Assessing Safety Culture and Safety Climate in Electrical Accidents of Utility Sector and Development of Accident Model

Beena Puthillath¹, M. Bhasi², C. A Babu³ Research Scholar¹, Professor^{2,3}, Cochin University of Science & Technology beena.ajit1998@gmail.com¹, mbhasi@gmail.com², drcababu@gmail.com³

Article Info	Abstract
Page Number: 6277-6302	A survey was conducted in Electrical utility sector of Kerala in India. The
Publication Issue:	scale for measuring safety culture and safety climate was developed and
Vol. 71 No. 4 (2022)	validated. Safety climate and safety culture was assessed using a five point scale. Three hundred people who are directly exposed to electric safety
Article History	issues from districts of Kerala are collected. The data was statistically
Article Received: 25 March 2022	analyzed using reliability analysis, exploratory factor analysis (EFA),
Revised: 30 April 2022	confirmatory factor analysis (CFA) and model fit indices (MFI). The
Accepted: 15 June 2022	measured model indicates a good model fit indices. In the study it was found
Publication: 19 August 2022	that safety climate and safety culture are correlated to electrical safety
	issues. The result showed Safety climate is contributing more to accidents
	compared to safety culture. This result highlights the need to focus more on
	the safety climate to reduce electrical safety issues compared to safety
	culture in the utility sector. This result and findings will provide valuable
	insight to future research in implementing novel methods to ensure a good
	safety climate and safety culture in the utility sector.
	Keywords: Safety Climate, Safety Culture, Reliability, Factor analysis,
	Accident model

1. Introduction

Occupational safety issues are the main problem in every industry. In the era of globalization, the use of electricity is high so also the related electrical safety issues. To reduce accidents, it is necessary to have a positive safety culture and safety climate. Many researchers have identified various factors that contribute to safety culture and safety climate to investigate safety outcomes to establish the relation between safety issues, safety climate and safety culture. If the safety issues in the electrical utility sector are kept unnoticed, it leads to electrical fire (Gao and Liu 2016, Asgary et al. 2010) and occupational accidents (Koustellis et al. 2013, Castillo-Rosa et. Al. 2017). Since the risk associated with electrical hazards is more (Chi et. al. 2012, Albert and Hallowell 2013, Khan et al. 2019) it needs special consideration.

The main objective of this study is to analyze whether safety culture and safety climate is correlated to safety issues in the utility sector. To develop an accident model based on the factors contributing to safety climate and safety culture which in turn leads to safety issues in the electrical utility sector. Safety issues are fatal accidents, nonfatal accidents, near misses and damage to equipment/ devices. To develop an accident model and to validate the model using model fit indices for checking whether the model is a good fit model. Also to find which factor is contributing more to electrical safety issues.

2. Literature Survey

The term safety climate and safety culture are used to refer nature of organizational policy and employees' attitudes toward safety issues [12, 39, 23, 56]. Safety culture is referred to individual and group beliefs, knowledge, competency, behavior patterns and attitudes [19, 24 and 37]. It also defines the efficiency of organizational safety and commitment [Industrial atomic energy agency, 1991]. Safety climate is how individuals see procedures, practices and safety rules at work (Griffin & Neal, 2000). Safety climate is how people in an organization perceive safety in their working environment (Zohar, 1980).

Safety climate is different in a different types of industries (Alruqi. et. al; 2010). Safety climate refers to organizational factors and environment which relate to the set of values of the organization while safety culture enhances safety performance by making people aware of accident hazards and their prevention (Guldenmund, 2000; He et al, 2012; Ismail, 2012). In high-risk industrial sectors safety, climate and safety culture are investigated to improve safety performance (Hamid, Cheyne and Cox; Kasim, Emami and Danaee, Hassan, 2019). Safety climate is the perception of employees regarding workplace safety and how it is managed [10, 16 and 41].

Safety climate is regarded as an individual attribute that opposes organizational attributes (James and Johns, 1974). The measure of safety climate reflects the perception of employees about safe conduct in their occupation (Zohar D, 1980). Management can influence the improving safety climate by focusing on effective training programs and decreasing hard work. [40]. Safety climate depends on psychological phenomena and keeps on changing [26]. Safety climate is evaluated to access potential problems in the workplace to enhance safety behavior and decrease the severity of the accident and their frequency [61].

Safety culture endures value and priority to work, workplace and public safety (Zhang et al.). It also refers to how individuals and groups are committed to personal responsibility to work safely. [42, 60]. Good safety culture provides a safer working environment for people working with electrical equipment. Continuous improvement in safety culture is necessary to improve electrical safety [15]. Establishing a safety culture increases the safety performance of workers. Human behavior and safe work knowledge have a strong influence on electrical safety. [14].

A high-level safety culture helps to reduce psychological hazards since it improves the safety performance of the employee. [18]. Safety performance is the safety management of a system which involves controlled output and is measured by safety training evaluation, safety equipment, incident investigation and measure of accident statistics (Yang C C). [57]. The safety culture started after the incident, of Chernobyl in 1986 (Yorio et al) [58]. Safety culture is the set of shared values, behavior and perception of employees in the organization. Organizational policies, procedures and practices have an impact on the risk of the hazard. [17]. Safety culture helps to assist performance and stress like involvement, work environment and management commitment. Management commitment helps to reduce stress and injury and improve employee skills. [55]. Griffin and Neal (2000) have not addressed the relationship and between safety culture and safety climate.

Sl	Items (Indicator	Literature			
No	Variables)				
1	Rules & Regulations	Rimal & Real 2003, Kamp & Krause 1997			
2	Safety Attitude	Stansfed 1998, Raouf & Dhillon			
3	Commercial Pressure	T L Yip, D Jin, W K Talley 2015			
4	Management	Rana M Van Tuyl 2021, Byrom & Corbridge 1997, Cox			
4	commitment	& Cheyne 2000, Cynthia 2005, Huang 2006,			

