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Abstract 

The well recognized reality concerning the discrete information models 

indicates the practical magnitude of their relevance towards countless 

information processing systems. On the other hand possible codeword 

lengths and their possible lower bounds in addition happen to be a subject 

of matter for the furtherance of research. At the same time coding theory 

formulates transactions with a variety of codes accessible with the 

literature of information theory including uniquely decipherable codes, 

instantaneous codes, possible codes, suitable codes and the best 1:1 codes. 

The primary objective of our learning is to extend the literature on these 

codes along with the illustration of involvement sandwiched discrete 

entropic, divergence and inaccuracy models. The foremost intention of our 

communiqué is to make available the correspondence between information 

theoretic entropic models and the best 1:1 code for revealing the fruitful 

results. Additionally, our principal objective is to deliberate contributions 

of discrete divergence and inaccuracy models for the development of 

suitable codes. 

Keywords: Kraft’s inequality, Codeword length, Noiseless coding 

theorem, Suitable codes, Binary code, Best one-one codes.  

 

 

mailto:sharma.ret@gmail.com
mailto:omparkash777@yahoo.co.in
mailto:rakeshmaths@yahoo.in
mailto:vikram31782@gmail.com


Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 

6573 

 
Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

 

 

 

INTRODUCTION  

It is well celebrated actuality that to facilitate sensible applications of discrete information 

models in the control of probabilistic coding theory, a broad-spectrum approach has been endowed 

with in a structure pedestal on entropic model pioneered by Shannon [25]. This quantitative 

entropic model persuades several advantageous self-evident prerequisites and furthermore it can be 

capable of allocation with an outfitted consequence in imperative convenient optimization problems 

of numerous disciplines. This is the distinguished authenticity that information models are 

significant for convenient relevance of information dispensing a broad-spectrum advancement in 

statistical structure. This entropy persuades some advantageous self-evident requirements and 

additionally can be dispensed outfitted connotation in imperative realistic problems.  

The well-acknowledged and authoritative authenticity about the Coding theory provides the 

exploration of mixture of codes through discrete probabilistic entropic models and makes 

deliberations towards applications in extraordinary disciplines. Shannon [25] structured the 

hypothetical environment upon introducing the crucial conception of entropy ( )H P attached with 

the discrete probability spaces. The fundamentally well-acknowledged perception of probabilistic 

entropy premeditated by Shannon [25] enriched the literature of coding theory with the facilitation 

of numerous entropic models. This entrenched advancement arranged the stone of discrete 

information entropic model with astonishingly agreeable properties and was well acknowledged by 

means of subsequent quantitative model:  

)(PH = 
1

n

i i

i

p log p


                                                                                                          (1.1) 

To boost the literature of discrete entropic models, Parkash and Kakkar [15, 16] organized 

protracted efforts for the investigation of abundant entropic models for the discrete probability 

spaces from application point of observation and consequently enhanced the literature of discrete 

entropy models by means of twisting the subsequent quantitative entropic models: 
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             There subsist a colossal assortment of discrete entropic models but still expectedness arises 

to originate amplification in the manuscript of these models. Additionally, there become noticeable 

exceedingly strong involvement connecting entropy and Statistics from application position of 

thoughtfulness. To carry out this purpose, Parkash, Sharma and Singh [20] produced a new-fangled 

pioneering discrete entropic model and by this development, the authors improved the application 

area of well identified principle accountable for the clarification of abundant optimization problems 

known as “maximum entropy principle”. 

