0.8 0.81946609 0.81954500 0.81747919 

0.9 0.90524366 0.90528725 0.90414556 

1.0 1.00000000 1.00000000 1.00000000 

 

 

 

 

 

 

 

Fig.5. 
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Table-6: Example 3: ℎ = 0.01, 𝜀 = 0.0001, 𝛿 = 0.001 and 𝜂 = 0.002 

 

𝑥 Numerical Solution 

𝑦(𝑥) 

 Exact Solution 

𝑦1(𝑥) 

Result by [18] 

𝑦𝑐(𝑥) 

0.0 1.00000000 1.00000000 1.00000000 

0.02 0.37688878 0.37681580 0.32042216 

0.04 0.38440381 0.38439659 0.32284657 

0.06 0.39213710 0.39212989 0.33050324 

0.08 0.40002597 0.40001878 0.33838077 

0.1 0.40807355 0.40806637 0.34644634 

0.2 0.45080604 0.45079899 0.38975127 

0.3 0.49801338 0.49800657 0.43846920 

0.4 0.55016416 0.55015771 0.49327676 

0.5 0.60777604 0.60777011 0.55493512 

0.6 0.67142091 0.67141566 0.62430062 

0.7 0.74173051 0.74172617 0.70233664 

0.8 0.81940277 0.81939957 0.79012696 

0.9 0.90520869 0.90520692 0.88889086 

1.0 1.00000000 1.00000000 1.00000000 

 

 

 

 

 

Fig. 6. 
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Table-7: Example 4: ℎ = 0.01, 𝜀 = 0.001 and 𝛿 = 0.003 

 

𝑥 Present Solution  Exact Solution Result by [13] 

0.0 1.00000000 1.00000000 1.00000000 

0.1 0.90493550 0.90519655 0.89913994 

0.2 0.81890826 0.81938080 0.80845264 

0.3 0.74105916 0.74170068 0.72691207 

0.4 0.67061074 0.67138490 0.65359568 

0.5 0.60685947 0.60773530 0.58767399 

0.6 0.54916868 0.55011990 0.52840116 

0.7 0.49696223 0.49796664 0.47510659 

0.8 0.44971877 0.45075769 0.42718732 

0.9 0.40696648 0.40802431 0.38409753 

0.92 0.39891664 0.39997663 0.37597278 

0.94 0.39102493 0.39208728 0.36749433 

0.96 0.38317158 0.38429459 0.35238288 

0.98 0.36289935 0.36772893 0.24915769 

1.0 -1.00000000 -1.00000000 -1.00000000 
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Fig. 7. 

 
 

Table-8: Example 4: ℎ = 0.01, 𝜀 = 0.001 and 𝛿 = 0.0007 

 

𝑥 Present Solution  Exact Solution Result by [13] 

0.0 1.00000000 1.00000000 1.00000000 

0.1 0.90489933 0.90499073 0.90317119 

0.2 0.81884280 0.81900822 0.81571821 

0.3 0.74097030 0.74119485 0.73673319 

0.4 0.67050353 0.67077447 0.66539620 

0.5 0.60673819 0.60704468 0.60096668 

0.6 0.54903699 0.54936981 0.54277580 

0.7 0.49682320 0.49717458 0.49021947 

0.8 0.44957498 0.44993839 0.44275210 

0.9 0.40682010 0.40719007 0.39988094 

0.92 0.39876998 0.39914069 0.39181829 

0.94 0.39087907 0.39125044 0.38391677 

0.96 0.38312321 0.38351615 0.37603417 

0.98 0.37016935 0.37592433 0.35462761 

1.0 -1.00000000 -1.00000000 -1.00000000 
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Fig. 8. 