 Table 1: Literature on items influencing Safety Culture factor

Table 2: Literature on items influencing Safety Climate factors

S1	Items (Indicator	Literature
No	Variables)	
1	Negligence	Bowander 1987, Lan 2004, Isla Diaz & Diaz Cabrera 1997
2	Attitude	Raouf & Dhillon, Lan 2004, Zohar 1980, Niskanen 1994, Coyle 1995,Isla Diaz & Diaz1 Cabrera 1997, Cynthia
		2005, Vinod Kumar & Bhasi 2009, He 2010
3	Participation	Metin Bayram, Bulent Arpat, Yilmaz Ozkan 2021, Cox & Cheyne 2000,Lee 1998,Dedobbeleer & Beland 1991,Cynthia 2005,Zhang 2009,Vinod Kumar & Bhasi 2009,Barbaranelli 2015
4	Peer Pressure	Guillaume Alinier, Mohamud Varjee 2015,Rana M Van Tuyl 2021, Flin 2000
5	Stress	Rana M Van Tuyl 2021, Flin 2000, Lee 1998
6	PPE usage	Reason 1990, Kelm 2013, Hamid 2008, Wong, Wang, Law & Lo 2016, Siv Shingman Saad, Alabdulkarim, Alan Hoi Shouchan, Tingru Zhang 2021, Radwa Sehsah, Abdel Ateya 2020, Galuh Afanti, Dian R Sawitri, 2017
7	Specific Behaviour	J Mullen 2004, Byrom & Corbridge 1997,He 2010
8	Work plan	Fever 1997, cox 1998,Cox & Cox 199
9	Precondition for unsafe act/Prevention Strategy/ Risk preparation	Isla Diaz & Diaz Cabrera 1997,Zhang 2009,Ye 2014
10	Unsafe act	Mc Kinnon 2013
11	Site safety	Rana M Van Tuyl 2021, Cox & Cox 1991,Vinod Kumar & Bhasi 2009,Barbaranelli 2015,
12	Lack of monitoring/ Leadership attention	Hayes 1998, Zhang 2009, Ye 2014, Kelm 2013
13	Insufficient inspection	Saeed Givehchi Ehsan Hemmativaghef, Hassn Hoveidi 2017
14	Lack of proper maintenance	OSHA 1989

15	Poor record keeping	Rana M Van Tuyl 2021					
16	Safety effort	S Cox, T Cox 1991,Barbaranelli 2015,					
17	Deporting system	Mc Kinnon 2013, Zohar 1980, Rundmo 1992, Rana M Van					
17	Reporting system	Tuyl 2021,Byrom & Corbridge 1999,					
10	Audit/ Risk	Zou 2011, T Luo, C Wu, L Duan 2018, Williamson					
10	Assessment	1997,Zhang 2009, Barbaranelli 2015					
19	9 Physical Damage/ Risk Lee 1998, Givechchi 2017						
20	Monitoring system	Flin 2000,Barbaranelli 2015,					
21	Investigation	Beriha 2012,Barbaranelli 2015					
22	22 Chain of command error Rana M Van Tuyl 2021, Ye 2014,						
23	Type of organization	Flin 2000, Lan 2004, Givechchi 2017					
24	Mativation	Huey Wen Lim, Nan Li, Dongping Fang, Chunlin Wc 2018,					
24	wouvation	J Mullen 2004, Williamson 1997, Wong, Man & Chan 2020,					
		Rana M Van Tuyl 2021, Glendon & Stanton 2000, Lan 2004,					
25	Management support	Brown & Holmes 1986, Dedobbeleer & Beland 1991, Zhang					
		2009,Barbaranelli 2015,Givechchi 2017					
		Byrom & Corbridge 1999, Cox & Cheyne 2000, Neal					
26	Communication	2000,Isla Diaz & Diaz Cabrera 1997,Cynthia 2005,Ye					
		2014,Barbaranelli 2015					
27	Supervision	Lockley 2007, Flin 2000, Lan 2004, Ye 2014, Barbaranelli					
21	Supervision	2015					
28	Type of job/project	Rana M Van Tuyl 2021,Lan 2004,Barbaranelli 2015,					

Understanding and developing a positive safety attitude reduces accidents in the workplace since anxiety and anger result in huge costs or burdens to the organization [21, 25, and 1]. Few managers say that there is no commitment to the rule of safety (Joung et. al.). [30]. It is the professional and legal responsibility to have a safe and healthy working environment. The working environmental policies and procedures are needed to ensure geed safety and health in the workplace. [33]. Work involvement means promoting and supporting employees in safety matters of the workplace [43]. Psychological hazards occur due to the strong influence of perception, gender, experience, work stress, violence and bullying in the workplace. [5, 8, 35, 36, 49]. Some of the factors contributing to safety culture and safety climate is shown in table 1 and 2.

Structural Equation Modeling (SEM) is a multivariate method to determine the validity of competing hypotheses and to gather samples concerning a theory or concept [11, 31, 45, and 47]. Structural equation modelling finds application in engineering, management, economics, operation research, social science, education research etc. [22, 27, 34 and 46]. SEM is a powerful statistical tool for the assessment and modification of theoretical models. The confirmatory factor analysis helps to build the measurement part of the model where the relationship between construct and latent factors is studied [13, 20, 28, and 38]. Confirmatory factor analysis is based on hypotheses while exploratory factor analysis is derived from data

and is verified. Exploratory factor analysis analyzes the nature of latent construct and the relation between measured variables and latent factors. Confirmatory factor analysis helps to inspect how indicator variables represent latent factors. AMOS is a multivariable statistical software used to construct a model based on acquired data, test the model as well as compare several alternative models [44, 51]. To validate the model, model indices namely Chi-square/degree of freedom, Adjusted Goodness of fit, Parsimony Goodness of fit, Normed fit index, Parsimony normed fit index, Root-mean-square mean approximation and Root mean square residual is found. If the indices value is in the acceptable range we can conclude that the model is a best fit one.

3. Materials and Methods

In the study of Electrical safety issues due to safety culture and safety climate in the utility sector, a questionnaire survey method was used. The items under study was taken from literature (Table 1 and 2). The questions were taken from the literature and modified for the study. A Pilot study was conducted on 100 respondents who are directly connected with safety issues. Eight items were considered under safety culture and fifty-seven items were considered under safety climate. The pilot study was validated based on the response. Hence 200 more responses were collected by face-to-face interaction from respondents of each district of Kerala. Out of the total 300 responses, 291 response was considered for the final study since 9 of the respondents were not ready to answer all questions. For each item, one question was asked and the score was on 5 points Likert scale. These responses were used in Structural Equation Modeling using SPSS and SPSS AMOS 22. The framework of Structural equation modelling was represented in figure 1.

Figure1: Framework of Structural Equation Modelling

The indicator variables consist of eight items contributing directly to Safety Culture and fiftyseven items contributing to Safety Climate which in turn contributes to Safety issues indirectly. Out of the eight items only, four items from Safety culture and out of fifty-seven items only twenty-six items from Safety climate were found to be contributing to a good model based on the pilot study. So in the Structural Equation modelling, thirty indicator variables were considered. The indicator variables and their representation is shown in table 3 and 4.

