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Abstract 

Quantile regression is one of the most frequently used topics in data 

analysis. In this article, we proposed the shrinkage estimator for penalized 

quantile regression that combines SCAD (Smoothly Clipped Absolute 

Deviation) and Adaptive Lasso estimators. these estimators were 

compared by using simulationstudies based on statistical measures, mean 

squared error (MSE), false positive rate (FPR) and false negative rate 

(FNR).After applying theSimulation studies it was found that the proposed 

estimator is the best in estimation and selection of variable because it has 

the lowest mean squared error (MSE) and   it has lowest False Positive 

Rate (FPR) and False Negative Rate (FNR). 

Key words: SCAD, Adaptive lasso, Quantile, Penalized Quantile 

regression,Shrinkage Estimator. 

 

Ⅰ. INTRODUCTION[1-3] 

One of the statistical analysis methods that are used to study and analyze the relationship 

between the studied variables and for all sciences is linear regression. It is a statistical method for 

studying the relationship between one or more explanatory variables and the dependent variable, and it 

expresses the relationship as an equation. Regression has many uses, including data description, 

parameter estimation, prediction, control, and others. Ordinary linear regression cannot often be used in 

many scientific studies and different phenomena because the regression conditions are not applicable. 

and the appropriate alternative for this is quantile regression, which was suggested by [4],It is a suitable 

alternative to linear regression, and interest in it has increased in recent years. Assuming a random 

sample Y1, X1 ,… , (Yn , Xn(   ,(0<θ<1(,The linear regression model can be written as follows:[5] 

𝐘𝐢 = 𝐗 𝐢𝚩 + 𝛜𝐢       i = 1,2,… , n  (1) 

Where Yi represents the response variable, Xi represents the explanatory variables (independent 

variables).Brepresents the model parametersβ = (β1,β2,… ,βp) ,ϵi represents the random error that is 
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normally distributed with zero mean and variance σ2 ,ϵi~N(0,σ2),The parameters of the Quantile 

Regression model β = (β1,β2,… ,βp) ∈ ℛP  can be estimated using the following formula: 

𝐁 (𝛉) = 𝐚𝐫𝐠𝐦𝐢𝐧𝐁 𝛒𝛉 𝐲𝐢 − 𝐗 𝐢𝐁      (𝟐)

𝐧

𝐢=𝟏

 

where the loss ρθ t  is referred to as the check function and is expressed by the following formula:[4] 

𝛒𝛉 𝐭 =  
𝛉𝐭                                   𝐢𝐟    𝐭 ≥ 𝟎

− 𝟏 − 𝛉 𝐭                       𝐢𝐟   𝐭 <  0    
  (𝟑)  

Since each (0 < θ < 1) in the case where (θ =
1

2
 ) makes the sum of the absolute errors as small as 

possible and which corresponds to the median regression. As the set of regression quantiles B  θ :θ ∈

(0,1)} are called quantile processes,The choice of the variable plays an important role in the process of 

building the model from a scientific point of view, and it is common for a large number of explanatory 

variables, to lead to an increase in dimensions, which causes the complexity of the model and it is 

difficult to interpret easilyby [6] ,studied the penalized quantile regression depending on the penalty 

estimator (SCAD) and (ADAPTIVE LASSO) and using the Difference Convex Algorithm (DCA). The 

results of real data and simulation also confirmed that these estimators used have the oracle properties 

[7]. studied the quantile regression in the case of high-dimensional data, and these data are often 

exposed to the problem of heterogeneity due to the increase in the number of explanatory variables. 