To enhance the literature of discrete weighted entropic models, Parkash, Kumar, Mukesh 

and Kakkar [19] well thought-out prolonged efforts for the exploration of plentiful weighted 

parametric entropic models for the discrete probability spaces from application point of view in the 

field of coding theory. Through their cooperative efforts, the authors delivered numerous 

observations and consequently enhanced the literature of such models by means of twisting the two 

subsequent quantitative outward show:
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This is to highlight that in addition to entropic models, divergence models also cooperate with 

momentous responsibility for the development of countless optimization problems. An additional 

viewpoint pertaining to the inevitability of such models is that the miscellaneous attempts have been 

made to broaden the perception of distance in assorted fields other than mathematical sciences 

where distance models can be effectively made functional. But, distance in such cases may not 

necessarily be geometrical and hence there is prerequisite for its modification. Keeping in mind the 

present conception, abundant distance models have been scrutinized by an assortment of 

researchers. Further, it is added that magnitude of events with which these outcomes happen cannot 
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be overlooked and consequently weights can be put together to these outcomes for the development 

of weighted divergence models. Motivated by the technique deliberated by Kapur [5], Parkash, 

Kumar and Kakkar [18] created certain innovative divergence models desired to be investigated for 

the discrete weighted distributions. 

Additionally, Huang and Zhang [3] delivered a surprising interpretation with reference to 

Shannon’s [25] mutual information and emphasized that it has been extensively second-handed its 

effective computation and it is over and over again complicated for innumerable realistic problems. 

As a consequence, the authors pointed out that asymptotic modus operandi pedestal on Fisher 

information frequently makes available wonderful estimates to such information and deliberated the 

estimates pedestal on certain divergence models in the probability spaces. Furthermore, the authors 

carried out numerical duplication and established that their estimated modus operandi were 

extraordinarily wonderful with burgeoning convenience to numerous realistic and hypothetical 

problems. This is supplementary additional that the discrete entropy models discover marvelous 

applications in abundant many disciplines. Certain pioneer towards application areas of entropy 

models include Renyi [21], Kapur [5], Parkash and Kakkar [15, 16] etc.   

It is well recognized that the discipline of information theory provides transactions with 

earth-shattering and a crucial areas concerned with the examination of a collection of codes for their 

applicability in divergent circumstances of the theory of different codes. More uncomplicatedly, the 

two mandatory insights, that is, entropy and coding are forcefully associated to each other and an 

outstandingly significant relation between the two was first accomplished by Shannon [25]. 

Additionally, it is meaningfully experimental that Kraft’s inequality participates with an imperative 

accountability in demonstrating coding theorems and is outstandingly established through the 

stipulation of exclusive decipherability. It cannot be personalized in a subjective approach, 

aggravated by the aspiration to demonstrate a new consequence. If we make amendment, we shall 

acquire codes with a dissimilar configuration other than UD codes dissatisfying our motive of 

study. This inequality is capable of contemplation in provisions of controlled budget to be 

exhausted on codewords with shorter codewords being supplementary exclusive. Along with D as 

alphabet size, let il  be the codeword length pleasant through well approved Kraft’s [11] inequality 

and specified by the subsequent mathematical manifestation: 

1 2 ... 1nll l
D D D

 
                                                                                     (1.7) 

https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=751640
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=264797
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After the commencement of mean length established by Shannon [25] himself, it was 

Campbell [1] who initially provided the inspiration of parametric mean length for uniquely 

decipherable (UD) codes with the establishment of the subsequent expression: 

(1 ) /
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                                                                                  (1.8) 

and additionally demonstrated that the lower bound for this standard length lies between ( )H P  

and ( ) 1H P   where  
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represents parametric discrete entropic model in the probability spaces investigated and derived 

through the efforts payable to Renyi [21]. After the well twisted mean length established by 

Shannon [25], Campbell [1] was the former to reflect upon an exceptional mean specified by the 

well ascribed equality pointed out in equation (1.9). With the support of Campbell’s [1] 

exponentiated mean, Parkash and Kakkar [14] made furtherance of research attached with other 

exponentiated means for the progression of application areas in abundant disciplines. To enhance 

the literature of such means, the authors twisted the subsequent two mean codeword lengths:  
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                                                                                                                  (1.11)                                                                                                                   

From the point of observation that divergence models in addition cannot be overlooked for the 

expansion of mean codeword lengths, Parkash and Kumar [17] made escalation of new weighted 

divergence model to provide new meaningful lengths and extorted the surviving ones. This ground-

breaking learning provided a profound participation flanked by weighted divergence model and the 

mean lengths given by the subsequent appearance: 
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In the manuscript of coding theory, the source codes are UD codes in view of the fact that 

these can traditionally be embedded as a sequence of source symbols. The distinctive decodability 

of UD codes endows the assurance that a faultless resurgence of the transmitted symbols from the 

acknowledged concatenated codewords is achievable. Although the foremost spotlight in the source 

coding text is on the category of UD codes, there has been certain research concentration in a less 

restraining but larger category of codes, the group of one-to-one codes. As such, unlike UD codes, 

one-to-one codes need not acquire distinctive decodability.  