Sl No	Items (Indicator Variables)	Representation
1	Rules & Regulations	Cu3
2	Safety Attitude	Cu6
3	Commercial Pressure	Cu7
4	Management commitment	Cu8

Table 3: Factors influencing Safety Culture (Scu) and their representation

Table 4: Factors influencing Safety Climate (Scl) and their representation

Sl	Items (Indicator Variables)	Represen	Sl	Items	Represe
No		tation	No		ntation
1	Negligence	(Cl1)	15	Poor record keeping	(Cl29)
2	Attitude	(Cl2)	16	Safety effort	(Cl31)
3	Participation	(Cl3)	17	Reporting system	(Cl34)
4	Peer Pressure	(Cl10)	18	Audit	(Cl38)
5	Stress	(Cl11)	19	Physical Damage	(Cl40)
6	PPE usage	(Cl14)	20	Monitoring system	(Cl42)
7	Specific Behaviour	(Cl17)	21	Investigation	(Cl43)
8	Work plan	(Cl20)	22	Chain of command error	(Cl45)
9	Precondition for unsafe act	(Cl21)	23 Type of organization	(Cl46)	
10	Unsafe act	(Cl22)	24	Motivation	(Cl47)
11	Site safety	(Cl23)	25	Management support	(Cl50)
12	Lack of monitoring	(Cl24)	26	Communication	(Cl51)
13	Insufficient inspection	(Cl26)	27	Supervision	(Cl54)
14	Lack of proper	(Cl27)	28	Type of job/job	(Cl57)
	maintenance			information	

Safety culture was represented as Scu and Safety Climate was represented as 'Scl'. The Safety issue was represented as SI and the four type of safety issues considered for the study was fatal accident, non-fatal accident, near misses and System damage. The average number of accidents per year in these four categories was collected from respondents and it was also brought to scale. The conceptual model of safety issues is shown in figure2.

[Cu3, Cu6, Cu7, Cu8] Scu

Figure 2: Conceptual model

The Exploratory factor analysis was conducted based on the indicators using SPSS. Using descriptive statistics checked normality by finding skew-ness and kurtosis. According to Brown, 2006 for structural equation modelling analysis the value of skew ness should be within -3 and +3 while kurtosis is between -10 and +10. The factor analysis method is used to reduce the number of factors, and to consider the factor which contributes to safety issues. The reliability of data was found by analyzing the value of Cronbach's alpha (Table 5).

Cron-bac alpha	Remarks
0.9	Excellent
0.8	Good
0.7	Acceptable
0.6	Questionable
0.5	Poor
<0.5	Unacceptable

Table 5: Cronbach's alpha value indication

The reliability of each indicator variable and types of safety issues was found based on Cronbach's alpha value. Also, the value of Cronbach's alpha of standardized items was found. It is an indication of content validity. The correlation was tested by conducting a Chi-square test (Kaiser-Meyer-Olkin Measure of Sampling Adequacy) Table 6 [58]. The significance can be found in the p-value.

Table 6: Kaiser-Meyer-Olkin Measure of Sampling Adequacy (Chi square test) value to test correlation

KMO (Kaiser-Meyer-Olkin) value	Appropriateness in decision making (factor analysis)
0.9	Marvellous
0.8	Meritorious
0.7	Middling
0.6	Mediocre
0.5	Miserable
<0.5	Unacceptable

To extract variables contributing to safety issues, varimax rotation is performed and grouped the variables based on their principal component analysis, the value of communalities and the component matrix. By performing confirmatory factor analysis factor loading was found using SPSS. The correlation test was performed using Hoteling's T-Squared Test and Intra-class Correlation Coefficient (F test) to check if there is a correlation between the safety culture factor and the safety climate factor. The p-value of zero indicates there is no correlation. After confirming the hypothesized factors' structure, the Structural model equation was developed and estimates were found using SPSS AMOS [29]. The regression weight if endogenous variable (factor loading) above 0.7 indicates an excellent model [58].

The variance of the error variable (exogenous variable) is acceptable if the composite reliability CR value is greater than 3 and the p-value is nearly zero. The loading factor of both direct and indirect loading as well as the total effect is also found to check whether the model is acceptable or not (Table 7). If the model is acceptable then the model is validated by finding out the model fit indices, using SPSS AMOS. For a good model the acceptable value of model fit indices is shown in table 8 [32,46,47,48,49,50,51,52,53,54,55,56,57,59].

Sl	Factor	Sample size		Factor loading for excellent
No	loading	needed		model
1	0.3	350		
2	0.35	250		
3	0.4	200		
4	0.45	150		>0.65 if sample size more than
5	0.5	120		100
6	0.55	100		
7	0.60	85		
8	0.65	70		
9	0.70	60		
10	0.75	50		

Table 7 Sample size and factor loading

Table 8: Model fit indices and their acceptable value for a good model

Sl						Referen	ce		
No	Acronym	Explication	Accep	oted fit					
1		abi aquara/dagraa	<=3-E	<=3-Excellent fit		Kline (1	998)	;	
	CUMIN/DF	of freedom	& <=5 Acceptable			Marsh	&	Hocevar	(1985);
		of freedom	fit			Hocevar, 1985			
2						Kline (2	2005)	;	
	AGFI	Adjusted	0.63	ТО	0.97,	Hu d	&	Bentler	(1998);
		Goodness of fit	Good fit		Tabachr	nick a	& Fidell (20	07)	
3	NFI	Normed fit index	0.72	ТО	0.99,	Bentler	& B0	onett, 1980	
			Good	fit					

4		Root mean square		
	RMSEA	mean	0.00 TO 0.13,	MacCallum et al (1996)
		approximation	Good fit	
5		Parsimony		
	PGFI	Goodness of fit	>0.5, Good fit	Tanaka, 1993
6		Parsimony		
	PNFI	normed fit index	>0.5, Good fit	James, Mulaik, & Brett, 1982
7	RMSR	Root mean square	0.01 to 0.14, Good	Diamantopoulos & Siguaw
		residual	fit	(2000);
				Steiger (2007)

4. Result and Discussion

The data was analyzed using SPSS and normality was tested. Both skewness and kurtosis are analyzed using descriptive statistics.

For SEM analysis, the acceptable value of skew ness is -3 to +3 while kurtosis is -10 to +10 (Brown, 2006). From table 9, it is clear that all items have skewness and kurtosis in the acceptable range. The reliability of data was checked by analyzing Cronbach's alpha. From table 10, it is seen that Cronbach's alpha value is greater than 0.862 (>0.8) which indicates the data is good as per literature (table 5).

			Mini	Max		Std.					
		Ran	mu	imu		Deviati	Varianc				
	Ν	ge	m	m	Mean	on	e	Skew	ness	Kurtosis	
									Std.		
Ite	Stati	Stati	Stati	Stati	Statist			Statist	Erro	Statist	Std.
ms	stic	stic	stic	stic	ic	Statistic	Statistic	ic	r	ic	Error
Cu 3	291	4	1	5	3.92	.573	.328	-1.002	.143	3.774	.285
Cu 6	291	4	1	5	3.91	.546	.298	-1.081	.143	4.317	.285
Cu 7	291	4	1	5	3.93	.549	.302	-1.047	.143	4.390	.285
Cu 8	291	4	1	5	3.92	.563	.317	837	.143	3.403	.285
Cl1	291	2	3	5	4.13	.495	.245	.273	.143	.704	.285
Cl2	291	3	2	5	4.00	.541	.293	134	.143	.940	.285
cl3	291	3	2	5	4.05	.510	.260	076	.143	1.535	.285
C18	291	3	2	5	4.09	.521	.272	184	.143	1.924	.285
Cl1 0	291	3	2	5	3.98	.572	.327	226	.143	.837	.285