The penalty function (SCAD) was relied on to select the significant variables[8] .(QICD) algorithm, 

which is used to solve the problem of linear programming in quantile regression, which has 

complicated computational problems, and they showed that this algorithm is characterized by fast big 

arithmetic proposed by[9] .  [5] studied the penalty function (SCAD) in quantile regression and used 

real data and simulation to show the efficiency of this method, and it was found that it has the oracle 

properties. [10]studied the quantile regression in the case of high-dimensional data (p > n) and the 

selection of significant variables using a set of penalty estimators (Ridge, Elastic-Net) that perform the 

process of estimation and selection of significant variables in the same process. They also proposed a 

new penalty function called Atan. for penalty divisional regression. After running the simulation, it was 

found that the proposed penalty estimator is the best when it comes to estimating and choosing 

variables. The rest of the research details were arranged as follows: In the second section, the quantile 

regression was addressed using the SCAD penalty estimator and the solution to the linear programming 

problem with the QICD algorithm. We also used the Adaptive Lasso penalty function and solved its 

linear programming problem using the DCA algorithm. We combined the SCAD penalty function with 

the adaptive lasso penalty functionto getestimator shrinkage . In the third section 

Applicationthesimulation study, and in the fourth section, the Conclusions. 
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Ⅱ.PENALIZED QUANTILE REGRESSION 

When the number of explanatory variables is increased at the expense of the sample size, the 

process of estimating the model parameters is difficult to implement. It is also difficult to choose the 

significant variables, which is one of the important issues in statistical modeling. In this case, quantile 

regression cannot be applied, and therefore, the appropriate alternative is to use an appropriate 

regression method to deal with high-dimensional data regression. It’s called penalized quantile 

regression [10],The penalty function is added to the quantile loss function, so we get the goal function, 

as in the following formula; [11] 

𝐐𝛉 𝐁;𝛌 =  𝛒𝛉 𝐲𝐢 − 𝐗 𝐢𝐁 

𝐧

𝐢=𝟏

+ 𝛌 𝐩𝛌( 𝐁𝐣 

𝐩

𝐣=𝟏

)     (𝟒) 

pλ .  it expresses the penalty function. 

λ: It expresses the penalty parameter, whose value is called the tuning parameter. 

A.SCAD  

It is one of the penalty functions that are used to estimate the parameters of the linear regression 

model simultaneously. It is expressed by the term (Smoothly clipped Absolute Deviation) that was 

proposed by[12] and it was shown that this method achieves the properties of oracle. This method 

keeps the good parts of both penalty group selection and ridge regression, but it also makes scattered 

solutions that make sure the selected models stay the same (model selection stability) and give 

unbiased estimates for large parameters. [6] The penalty function (SCAD) is according to the following 

formula: 

pλ  Βj  =

 
 
 

 
 λ Βj                                 if 0 ≤  Βj < λ

 a2−1 λ2−( Βj  −aλ)2

2(a−1)
                    if λ ≤ 

(a+1)2λ2

2
                  if      Βj > aλ

  Βj <aλ(5) 

a > 2, It is also called the tuning parameter, and its value was suggested by two scientists  [6], λ > 0  

it’s called the tuning parameter.Therefore, the penalty least squares estimator with a penalty function 

(SCAD) in quantile regression can be expressed using the following formula: [5] 

𝐁 𝐒𝐂𝐀𝐃 = 𝐚𝐫𝐠𝐦𝐢𝐧𝐁   𝛒𝛉(𝐲𝐢 − 𝐗 𝐢𝐁) + 𝛌 𝐩𝛌  𝚩𝐣  

𝐩

𝐣=𝟏

𝐧

𝐢=𝟏

   (𝟔) 

One of the important issues in penalized regression is the selection of the penalty parameter, which is 

also called the tuning parameter and is symbolized by the symbol λ. Although penalized estimators 

have oracle properties, choosing them remains important because it controls the amount of reduction in 
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the parameters of the final model. [10]This parameter is selected according to the (HBIC) criterion that 

was proposed in the quantile regression by[13]  As in the following formula: 

𝐇𝐁𝐈𝐂 𝛌 = 𝐥𝐨𝐠   𝛒𝛉 𝐘𝐢 − 𝐗 𝐢𝛃𝛌 

𝐧

𝐢=𝟏

 +  𝐬𝛌 
𝐥𝐨𝐠(𝐥𝐨𝐠𝐧)