Leung-Yan-Cheong and Cover [13] well thought-out on the literature of the one-to-one codes and 

demonstrated that the least amount of best one-to-one code symbolized by 1:1L convince the 

subsequent inequality fascinated in the company of logarithmic function: 

1:1

1

2
( ) log
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i

L H P
i

 
   
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                                                                                                          (1.13) 

where 1:1

1

log 1
2

n

i

i

i
L p



  
   

  
 , x   designates the least integral value larger than or equal to x .  

Additionally, in the companionship of logarithmic function, these authors established a ground-

breaking and first and foremost fundamental inequality with the facilitation of subsequent 

mathematical appearance:  

1:1 ( ) log log 3L H P n                                                                                                               (1.14) 

The investigations delivered by the authors made furtherance of communication flanked by 

the two selections of codes. Again in the companionship of logarithmic function, the authors 

rightfully furnished the subsequent transformations from best one-one codes to UD codes: 

1

2 1
: log log , 1

2 2

b

i i i b
T l b b b b

 
       

 
                                                                                    (1.15) 

2 : 2 log( 1)i i iT l b b                                                                                                                  (1.16) 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 

6578 

 
Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

 

 

 

3 : log log(log ) log(log(log )) ... 3i i i i iT l b b b b                                                                     (1.17) 

where
( 1)

log 1 , 1,2,..., .i

D i
b i n

D

  
    

  
 is the best one-one codeword length, ,il  is the UD 

codeword length. The authors after making deliberations on these unique transformations verified 

the same equipped to the satisfaction of well accredited inequality payable to Kraft [11]. 

The explorations conveyed by Kapur and Sharma [7] completed furtherance of communiqué 

flanked by the two collection of codes. To enhance the further literature on the above pointed out 

dissimilar codes, the authors by employing logarithmic function, conveniently and meticulously 

delivered certain convinced and significant annotations related with such transformations, that is, 

the connections of best one-one codes to UD codes by means of facilitation of subsequent 

mathematical outward show:  

'
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 ' 1 1

2 : log( 1) log 2 1 log( 1)b b b

i i iT l b b b D D D                                                              (1.20) 

 '' 1 1 1

2 : log( 1) log log( 1)b b b b

i i iT l b b b D D D D b                                                       (1.21) 

The discrete entropic models and the discrete divergence models convince a number of 

functionally obvious requirements and furthermore can be dispense operational association in many 

crucial pragmatic problems connected with numerous well surviving disciplines pertaining to 

dissimilar branches of mathematics. This is supplementary added at this juncture that some 

convinced coding techniques with the facilitation of the distance model in the discrete probability 

spaces and graph theory have been deliberated by well celebrated researchers Reviewed and 

Ferreira [22].  

   Recently, Schulte et al. [24] remarked numerous applications in communication system 

necessitate resembling target distributions to be surrounded by undersized informational 

divergence. The supplementary prerequisite of predictability frequently show the way to using 

https://mathscinet.ams.org/mathscinet/help/fullitem_help_full.html#review
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=274666
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=1144092
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encoders that are one-to-one mappings. Nevertheless, even the best one-to-one encoders have 

divergences which produce logarithmically with the block length. To conquer this drawback, an 

encoder is projected that has an invertible one-to-many mapping and a low-rate random number 

generator. The authors have wrought two algorithms which confer information rates approaching 

the entropic value of the target distribution with exponentially declining divergence. Some 

additional pioneers who have completed momentous and fascinating deliberations for the 

facilitation of applications of their entropic models in an assortment fields of coding theory include 

Kawan and Yüksel [8], Yamamoto et al. [27] , Yang et al. [28], Kochman et al. [10], Jose and 

Kulkarni [4], Chen et al. [2] etc. 