Table 9: Descriptive Statistics

Cl1 1	291	2	3	5	4.07	.490	.241	.155	.143	1.096	.285
Cl1 4	291	3	2	5	4.06	.590	.348	318	.143	1.051	.285
Cl1 7	291	3	2	5	4.08	.526	.277	056	.143	1.186	.285
Cl2 0	291	2	3	5	4.07	.544	.296	.046	.143	.360	.285
Cl2 1	291	2	3	5	4.03	.504	.254	.065	.143	.961	.285
cl2 2	291	3	2	5	3.99	.551	.303	129	.143	.786	.285
Cl2 3	291	2	3	5	4.05	.522	.273	.071	.143	.654	.285
Cl2 4	291	2	3	5	4.02	.535	.286	.016	.143	.535	.285
Cl2 6	291	2	3	5	4.10	.516	.267	.137	.143	.615	.285
Cl2 7	291	2	3	5	4.08	.525	.276	.097	.143	.547	.285
Cl2 9	291	2	3	5	4.05	.552	.304	.027	.143	.290	.285
Cl3 1	291	2	3	5	4.11	.511	.261	.168	.143	.640	.285
Cl3 4	291	3	2	5	4.09	.540	.291	061	.143	.935	.285
Cl3 8	291	3	2	5	4.05	.542	.294	356	.143	2.009	.285
Cl3 9	291	2	3	5	4.06	.522	.272	.081	.143	.650	.285
Cl4 2	291	3	2	5	4.02	.635	.403	590	.143	1.410	.285
Cl4 3	291	3	2	5	4.12	.521	.272	.002	.143	1.169	.285
Cl4 7	291	3	2	5	4.08	.558	.312	212	.143	1.181	.285
Cl5 1	291	3	2	5	4.08	.546	.298	079	.143	.867	.285
Cl5 4	291	3	2	5	4.08	.529	.280	056	.143	1.133	.285
Cl5 7	291	3	2	5	4.05	.554	.307	097	.143	.749	.285
F	291	3	0	3	.28	.601	.362	2.184	.143	4.233	.285

										2320-	5005
NF	291	6	0	6	1.21	1.651	2.727	1.113	.143	057	.285
NM	291	10	0	10	2.11	2.484	6.170	1.006	.143	.007	.285
SD	291	5	0	5	1.47	1.634	2.671	.880	.143	424	.285

Factor	Item representation	Cron bach's Alpha	Factor	Item representation	Cron bach's Alpha	
	Cl1	.863		Cu3	.873	
	Cl2	.865	Safety	Cu6	.873	
	cl3	.864	Culture	Cu7	.873	
	Cl8	.863		Cu8	.875	
	Cl10	.864		F	.873	
	Cl11	.865	Types of	NF	.888	
	Cl14	.863	accidents	NM	.914	
	Cl17	.862		SD	.894	
	C120	.863				
	Cl21	.864				
	cl22	.865				
	Cl23	.864				
Safety	Cl24	.864				
Climate	Cl26	.862				
	Cl27	.863				
	Cl29	.863				
	Cl31	.863				
	Cl34	.863				
	C138	.863				
	C139	.863				
	Cl42	.862				
	Cl43	.863				
	Cl47	.863				
	Cl51	.863				
	Cl54	.863				
	Cl57	.863				

Table 10: Item and their Cron bach's alpha

The reliability statistics shown in table11 indicate that the standardized item has a reliability of 0.871 which is greater than 0.8, hence good reliable data. The correlation between safety issues and items of safety culture and safety climate was tested using the Chi-square test (Kaiser-Meyer-Olkin Measure of Sampling Adequacy value).

Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items
.871	.950

From the literature for a good correlation KMO value is greater than 0.8 (table 6). From table 12, the obtained value is 0.936 (>0.8) indicating a good correlation between items of safety climate and safety culture with safety issues.

Kaiser-Meyer-Olkin Measur	e of Sampling Adequacy.	.936
	Approx. Chi-Square	8026.550
Bartlett's Test of Sphericity	df	561
	Sig.	0.000

To extract items (endogenous variables) which influence more safety issues communality test was conducted in SPSS. For better relations, the value of communality should be greater than 0.4 for a sample size above 250. From table 13 it is clear that all the 30 endogenous variable has communalities value greater than 0.4.

Items	Initial	Extraction	Items	Initial	Extraction
Cu3	1.000	.551	C123	1.000	.553
Cu6	1.000	.608	C124	1.000	.585
Cu7	1.000	.595	C126	1.000	.738
Cu8	1.000	.566	Cl27	1.000	.670
Cl1	1.000	.739	C129	1.000	.646
C12	1.000	.500	Cl31	1.000	.702
cl3	1.000	.587	C134	1.000	.642
C18	1.000	.669	C138	1.000	.699
C110	1.000	.549	C139	1.000	.723
Cl11	1.000	.558	Cl42	1.000	.603
Cl14	1.000	.605	Cl43	1.000	.663
Cl17	1.000	.726	Cl47	1.000	.603
C120	1.000	.678	Cl51	1.000	.666
Cl21	1.000	.584	C154	1.000	.693
cl22	1.000	.484	Cl57	1.000	.613

Table 15. Communation	Table	13:	Communa	lities
-----------------------	-------	-----	---------	--------

The principal factor analysis was conducted to group the data. Based on the component matrix obtained from the principal factor analysis (Table 14) it is clear that there were only two components namely Safety Culture (Component 1) and Safety Climate (component 2). The loading value above 0.7 indicated a good variance or better explained by the variable. From table 14 it is clear that all items have a loading factor greater than 0.7.

	Component							
Items	1	2						
Cu3		.742						
Cu6		.779						
Cu7		.771						
Cu8		.743						
Cl1	.858							
C12	.706							
cl3	.765							
C18	.816							
Cl10	.741							
Cl11	.742							
Cl14	.777							
Cl17	.852							
C120	.822							
Cl21	.760							
cl22	.692							
C123	.741							
C124	.758							
C126	.859							
Cl27	.818							
C129	.804							
Cl31	.838							
C134	.801							
C138	.829							
C139	.848							
Cl42	.774							
Cl43	.814							
Cl47	.777							
Cl51	.815							
Cl54	.832							
Cl57	.780							

Table 14: Component Matrix (two component Extracted)

*Extraction: Principal Component Analysis.

By conducting a Principal component analysis, the total variance explained can be found. This helps to understand which component is influencing more safety issues. From table 15, it is

clear that Safety culture (component 1) explains 48.3% while Safety climate (Component 2) explains 55.5%. So to reduce safety issues importance has to be given to safety climate compared to safety culture. The total variance explained by each item is also obtained (table 15). Each item contributes more than 70% based on the total variance explained in the table (table 16).