𝐧
𝐂𝐧,       (𝟕)  

 sλ   represents the origin of the groupSλ ≡  j:βλ ,j ≠ 0,1 ≤ j ≤ p , As for Cn  Represents a series of 

constants that diverge infinitely with each increment (n). The penalty parameter λ is chosen, which 

makes HBIC (λ) at its lower limit. It is based on the (Iterative Coordinate Descent) algorithm, which is 

symbolized by the symbol (QICD), which was proposed by  [9], and which is used to solve the quantile 

penalized regression problem in the case of high-dimensional data p > n. It is used to solve an estimator 

(SCAD). 

B.ADAPTIVE  LASSO 

mentioned that the Lasso estimator has many defects. It also does not achieve the properties of 

oracle, which are unbiasedness, sparsity and continuity [6]. [14]  Proposed a new penalty function, 

which is a suitable alternative to the penalty function lasso called (Adaptive Lasso). The idea of this 

method is to add different adaptive weights   wjfor penalty coefficients in the penalty function lasso, 

which represents the reciprocal of the least squares estimates of non-penalized quantile regression 

raised to some power as weights. Where it leads to an increase in the penalty for the parameters that are 

close to zero, the bias in estimating the function is reduced. This results in an improvement in the 

accuracy of the selection variable.The penalty estimator in quantile regression (QR) depending on the 

penalty function (Adaptive Lasso) is calculated according to the following formula: [7] 

𝐁 𝐀𝐋𝐀𝐒𝐒𝐎 = 𝐚𝐫𝐠𝐦𝐢𝐧𝐁   𝛒𝛉(𝐲𝐢 − 𝐗 𝐢𝐁) + 𝛌 𝐰𝐣 𝐁𝐣 

𝐩

𝐣=𝟏

𝐧

𝐢=𝟏

       (8) 

wj =
1

 B τ ,j  
γ ,  J=1,2,…,p 

γ represents the value of the reducing parameter, γ > 0 , It is a fixed value γ = 1,    B τ is estimator  n  

consistent for Bτ 

Β θ = argminBτ ρθ yi − X iBτ          (9)

n

i=1

 

The researcher (Zou) showed that if the weights were chosen efficiently and dependent on the data, 

then the (adaptive lasso) estimator could achieve the (efficient) property. To solve the estimator 
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(Adaptive Lasso) we use the (difference convex algorithm) (DCA) that was proposed in [15]  it is used 

to solve the linear programming problem. The DCA algorithm is as follows: 

𝐦𝐢𝐧  𝛉𝛏𝐢 +  𝟏 − 𝛉 𝛇𝐢 + 𝐧𝛌𝐧 𝐰𝐣𝛈𝐣

𝐩

𝐣=𝟏

   (𝟏𝟎)

𝐧

𝐢=𝟏

 

ξi ≥ 0, ζi ≥ 0, ξi − ζi = yi − xi
TBj , i = 1,… , n 

ηj ≥ Bj , ηj ≥ −Bj , j = 1,… , p  ,  Where wj  weights are chosen appropriately. 

 The Schwarz information criterion for selecting the penalty parameter was used in quantile regression 

by[11] . 

𝐒𝐈𝐂 𝛌 = 𝐥𝐨𝐠  
𝟏

𝐧
 𝛒𝛉 𝐲𝐢 − 𝐗 𝐢𝐁 

𝐧

𝐢=𝟏

 +
𝐥𝐨𝐠 𝐧

𝟐𝐝
𝐝𝐟,       (11) 

Where df represents the measurement of the effective dimensions of the model installation. The penalty 

parameter λ is chosen, which makes SIC(λ) at its lower limit. 