In section 2, we have demonstrated some fascinating deliberations for the communication 

between discrete entropic models and the best 1:1 code. In section 3, we have endowed with the 

contribution of divergence models for the development of suitable codes whereas section 4 makes 

transactions with the outline of suitable codes through inaccuracy model. In the sequel, we provide 

discussions for the association between discrete entropic models and the best 1:1 code. 

2. RELATIONS AMONG DISCRETE ENTROPIC MODELS AND BEST 1:1 MEAN 

LENGTHS 

It is valuable to point out here that one-to-one codes are constantly believed to be 

nonsingular codes that allocate a distinctive codeword to every one source representation. These are 

as well acknowledged as “one-shot” encodings as these could be engaged when one merely desires 

to transmit a single source representation rather than a sequence of source cryptogram. Such a state 

of affairs can take place when the last message must be accredited previous to the next message. In 

view of the fact that our apprehension is to reduce the average length of the codeword, therefore for 

the preparation of these one-to-one codes, we should designate codewords to the letters which take 

place most repeatedly, that is, the codewords which have largest probability of happening. In 

developing the best 1:1 code, we first create the subsequent parametric mean: 
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                                                            (2.1) 

The exponentiated mean articulated in equation (2.1) convince the subsequent attractive properties 

of being a legitimate mean: 

https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=819890
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=701973
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(i) If 1 2 3 ... nl l l l l     , then the generalized mean get hold of the subsequent appearance: 
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(ii) ,aL must lie between extreme values of 1 2 3, , ,..., nl l l l  

(iii) To find the limiting value of ,aL , we proceed as follows: 
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L p l
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Consequently, we claim that exponentiated mean (2.1) persuade the mandatory properties of a 

proper mean and hence (2.1) provides an acceptable formula of mean. 

Next, we exploit the length ,aL deliberated in (2.1) and define the best 1:1 code by means of 

subsequent mathematical manifestation: 
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                                                      (2.2)    

The subsequent theorem provides a lower bound for
,

1:1

aL . For proving the theorem, we make use of 

the modified version of Renyi’s [21] discrete entropic model denoted by ( )R P and provided by 

means of subsequent precise materialization:  
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Theorem-2.1: The lower bound for the best 1:1 code
,

1:1

aL persuades the subsequent inequality 

connecting the discrete entropic model and 
,

1:1

aL : 

,

1:1 ,

1 1

1 2 2
( ) ( ) log ; 1, 0

2 2 2

an n
a

a D

i i

L R P R P
i i



   



 

         
          

           
                               (2.4) 

Proof: By employing the definition provided in equation (2.2), we have the subsequent structure of 

the best 1:1 code
,

1:1

aL : 

 

 

1
log 1

2

, 1
1:1 1/

1
log 1

2

1

log
2(1 )

D

D

in

i
a i

D a
in a

i

i

p D

L

p D















 
 

 




 

 
 



 
 
 
 

      
    





 

Thus, the relation surrounded by the three entities ( )R P , 
, ( )aR P and 

,

1:1

aL  can be prepared capable 

of the precise mathematical appearance as deliberated below:  

 

 

1
log 1

, 2

, 1:1

1

1
log 1

2

,

1

1 1
( ) ( ) ( ) log

2 2 2(1 )

1
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2 2(1 )

D

D

in
a

a D i

i

in a

a D i

i

R P R P L R P p D

R P p D
a



 
  














 
 

 



 
 

 



 
         

 
  

  





                         (2.5) 

To provide the solution, we put 
1

t





 in the above brought up equation so as to make available 

the term of equation (2.5) in the subsequent appearance: 

 1
log 1

2

1

1
( ) log

2 2(1 )

D

in

D i

i

R P p D










 
 

 



 
 

  
  
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log 1
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1 1 1
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D
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i i

t
p p D

t t

 
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  

 