			Extraction Sums of Squared			Rotation Sums of			
	Initial Eigenvalues			Loadings			Squared Loadings		
Com		% of						% of	Cumu
pone		Varianc	Cumulat		% of	Cumulati	Tota	Varianc	lative
nt	Total	e	ive %	Total	Variance	ve %	1	e	%
1	16.44	48.362	48.362	16.4	48.362	48.362	16.4	48.316	48.31
	3			4			3		6
2	2.438	7.172	55.534	2.43	7.172	55.534	2.45	7.218	55.53
				8			4		4
3	1.505	4.427	59.961						
4	1.125	3.308	63.269						
5	1.075	3.162	66.432						
6	1.020	3.000	69.431						
7	.881	2.593	72.024						
8	.818	2.406	74.430						
9	.716	2.107	76.537						
10	.634	1.866	78.403						
11	.617	1.814	80.217						
12	.581	1.709	81.926						
13	.542	1.595	83.521						
14	.506	1.487	85.008						
15	.481	1.416	86.424						
16	.460	1.354	87.778						
17	.407	1.196	88.975						
18	.370	1.089	90.064						
19	.353	1.038	91.102						
20	.319	.938	92.039						
21	.300	.883	92.922						
22	.291	.856	93.778						
23	.271	.797	94.575						
24	.257	.755	95.330						
25	.233	.684	96.014						
26	.216	.634	96.648						
27	.200	.589	97.238						
28	.197	.579	97.817						
29	.181	.533	98.350						

Mathematical Statistician and Engineering Applications
ISSN: 2094-0343
2326-9865

30	.167	.492	98.843
31	.126	.370	99.212
32	105	310	99 522
52	.105	.510	<i>JJ.322</i>
33	.090	.264	99.786
34	.073	.214	100.000
·			

Table 16: Rotated Component Matrix [Extraction Method: Principal Co	mponent Anal	ysis]
---	--------------	-------

	Component						
Items	1	2					
Cu3		.742					
Cu6		.779					
Cu7		.770					
Cu8		.739					
C11	.856						
C12	.704						
cl3	.763						
C18	.818						
C110	.740						
Cl11	.739						
Cl14	.778						
Cl17	.852						
C120	.823						
Cl21	.757						
cl22	.689						
Cl23	.739						
C124	.755						
C126	.858						
Cl27	.818						
C129	.803						
Cl31	.838						
C134	.801						
C138	.832						
C139	.849						
Cl42	.772						
Cl43	.814						
Cl47	.777						
Cl51	.816						
C154	.833						
C157	.782						

The Accident Model was developed (Figure 3) using SPSS AMOS based on the above analysis. The model was tested to validate.

Figure 3: Accident Model- AMOS Model

The regression weight of the endogenous variable was found to be greater than 0.6, indicating good weightage or a better-explained variable (Table 19). It is clear from table 17 and table 18, the factors are independent and there is no correlation between them.

Table 17:Hotelling's T-Squared Tes

Hoteling's				
T-Squared	F	df1	df2	Sig
12070.981	325.425	33	258	.000

		95% Confidence Interval		F Te	st with	True Va	lue 0
		Upper					
	Intraclass		Boun				
	Correlation	Lower Bound d		Value	df1	df2	Sig
Single	.166	.142	.195	7.777	290	9570	0.000
Measures							
Average	.871	.849	.892	7.777	290	9570	0.000
Measures							

Table 18: Intraclass Correlation Coefficient

Table 19: Standardized Regression Weights

Endogenous variable			Estimate	E	Endogeno	us variable	Estimate
Cu3	<- 	SCul_saf	0.664	Cl23	<	Scli_saf	0.718
Cu6	<- 	SCul_saf	0.797	Cl24	<	Scli_saf	0.734

Cu7	<- 	SCul_saf	0.689	Cl26	<	Scli_saf	0.859
Cu8	<- 	SCul_saf	0.666	Cl27	<	Scli_saf	0.82
C11	<- 	Scli_saf	0.86	Cl29	<	Scli_saf	0.799
C12	<- 	Scli_saf	0.678	Cl31	<	Scli_saf	0.84
C13	<- 	Scli_saf	0.738	C134	<	Scli_saf	0.799
C18	<- 	Scli_saf	0.817	C138	<	Scli_saf	0.83
C110	<- 	Scli_saf	0.716	C139	<	Scli_saf	0.851
Cl11	<- 	Scli_saf	0.718	Cl42	<	Scli_saf	0.755
Cl14	<- 	Scli_saf	0.782	Cl43	<	Scli_saf	0.816
Cl17	<- 	Scli_saf	0.856	Cl57	<	Scli_saf	0.779
C120	<- 	Scli_saf	0.819	Cl54	<	Scli_saf	0.835
Cl21	<- 	Scli_saf	0.738	Cl51	<	Scli_saf	0.812
C122	<- 	Scli_saf	0.667	Cl47	<	Scli_saf	0.777

*The value above 0.6 is acceptable for a good model.

The standard regression weight of accepted items is shown in table 19. The variance explained by the exogenous variables was found. From table 20 is clear that the estimate or weightage is less. The composite reliability CR is greater than 3 and the p-value is zero. This indicates a good model. The standard error is also found to be less for the exogenous variables.

Exogenous variable	Estimate	S.E.	C.R.	Р	Label
e43	0.03	0.009	3.304	***	par_29
e35	0.196	0.03	6.518	***	par_30
e37	0.193	0.023	8.295	***	par_31
e1	0.196	0.02	9.712	***	par_32
e2	0.13	0.019	6.928	***	par_33
e3	0.17	0.018	9.342	***	par_34
e4	0.189	0.02	9.681	***	par_35

					2520	'
еб	0.064	0.006	11.293	***	par_36	
e7	0.159	0.013	11.818	***	par_37	
e8	0.119	0.01	11.728	***	par_38	
e9	0.091	0.008	11.517	***	par_39	
e10	0.16	0.014	11.766	***	par_40	
e11	0.117	0.01	11.762	***	par_41	
e12	0.142	0.012	11.633	***	par_42	
e13	0.075	0.007	11.321	***	par_43	
e14	0.098	0.009	11.506	***	par_44	
e15	0.116	0.01	11.727	***	par_45	
e16	0.169	0.014	11.832	***	par_46	
e17	0.133	0.011	11.762	***	par_47	
e18	0.133	0.011	11.736	***	par_48	
e19	0.07	0.006	11.301	***	par_49	
e20	0.091	0.008	11.505	***	par_50	
e21	0.111	0.01	11.578	***	par_51	
e22	0.077	0.007	11.411	***	par_52	
e23	0.106	0.009	11.577	***	par_53	
e24	0.092	0.008	11.459	***	par_54	
e25	0.076	0.007	11.353	***	par_55	
e26	0.168	0.014	11.698	***	par_56	
e27	0.092	0.008	11.521	***	par_57	
e38	1.063	0.227	4.692	***	par_58	
e40	1.405	0.118	11.901	***	par_59	
e41	0.48	0.041	11.563	***	par_60	
e42	0.465	0.04	11.545	***	par_61	
e34	0.121	0.01	11.636	***	par_62	
e32	0.102	0.009	11.533	***	par_63	
e30	0.124	0.011	11.642	***	par_64	
e33	0.086	0.007	11.439	***	par_65	

*Value of CR above 3 & p value<0.01 is acceptable for a good model.