C.SHRINKAGE METHOD 

In this section, the SCAD estimator has been combined with the (Adaptive Lasso) estimator to 

get a new estimator, which called the shrinkage estimator. The shrinkage estimator used to estimate the 

parameters of the quantile regression model and select variables. Therefore, the shrinkage estimator can 

be expressed using the following formula: 

 

𝛃 𝐒𝐡𝐫𝐢𝐧𝐤𝐚𝐠𝐞 = 𝛂𝛃 𝐒𝐜𝐚𝐝 +  𝟏 − 𝛂 𝛃 𝐀𝐝𝐚𝐛𝐭𝐢𝐯𝐞 𝐥𝐚𝐬𝐬𝐨   (12) 

Where that 0 < α 

Ⅲ.SIMULATION 

In this section, we used Monte Carlo simulation in order to compare the SCAD, Adaptive 

Lasso, and Shrinkage estimators based on the R program with replicate (500). The simulation data 

based on the following model.                              

𝐲 = 𝐱 𝛃 + 𝐮              (13) 

Note that y represents the vector of the dependent variables, x represents the matrix of explanatory 

variables, β is the vector of parameters, and u represents the vector of random errors. The x matrix was 

generated using a multivariate normal distribution ,i.e.x ∼ MN(0,Σ),with  Σx ij = 0.5 i−j .A random 
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variable u is generated based on standard normal distribution with mean zero and variance one. Thetrue 

parameters β = (1,1, 1
2 , 1

3 , 1
4 , 1

5 , 0,… ,0),p=10,n=30 and 100.The default values of  θ =

 0.25,0.50,0.75 . 

TABLE (Ⅰ) 

shows the simulation results for the first experiment when n = 30, p = 10 

𝛉 Estimators MSE FPR FNR 

 

 

0.25 

SCAD 0.0697 0.125 0.35 

Adaptive 

lasso 

0.0613 0.025 0.35 

Shrinkage 0.0387 0.075 0.25 

 

 

0.50 

SCAD 0.0609 0.2 0.3 

Adaptive 

lasso 

0.0846 0.1 0.333 

shrinkage 0.0391 0.1 0.2 

 

 

0.75 

SCAD 0.0497 0.3 0.283 

Adaptive 

lasso 

0.0510 0.125 0.266 

shrinkage 0.0503 0.2 0.183 

 

TABLE (Ⅱ) 

shows the simulation results for the first experiment when n = 100, p = 10 

𝛉 Estimators MSE FPR FNR 

 

 

0.25 

SCAD 0.0350 0.025 0.3 

Adaptive 

lasso 

0.0716 0 0.3 

Shrinkage 0.025 0.015 0.29 
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0.50 

SCAD 0.0297 0.025 0.233 

Adaptive 

lasso 

0.0575 0 0.283 

shrinkage 0.0197 0.015 0.223 

 

 

0.75 

SCAD 0.0473 0.05 0.333 

Adaptive 

lasso 

0.0424 0 0.2 

shrinkage 0.0324 0.01 0.19 

 

Ⅳ. RESULTS 

 From Tables (Ⅰ) shown, the shrinkage estimator has the best because it gives the lowest value 

of MSE,FPR and FNR in estimation and the selection of variables. And when ( n=30)   the 

estimator of the (Adaptive lasso) penalty function has the best because it gives the lowest value 

for the FPR rate in case θ = 0.25. Either in case θ = 0.50,0.75  The SCAD has the best . 

 From Tables (Ⅱ )showns, the Shrinkage estimator has the best, When ( n=100) the estimator of 

a penalty function  SCAD  is the best. 

 

Ⅴ.CONCLUSIONS 

In this article, we proposed the (shrinkage) method and it was compared with the SCAD 

(Smoothly Clipped Absolute Deviation) and Adaptive Lasso penalty functions. After running the 

simulations, it was found that the proposed method is the best way to estimate and choose the 

variables. Becauseit has the lowest mean squared error   (MSE)  and   it has  lowestFalse Positive 

Rate(FPR) and False Negative Rate(FNR). 
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