 
  

  
   

 

Thus 

 

 1
log 1

2

1

1
( ) log

2 2(1 )

D

in

D i

i

R P p D










 
 

 



 
 

  


1 1/2

1/1

1 1

1
log 1

2 2

t t
tn nt

t

D i i

i i

i
p p

 



 

                   

           

                                                                                                                                   (2.6) 

 

Now, we make use of Holder’s inequality by substituting 

11 1

, 1 , ,
2 1

t t
i i i i

i t
x p y p p q t

t


  

      
 

, we get hold of the subsequent relation: 

1 1/2

1/1

1 1 1

2
1

2 2

t t
tn n nt

t

i i

i i i

i
p p

i

 



  

       
       

       
    

Furthermore, upon attracting logarithmic function in the company of the above inequality and by 

way of uncomplicated computations, we get hold of the subsequent quantitative outward show: 

1 1/2

1/1

1 1 1

1 1 2
log 1 log

2 2 2 2

t t
tn n nt

t

D i i D

i i i

i
p p

i

 



  

                          

                                                (2.7) 

Using (2.7) in (2.6), we get the consequent manifestation: 

 1
log 1

2

1 1

1 1 2
( ) log log

2 2(1 ) 2 2

D

in n

D i D

i i

R P p D
i










 
 

 

 

   
    

    
                                             (2.8) 

Proceeding on similar lines and taking the subsequent substitution  

1 1

, 1 , ,
2 1

a

t t
i i i i

i t
x p y p p q t

t


  

      
 

 in Holder’s inequality, we acquire the second term on 

the R.H.S. of equation (2.5) in the succeeding appearance: 

 1
log 1

2

,

1 1

1 1 2
( ) log log

2 2(1 ) 2 2

D
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a D i D

i i

R P p D
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








  
 

 

 

   
    

    
                                     (2.9) 
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By employing equations (2.9) and (2.8) in (2.5), we get hold of the consequent quantitative outward 

show: 

,

, 1:1

1 1

1 1 2 2
( ) ( ) log

2 2 2 2

an n
a

a D

i i

R P R P L
i i



 



 

         
                       

  which proves the theorem. 

We, next define another mean involving two parameters and connecting the two categories of 

codes, that is, the best 1:1 code
,

1:1L 
. By our hypothesis this new-fangled and an inventive definition 

of mean capture the successive configuration: 

 1 log 1
2

, 1
1:1

1

1
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( 1)

D
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i

i
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i

i
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L
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


 



 


  
   

  





 
 
   
 
 
 
 




                                                               (2.10)    

The above mean length (2.10) corresponds to well acknowledged mean length already deliberated 

by Kapur’s [6] in the succeeding form 

 1

, 1

1

1
log

1

i

n
l

i

i
UD D n

i

i

p D

L

p



 









 
 
 

  
 
 




                                                                                                (2.11) 

and well accredited Kapur’s [5] discrete entropic model previously accessible in the literature and 

shaped in consequent manifestation: 

1

,

1

1
( ) log

1

n

i

i

D n

i

i

p

E P

p





 






  
  
    


 
 
 




                                                                                             (2.12) 

The following theorem provides a correspondence between 
,

1:1L 
and 

,

UDL 
. 

Theorem-2.2: The generated codes 
,

1:1L 
and 

,

UDL 
 convince the subsequent inequality: 

, ,

1:1

1

1
2 log

2

n

UD D

i

L L
i

   



 
    

 
                                                                                                    (2.13) 
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Proof: From equation (2.10), we have the subsequent mathematical nature of 
,

1:1L 
: 

( 1)

, 1
1:1

1

1
1 2

log
( 1)

n

i

i
D n

i

i

i
p

L

p





 









  
  

  
 
 
 




 

Putting 1 t    in the above equation and employing (2.12), we may acquire the primarily well-

built communication by employing Holder’s inequality with the subsequent substitution:  

1

, 1 , ,
2 1

t t
i i i i

i t
x p y p p q t

t

  
  

      
 

  