Table 21: Standardized Direct Effec	ts
-------------------------------------	----

Factors (Endogenous variables)	Safety Climate	Safety Culture
Cl47	0.777	0
Cl51	0.812	0
C154	0.835	0
C157	0.779	0
C143	0.816	0
Cl42	0.755	0
C139	0.851	0
C138	0.83	0

Cl34	0.799	0
Cl31	0.84	0
C129	0.799	0
Cl27	0.82	0
Cl26	0.859	0
Cl24	0.734	0
Cl23	0.718	0
C122	0.667	0
Cl21	0.738	0
C120	0.819	0
Cl17	0.856	0
Cl14	0.782	0
Cl11	0.718	0
C110	0.716	0
Cl8	0.817	0
Cl3	0.738	0
Cl2	0.678	0
Cl1	0.86	0
Cu8	0	0.666
Cu7	0	0.689
Cu6	0	0.797
Cu3	0	0.664

Table 22: Indirect Effects

Endogenous	Cofety Jacuas	Safety	Safety
Variable	Safety Issues	Climate	Culture
Cl47	0.921	0	0
Cl51	0.942	0	0
C154	0.939	0	0
C157	0.918	0	0
C143	0.903	0	0
C142	1	0	0
C139	0.944	0	0
C138	0.957	0	0
C134	0.917	0	0
Cl31	0.913	0	0
C129	0.937	0	0
C127	0.915	0	0
C126	0.943	0	0
C124	0.833	0	0
C123	0.796	0	0

C122	0.779	0	0
Cl21	0.79	0	0
C120	0.947	0	0
Cl17	0.958	0	0
Cl14	1	0	0
Cl11	0.748	0	0
C110	0.869	0	0
C18	0.905	0	0
C13	0.798	0	0
Cl2	0.779	0	0
Cl1	0.906	0	0
Cu8	0.817	0	0
Cu7	0.826	0	0
Cu6	1	0	0
Cu3	0.828	0	0

The standard effect obtained while testing the model is shown in table 21. It is found that the standard direct effect is greater than 0.65, indicating a good model. Hence the endogenous variable of safety climate and safety culture explains safety issues in a good way, as the four exogenous variables namely Cu3, Cu6, Cu7 and Cu8 are directly connected to safety culture while the other twenty-six variables are directly connected to safety climate.

The four endogenous variables connected to safety culture and twenty-six variables connected to safety climate are indirectly connected to safety issues. Their indirect effect is shown in table 22. It is clear from table 20 that all the endogenous have weightage greater than 0.75 indicating a good model. It is also clear that there is no indirect effect on safety culture and safety climate. So the developed model is correct.

	SI	Scli_saf	SCul_saf
Scli_saf	1	0	0
SCul_saf	1	0	0
Cl47	0.921	0.921	0
Cl51	0.942	0.942	0
Cl54	0.939	0.939	0
C157	0.918	0.918	0
D	1	0	0
F	1	0	0
NF	1	0	0
SD	4.601	0	0
Cl43	0.903	0.903	0

				155
Cl42	1	1	0	
C139	0.944	0.944	0	
C138	0.957	0.957	0	
C134	0.917	0.917	0	
Cl31	0.913	0.913	0	
Cl29	0.937	0.937	0	
Cl27	0.915	0.915	0	
Cl26	0.943	0.943	0	
Cl24	0.833	0.833	0	
Cl23	0.796	0.796	0	
Cl22	0.779	0.779	0	
Cl21	0.79	0.79	0	
C120	0.947	0.947	0	
Cl17	0.958	0.958	0	
Cl14	1	1	0	
Cl11	0.748	0.748	0	
Cl10	0.869	0.869	0	
C18	0.905	0.905	0	
Cl3	0.798	0.798	0	
Cl2	0.779	0.779	0	
Cl1	0.906	0.906	0	
Cu8	0.817	0	0.817	
Cu7	0.826	0	0.826	
Cu6	1	0	1	
Cu3	0.828	0	0.828	

The total effect of items on safety issues, safety climate and safety culture was found as shown in table 23. It was found that the estimated value is more than 0.7 indicating a good model. The model can explain well the safety issues with the endogenous variable. Also, the safety climate and safety culture have a direct effect on the safety issues, having a total effect of one.

Τ-1-1- Δ4. ΝΛ-1-1 Γ.	· · · · · · · · · · · · · · · · · · ·	
13 me / 4 whose 11	indices for th	e accented model
$1 u \cup 1 \cup \Delta \neg$, $1 u \cup u \cup 1 u \cup 1$	mances for an	accepted model

Sl				Obtained	Inference
No	Acronym	Explication	Accepted fit	value	
1		chi squara/dagraa	<=3-Excellent fit		Acceptable
	CUMIN/DF	of freedom	& <=5 Acceptable	3.89	
		or meedom	fit		
2					Good fit
	AGFI	Adjusted	0.63 TO 0.97,	0.66	
		Goodness of fit	Good fit		
3	NFI	Normed fit index	0.72 TO 0.99,	0.762	Good fit
			Good fit		

4		Root mean		0.1	Good fit
	RMSEA	square mean	0.00 TO 0.13,		
		approximation	Good fit		
5		Parsimony		0.621	Good fit
	PGFI	Goodness of fit	>0.5, Good fit		
6		Parsimony		0.72	Good fit
	PNFI	normed fit index	>0.5, Good fit		
7	RMSR	Root mean	0.01 to 0.14, Good	0.048	Good fit
		square residual	fit		

To accept the model, the model should have standard model fit indices as given in Table 8. The model fit indices of the model under study are shown in table 24. It is clear from the table that CUMIN/DF (comparison if the observed variables and expected results are statistically significant) value is 3.89 which is between 3 and 5, so acceptable. The adjusted goodness of value or AGFI indicates the computation of GFI by adjusting against the degree of freedom and the acceptable value is between 0.63 and 0.97 for a good model. Here obtained value is 0.66 indicating a good fit model. The normed fit index (NFI) indicates scaling between (fitting terribly) independence models and (fitting perfectly) saturated models and for a good model, its value should be between 0.72 and 0.99. Here the obtained value for the model is 0.762 indicating a good fit model. The Root Mean Square Mean Approximation (RMSEA) indicates an overall badness-of-fit measure that is based on the fitted residuals. For a good fit Model, the value of RMSEA should be between 0.00 and 0.13. Here the obtained value of RMSEA for the model is 0.1, which indicates a good model fit. The parsimony goodness of fit index (PGFI) indicates a modified GFI model wherein loss of a degree of freedom is considered. The good fit model has a PGFI value greater than 0.5. In this model considered the value of PGFI is obtained as 0.621 indicating a good fit model. The PNFI (parsimony normed fit index) indicates a modified NFI model wherein loss of a degree of freedom is considered. For a good fit model, the value of PNFI should be greater than 0.5. The value obtained for this model is 0.72 indicating a good fit model. The Root Mean Square Residual (RMSR) value indicates the overall badness-of-fit measure that is based on the fitted residuals. For a good model, the value of RMSR should be between 0.01 and 0.14. For this model, the value of RMSR is obtained as 0.048 which indicates a good fit model. Hence based on the seven indices (Table 24) the model is having good model fit indices. So we can conclude that the model is a good fit model.