 
 

Table-9: Example 5: ℎ = 0.01, 𝜀 = 0.002, 𝛿 = 0.001 and η = 0.003 

 

𝑥 Present Solution  Exact Solution Result by [18] 

0.0 1.00000000 1.00000000 1.00000000 

0.1 0.74218968 0.74300903 0.73953779 

0.2 0.55084553 0.55206242 0.54691614 

0.3 0.40883187 0.41018737 0.40446515 

0.4 0.30343079 0.30477292 0.29911727 

0.5 0.22520320 0.22644903 0.22120852 

0.6 0.16714349 0.16825368 0.16359206 

0.7 0.12405218 0.12501400 0.12098251 

0.8 0.09207024 0.09288653 0.08947114 

0.9 0.06833358 0.06901553 0.06616729 

0.92 0.06437796 0.06503478 0.06229245 

0.94 0.06065121 0.06128363 0.05864452 

0.96 0.05711887 0.05774884 0.05521010 

0.98 0.04907776 0.05437473 0.05161449 

1.0 -1.00000000 -1.00000000 -1.00000000 
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Fig. 9. 

 
 

Table-10: Example 5: ℎ = 0.01, 𝜀 = 0.002, 𝛿 = 0.0004 and η = 0.0006 

 

𝑥 Present Solution  Exact Solution Result by [18] 

0.0 1.00000000 1.00000000 1.00000000 

0.1 0.74139854 0.74222455 0.73877608 

0.2 0.54967179 0.55089729 0.54579010 

0.3 0.40752586 0.40888949 0.40321667 

0.4 0.30213908 0.30348782 0.29788683 

0.5 0.22400547 0.22525611 0.22007166 

0.6 0.16607733 0.16719062 0.16258368 

0.7 0.12312949 0.12409298 0.12011293 

0.8 0.09128802 0.09210486 0.08873656 

0.9 0.06768080 0.06836248 0.06555645 

0.92 0.06374936 0.06440579 0.06170466 

0.94 0.06004619 0.06067810 0.05807919 

0.96 0.05653632 0.05716616 0.05466660 

0.98 0.04846546 0.05381272 0.05108430 

1.0 -1.00000000 -1.00000000 -1.00000000 
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Fig. 10. 

 
 

Table-11: Example 6: ℎ = 0.01, 𝜀 = 0.002, 𝛿 = 0.001 and η = 0.0003 

 

𝑥 Present Solution  Exact Solution Result by [18] 

0.0 1.00000000 1.00000000 1.00000000 

0.1 0.90495921 0.90507163 0.90459812 

0.2 0.81895117 0.81915465 0.81829776 

0.3 0.74111740 0.74139363 0.74023062 

0.4 0.67068102 0.67101434 0.66961123 

0.5 0.60693897 0.60731605 0.60572906 

0.6 0.54925501 0.54966452 0.54794137 

0.7 0.49705338 0.49748577 0.49566674 

0.8 0.44981303 0.45026025 0.44837920 

0.9 0.40706245 0.40751778 0.40560299 

0.92 0.39901281 0.39946906 0.39755048 

0.94 0.39112222 0.39157932 0.38965784 

0.96 0.38335815 0.38384539 0.38192187 

0.98 0.36942212 0.37620367 0.37418034 

1.0 -1.00000000 -1.00000000 -1.00000000 

 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 
5792 

Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

 

              

                                               

Fig. 11. 

 
Table-12: Example 6: ℎ = 0.01, 𝜀 = 0.01, 𝛿 = 0.002 and η = 0.0003 

 

𝑥 Present Solution  Exact Solution Result by [18] 

0.0 1.00000000 1.00000000 1.00000000 

0.1 0.90504975 0.90577777 0.90570405 

0.2 0.81911506 0.82043336 0.82029984 

0.3 0.74133989 0.74313030 0.74294889 

0.4 0.67094949 0.67311091 0.67289182 

0.5 0.60724267 0.60968890 0.60944085 

0.6 0.54958483 0.55224265 0.55197305 

0.7 0.49740162 0.50020912 0.49992423 

0.8 0.45017322 0.45307829 0.45278341 

0.9 0.40742916 0.41033218 0.41003061 

0.92 0.39937995 0.40192249 0.40161483 

0.94 0.39147589 0.39126793 0.39092957 

0.96 0.38309658 0.36263908 0.36215452 

0.98 0.34612408 0.19736527 0.19639572 

1.0 -1.00000000 -1.00000000 -1.00000000 
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Fig. 12. 
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