Consequently, upon attracting logarithmic employment and moreover by means of straightforward 

computations, we acquire the subsequent quantitative appearance providing association flanked by 

discrete entropic model and the best 1:1 code: 

1

1

1, 1
, 1:1

1 1

1
1 1 2

( ) log log

t
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t
i i

i i
D Dn n

i i
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



 

 

                     
   
    

 

 
 

Moreover by way of straightforward mathematical computations, we get hold of the subsequent 

inequality wrought in the well built manifestation: 

,

, 1:1

1

2
( ) log

2

n

D

i

E P L
i

 

 



 
    

  

,

1:1 ,

1

2
( ) log

2

n

D

i

L E P
i

 

 



 
    

 
  

Employing equation (2.12), we search out the subsequent consequence:   

, , ,

1:1 , 1:11 ( )UDL L E P L     

    
1

2
1 log

2

n

i i

 
   

 


1

1
2 log

2

n

i i

 
   

 
   

Consequently, the theorem gets proved. 
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Important Observations: The study of correspondence between discrete information entropic 

models and the mean codeword lengths reveals the following most advantageous consequences:  

(i) Own mean codeword length and the best 1:1 code length. 

(ii) Development of communication flanked by best 1:1 code and UD code. 

Note-I: It is worth mentioning at this juncture that a code is believed to be suitable if the codeword 

lengths il  persuade a suitable connection in such a manner that the minimum of the specified length 

for each and every one code satisfying the given association has a specific value or the lower bound 

of the mean for every single one code lies stuck between two specific values. In addition, it has to 

be investigational that Kraft’s inequality which contributes with a crucial answerability in 

demonstrating a noiseless coding theorem cannot be tailored in a subjective approach, provoked by 

the ambition to demonstrate a new literature for the development of UD codes. If one formulates 

adjustment in this inequality, the formulated codes will appear with different configuration other 

than rewarding the stipulation of unique decipherability. Kapur [6] emphasized that each UD code 

ought to persuade Kraft’s inequality nevertheless for the development of suitable codes customized 

this inequality. The modified version of this inequality is prescribed subsequently: 

1

1
1i

n
l

i

D
D





 
                                                                                                          

  

With this development, Kapur [6] completed scrupulous study for the environment of dissimilar 

suitable codes depending upon diverse circumstances. These suitable codes can be prepared by the 

employment of an assortment of information models including entropic models, divergence models 

and inaccuracy models. It is supplementary emphasized that if we desire to prepare suitable codes 

through entropic models, then the subsequent inequality should hold good: 

1

1i

n
l

i

D





 

In case our aspiration is to develop suitable codes via discrete distance models, then the subsequent 

inequality should be satisfied: 

1

1i

n
l

i i

i

p q D





 

In case we wish for the development of suitable codes all the way through inaccuracy models, then 

the subsequent inequality should be employed: 
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1

1

1i

n
l

i i

i

p q D




  

Note-II: It is frequently enviable to compute the discrepancy flanked by two probability 

distributions for a given random variable. This happens recurrently in machine learning problems 

when we may be concerned in manipulating the dissimilarity between real and observed probability 

distribution. This can be accomplished by means of procedures usually available in the field of 

information theory, such as the Kullback-Leibler [12] divergence (KL divergence) and Sibson [23] 

divergence also called Jensen-Shannon divergence that make available a normalized and 

symmetrical description of the KL divergence. These achievable procedures can be employed as 

shortcuts in the computations of other extensively used procedures such as mutual information for 

feature selection earlier to modeling and cross-entropy second-handed as a loss function for 

numerous dissimilar classifier models. From the above conversation, one can meaningfully 

formulate the subsequent observations: 

(i) Statistical distance is the universal encouragement of influencing the differentiation 

sandwiched statistical substances resembling dissimilar probability distributions for a 

random variable. 

(ii) Kullback-Leibler divergence works out a score that measures the divergence of one 

probability distribution commencing from an additional one. 

(iii) Jensen-Shannon divergence broadens KL divergence to compute a unprejudiced score 

and distance measure of one probability distribution commencing from an additional 

one.  