5. Conclusion

Safety climate and safety culture have always been root causes of safety issues in the utility sector. Researchers have carried out various studies to determine safety, health and environmental issues in different high-risk industries where the impact of the accident is very high. This study examined the connection of safety climate and safety culture with safety issues. According to this study, safety climate and safety culture have a good correlation with safety issues. Four items are influencing safety culture while twenty-six items are influencing safety climate since they have a high correlation. The exploratory factor analysis showed that

the thirty endogenous variables are the root cause of electrical safety issues in the utility sector. The confirmatory factor analysis showed that the two components namely safety climate and safety culture are the influencing factors of electrical safety issues. It was also found that safety climate is influencing more safety issues compared to safety culture in this study. The structural equation model was developed and model fit indices were analyzed to check whether the model is having good fit indices. It was found that indices namely Cumin/df (Chi-square/degree of freedom), Adjusted Goodness of fit, Parsimony Goodness of fit, Normed fit index, Parsimony normed fit index, Root-mean-square mean approximation and Root mean square residual have values of 3.89, 0.66,0.62, 0.762,0.72, 0.1 and 0.048 respectively falls in the good fit model index category. Hence we can conclude that the model is a good fit and the factors namely safety climate and safety culture could explain well the safety issues. The total variance explained value indicates safety climate issue is more compared to the safety culture issue. To reduce the safety issues in the utility sector based on this study, we have to focus more on safety climate compared to safety culture.

References

- [1]. Ajmal M, Nizam Isha a S, Md Nordin S, Kanwal N, Al-Mekhlafi A A, Naji G M A, "A conceptual framework for the determinants of originality: Does safety commitment matters?", Solid State Technology, 2020, 63, 4112-4119
- [2]. Antony, M. M. (2006). Assessment of Anxiety and the Anxiety Disorders: An Overview. Practitioner's Guide to Empirically Based Measures of Anxiety, 9–17.
- [3]. Bentler PM. Comparative fit indexes in structural models. Psychol Bull1990; 107(2):238-46.
- [4]. Bentler PM, Bonett DG. Significance tests and goodness of fit in the analysis of covariance structures. Psychol Bull 1980; 88(3):588.
- [5]. Bergh L L V, Hinna S, Leka S, Jain A, "Developing a performance indicator for psychological risk in the oil and gas industry", Safety Science, 2014, 62, 98-106.
- [6]. Bollen KA. A new incremental fit index for general structural equation models. Soc Method Res 1989; 17 (3):303-16.
- [7]. Browne MW, Cu deck R. Alternative ways of assessing model fit. SocMethod Res 1992; 21(2):230-58.
- [8]. Cooper C L, "Theory of organizational Stress", OUP Oxford UK, 1998[39]
- [9]. Cooper D, "Improving safety culture: A practical guide", England John Wiley and sons, 1998, 32-34.
- [10]. De Dobeler N Blend, "Safety climate measure of construction sites", Journal of Safety Research, 1991, 22, 97-103
- [11]. Dejan Dragan, Darja Topolsek, "Introduction to structural equation modeling: Review, Methodology, Practical Applications", the international conference of Logistic and sustainable transport, 2014.
- [12]. Di AZ, Rosa Isla and D D Cabrera, "Safety climate and attributes as evaluation measures of organizational safety", Accident analysis and prevention, 29(5), 1997, 643-650.
- [13]. D K K and W P Steward, "A structural equation model of residents' attitudes for tourism development", Tourism Management, Vol 23 (2002), 521-530.

- [14]. Dong Zhao, Andrew Mc Coy, Brian Kleiner and Yingbin Feng, "Integrating safety culture into OSH risk mitigation: A pilot study on electrical accidents", Journal of civil engineering and management, 22(6), 2016.
- [15]. D. Raw Crow, Danny P, Liggett, Mark A Scott, "Changing the electrical safety culture", IEEE IAS Electrical safety workshop, 2017, pp1-7.
- [16]. Dov, Zohar," Safety climate in industrial organizations: Theoretical and applied implications", Journal of applied psychology, 65(1), 96-102, 1980.
- [17]. Fernandez Muniz B, Montes Peon J M, Vazquez Ordas C J, "Safety culture: Analysis of the causal relationship between its key dimensions", J. saf. Res. 2007,38,627-664
- [18]. Gehad Mohammed Ahmed Naji, Ahmed Shahrul Nizan Isha and Mohammed Alzoraiki, "Impact of safety culture on safety performance; Mediating role of psychosocial hazard: An Integrated Modelling Approach", International Journal of Environmental Research and Public Health, 2021(18), 8568
- [19]. Guldenmund F, "The nature of safety culture: A review of theory and research", Safety Science, 2000,34, 215-257.
- [20]. Hair et al., "Multivariate data analysis", seventh edition, Pearson Prentice Hill, 2010
- [21]. Henning J B, Stufft C J, Payne S E, Bergman M E, Mannan M S, Keren N, "The influence of individual differences on organizational safety attitudes", Safety Science, 2009, 47, 337-345
- [22]. Hooper, D., Coughlan, J., & Mullen, M. R. (2008). Structural Equation Modeling: Guidelines for Determining Model Fit. The Electronic Journal of Business Research Methods, 6(1), 53–60
- [23]. Intan Suraya Noor Arzahan, Zaliha Ismail, Siti Munira Yasin, "Safety culture, Safety Climate and Safety Performance in health care facilities: A systematic review", Safety Science, 147, 2002
- [24]. Liu, chao, "Study on the work unsafe behavior: Effective factor analysis, empirical research and counter measuring, China University of Geoscience, 2010, pp213.
- [25]. Liu S, Nkrumah E N K, Akoto L S, Gyabeng E, Nkrumah E, "The state of occupational health and safety management framework(OHSMF) and occupational injuries and accidents in the Ghanaian oil and gas industry: Assessing the mediating role of safety knowledge", Bio. Med Res. int., 2020, 6354895
- [26]. Jarvis M, Virovere A, Tint P, "Knowledge management and safety culture- evidence from Estonia", Safety Tech Environ, 2014, 5-6.
- [27]. J C Anderson and D W Gerbing," Structural equation modeling in practice: A review and recommendation two step approach", Psychol.Bull., vol 103 (1998), 411-423[42]
- [28]. J F Hair, W C Black, B J Babin & R E Anderson, "Multivariate Data Analysis, 7th Edition, Prentice Hall, New Jersey 2010.
- [29]. Joreskog K, Sörbom D. Scientific Software. 3rd ed. Moorsville: LISRELVI Users Guide; 198.
- [30]. Joung H W, Goh B K, Huffman L, Yuan J, Surles J, "Investigating relationship between internal marketing practices and employ organizational commitment in food service industry", Int. J. Contemp. Hosp. Manag., 2015, 27, 1618-1640