Additionally, it is added that in real life situation, there are countless circumstances where we may 

desire to compare two probability distributions. Particularly, we might have a single random 

variable and two dissimilar probability distributions for the variable, such as an accurate distribution 

and an estimate of that distribution. In such situations, it can be constructive idea to quantify the 

distinction flanked by the distributions. Commonly, this is referred to as the problem of 

manipulating the statistical distance flanked by the two statistical objects. One advancement is to 

compute a distance measure connecting the two distributions. This can be challenging as it can be 

complicated to understand the measure. As an alternative, it is more widespread to compute 

a divergence flanked by the two probability distributions. A divergence is similar to a measure but 

is not symmetrical. This means that a divergence is a scoring of how one distribution fluctuates 

https://machinelearningmastery.com/information-gain-and-mutual-information
https://machinelearningmastery.com/cross-entropy-for-machine-learning/
https://en.wikipedia.org/wiki/Statistical_distance
https://en.wikipedia.org/wiki/Divergence_(statistics)
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from another, where computing the divergence for distributions P andQ  would furnish a diverse 

score from Q and .P  

Below, we illustrate the association surrounded by the suitable codes and the weighted and non-

weighted discrete divergence models.  

3. CONTRIBUTION OF DISCRETE DIVERGENCE MODELS FOR THE 

DEVELOPMENT OF SUITABLE CODES 

Theorem-3.1: If 1 2 3, , ,..., nl l l l are the lengths of a code, then the subsequent inequality is true: 

1/
2 2 (1 )1 (1 )

1

1/
2 2 (1 )1 (1 )

1

1
( : ) log ; , 1, 1 1, 1

n
li

i i

i
D

n
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i i

i

p q D

D P Q or

p q D



  


 

  

     
 

   



   



 
 
      

  
 
 





          (3.1) 

where 

1

1

1

1

1
( : ) log ; , 1, 1 1, 1

n

i i

i
D n

i i

i

p q

D P Q or

p q

 




 

     
 









 
 
      

  
  




                                       (3.2) 

is a discrete parametric divergence model developed by Kapur [5]. 

Proof: To provide evidence for the establishment of the theorem, we make use of Holder’s 

inequality and Kapur’s [6] inequality given by the subsequent manifestation: 

1

1i

n
l

i i

i

p q D




                                                                                                                                  (3.3) 

Substituting

2 2

1
11 1

1
, , 1 ,il

i i i i i ix p q D y p q p q
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





  


      in well known inequality 

payable to Holder, we acquire the subsequent materialization: 
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
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  
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1 1
(1 )1 (1 ) 1

1 1 1

i i

n n n
l l

i i i i i i

i i i

p q D p q p q D



 
    

 
     

  

   
   

   
    
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Taking logarithms both sides and applying the inequality (3.3), the above equation furnishes the 

subsequent nature: 

   
2 2 (1 )1 (1 ) 1

1 1

1
log log 0

1 1
i

n n
l

D i i D i i

i i

p q D p q
    

 

    

 

   
        

   

or    
2 2 (1 )1 (1 ) 1

1 1

1
log log

1 1
i

n n
l

D i i D i i

i i

p q D p q
    

 

    

 

   
       

                                            (3.4) 

If 1,  then equation (3.4) provides 

   
2 2

1/

(1 )1 (1 ) 1

1 1

log logi

n n
l

D i i D i i

i i

p q D p q



        

 

   
   

   
                                                            (3.5) 

Similarly, for 1,  we can proceed to prove the following consequence: 

   
2 2

1/

(1 )1 (1 ) 1

1 1

log logi

n n
l

D i i D i i

i i

p q D p q



        

 

   
     

   
                                                     (3.6) 

From equations (3.5) and (3.6), we get hold of the subsequent outcome: 

1/
2 2 (1 )1 (1 ) 1

1 1

1/
12 2 (1 )1 (1 )

1
1

log log

n n
li

i i i i
i i

D D n
n

li i i
i i

i
i

p q D p q

p qp q D



    


   

    

 

   