- [31]. Kecklund L, Ingre M, Kecklund G, Sediestrom M, Akerstedt T, Lindberg E, Jansson A, Olsson E, Sandblad B, Almquist P, "The train project: Railway safety and train driver information environment and work situation - A summary of the main results", In proceedings of the signaling safety, 2001, London UK, 2001, 26-27
- [32]. Kenny, D. A. (2020). Measuring Model Fit. http://www.davidakenny.net/cm/fit.htm
- [33]. Kirwan M, Matthews A, Scott P A, "The impact of the work environment of nurses on patient safety outcomes: A multilevel modeling approach", Int. J. Nurs. Stud., 2013, 50, 253-263
- [34]. Kock, N. (2016). Hypothesis testing with confidence intervals and P values in PLS-SEM. International Journal of E-Collaboration, 12(3), 1–6
- [35]. Leka S, Jain A, Lerouge L, "Work related psychological risks: Key definition and overview of the policy context in Europe", Int. Psychological risks in labor and social law, Springer Berlin, 2017, 1-12.
- [36]. Leka S, Jain A, WHO Health impact of psychological hazards at work: An overview, WHO Geneva, Switzerland, 2010, 126. & Bergh L L V, Hinna S, Leka S, Jain A, "Developing a performance indicator for psychological risk in the oil and gas industry", Safety Science, 2014, 62, 98-106.
- [37]. Liu S, Nkrumah E N K, Akoto L S, Gyabeng E, Nkrumah E, "The state of occupational health and safety management framework(OHSMF) and occupational injuries and accidents in the Ghanaian oil and gas industry: Assessing the mediating role of safety knowledge", Bio. Med Res. int., 2020, 6354895.
- [38]. Mainul Haque, Muhamad saiful Bahri Yusoff, M D Anwarul Azim Majumder, Zainal Zulkifl, Farah Hanani Binti Mohd Nasir, "Analysis and Results: Confirmatory Factor Analysis the Malay Version of Dreem Inventory with medical students of Unisza, Kuala Terengganu, Malaysia" Asian Journal of Pharmaceutical and Clinical Research, vol10, issue 12,2017,338-344.
- [39]. Marsh HW, Hocevar D. Application of confirmatory factor analysis to the study of selfconcept: First-and higher order factor models and them in variance across groups. Psychol Bull 1985;97(3):562
- [40]. Moien Kiani, Mohsen Asgari, Faezeh Abbas Gohari, Zahra Rezvani, "Safety climate assessment: A survey in an Electric Power Distribution company", International Journal of occupational safety and ergonomics, 2022, 28(2), 709-715.
- [41]. Neal A, M A. Griffin and P M Hart, "The impact of organizational climate on safety climate and individual behavior", Safety Science, 34(2000), 99-109.
- [42]. Nurul Khasanah, Kholil and Sugiarto, "Analysis of the effect of leadership to safety climate, safety culture and safety performance", Asian Journal of Advanced Research and Reports, 2019, 4(2), 1-12.
- [43]. Ocloo J, Garfield S, Dawson S, Franklin B D, "Exploring the theory, barriers and enables for patient and public involvement across health, social care and patient safety: A protocol for a systematic review of reviewers", BMJ open 2017, e018426.
- [44]. Pousette, Anders, S Larsson and M Torner, "Safety climate cross validation, strength and prediction of safety behavior", Safety Science 46 (2008); 398-404.

- [45]. P W Lei & Q. Wu, "Estimation in structural equation modeling", Handbook of Structural equation modeling, Guilford Press, Newyork.
- [46]. Q. Wu, "Estimation in structural equation modeling", Handbook of Structural equation modeling, Guilford Press, Newyork
- [47]. Reiner B, D Ambrosio L A, Coughlio J F, Fried R, Biederman J, "Task induced fatigue and collisions in adult drivers with attention deficit hyperactivity disorder", Traffic Inj. Prev. 2007, 8, 290-299
- [48]. Rong, Jing, "Research on the relationship of traffic safety awareness and safety behavior", Beijing Jiaotong University, 2008, 16-25.
- [49]. Ruiz L, Brown M, Li Y, Boots E, Barnes L, Jason L, Zenk S, Clarke P, Lamar M, "Neighborhood socioeconomic resources and crime related psychological hazard, Stroke risk and cognition in older adults", Int. J. Environ. Public health, 2021, 18, 5122
- [50]. Shi, D., & Lee, T. (2019). Understanding the Model Size Effect on SEM Fit Indices. Educational and Psychological Measurement, 79(2), 310–334.
- [51]. Shujun Tang and Liuzhan Jia, "AMOS: A new tool for management innovation in IT Industry", Electrical Engineering and Control, Lecture notes in Electrical Engineering, vol 98, Springer, Berlin.
- [52]. Tiju Baby, G Madhu, V R Renjith, "Occupational Electrical Accidents: Assessing the role of Safety Culture and Safety Climate factors", Safety Science, 139(2021).
- [53]. Wen, Zhonglin, "Structural Equation Modeling Test: Fitting index and Chi square criterion", Journal of psychology, 2(2004), 186-194.
- [54]. Wilkinson F C, Lewis L K, "Developing a safety training program", Libr.arch. Secur., 2008, 21, 77-85.
- [55]. Williamson, Ann M et al; "The development of a measure of safety climate: The role of safety perception and attitude", Safety Science, 25(1997), 15-27.
- [56]. Wu, Jianjin, X L Geng and G Fu, "Study on the impact of a safety atmosphere to employee safety behavior based on the intermediary effect method", Journal of safety science and technology, 3(2013), 80-86.
- [57]. Yang C C, Wang Y S, Chang S T, Guo S E, Fuang M F, "A study on the leadership behavior, safety culture and safety performance of the healthcare industry", World Academic Science Engineering and Technology, 2009(53), 1148-1155.
- [58]. Yorio P L, Edwards J, Hoeneveld D, "Safety culture across cultures", Safety Science, 2019(120), 402-410.
- [59]. Zhang, Jiangshi et al., "Study on safety atmosphere measurement scale", Journal of Chinese Society for Safety Science, 6(2009), 85-92.
- [60]. Zhang H, Weigmann D A, Von Thaden T L, Sharma G, Mitchell A A, "Safety culture: A concept of Chaos?", Proceedings of the 46th annual meeting of human factors and ergonomics society, santa monica, 2002
- [61]. Zohar D, "A group level model of safety climate: Testing the effect of group climate on micro accidents in manufacturing jobs", Journal of applied psychology, 2000, 85(4), 587-596.