 
 
  
 
 
 

 



 

Now, since 1 1,and    we acquire 0   . By the employment of these results, the above 

equation entails that 

2 2

2 2

1/

(1 )1 (1 )1

11

1/
1

(1 )1 (1 )

1
1

1 1
log log

i

i

nn
l

i ii i
ii

D Dn
n

l
i i

i i
i

i

p q Dp q

p q p q D



   


    

   

   




   




 
 
 


   

 
 



 

                                               (3.7) 

Proceeding on similar lines, if 1,  then after multiplying equation (3.4) by -1, we acquire the 

subsequent form: 
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   
2 2

1/

(1 )1 1 (1 )

1 1

log log i

n n
l

D i i D i i

i i

p q p q D



         

 

   
   

   
                                                            (3.8) 

Similarly, for 1,  we can proceed to prove the subsequent outcome: 

   
2 2

1/

(1 )1 1 (1 )

1 1

log log i

n n
l

D i i D i i

i i

p q p q D



         

 

   
   

   
   

Again, multiplying the above equation by -1, we acquire 

   
2 2

1/

(1 )1 1 (1 )

1 1

log log i

n n
l

D i i D i i

i i

p q p q D



         

 

   
     

   
                                                      (3.9) 

Adding equations (3.8) and (3.9), we acquire the subsequent appearance: 

1/
2 2 (1 )1 (1 )1

11

1/
1 2 2 (1 )1 (1 )

1
1

log log

nn
li

i ii i
ii

D Dn
n

lii i
i i

i
i

p q Dp q

p q p q D



   


    

   



    




 
 
 
 
 
 



 

                                                            (3.10) 

Now, since 1 1,and    we have 0   . By the employment of these results, the above 

equation (3.10) brings about the subsequent inequality: 

2 2

2 2

1/

(1 )1 (1 )1

11

1/
1

(1 )1 (1 )

1
1

1 1
log log

i

i

nn
l

i ii i
ii

D Dn
n

l
i i

i i
i

i

p q Dp q

p q p q D



   


    

   

   




   




 
 
 


   

 
 



 

 which is (3.7). 

Consequently, in every case we observe that the subsequent correspondence holds good: 

1/
2 2 (1 )1 (1 )

1

1/
2 2 (1 )1 (1 )

1

1
( : ) log

n
li

i i

i
D

n
li

i i

i

p q D

D P Q

p q D



  


 

  
 

   



   



 
 
 

  
 
 





which proves the theorem. 

Theorem-3.2: If 1 2 3, , ,..., nl l l l are the lengths of a code, then the subsequent weighted inequality 

always holds good: 
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1/
2 2 (1 )1 (1 )

1

1/
2 2 (1 )1 (1 )

1

1
( : ; ) log ; , 1, 1 1, 1

n
li

i i i

i
D

n
li

i i i

i

w p q D

D P Q W or

w p q D



   


 

   

     
 

   



   



 
 
      

  
 
 




  

                                                                                                                                                      (3.11) 

where 

1

1

1

1

1
( : ; ) log ; , 0; 1, 1 1, 1

n

i i i

i
D n

i i i

i

w p q

D P Q W or

w p q

 




 

     
 









 
 
      

  
  




                           (3.12) 

is a discrete generalized parametric divergence model developed by Parkash and Kumar [17] for the 

discrete weighted distribution. 

Proof: To provide evidence for the survival of the theorem, we once more bring into play the well 

recognized Holder’s inequality and Kapur’s [6] inequality provided in equation (3.2) to be made 

applicable for the construction of suitable code. Moreover, as accustomed we formulate the 

subsequent substitution for confirmation of the coding theorem: 

2 2

1
11 1 1 1

1
, , 1 ,il

i i i i i i i ix w p q D y w p q p q
   

    





 
    


                                                   (3.13) 

With this substitution (3.13) in well known Holder’s inequality, we get hold of the subsequent 

materialization: 

   
2 2

1

1 1
(1 )1 (1 ) 1

1 1 1

i i

n n n
l l

i i i i i i i i

i i i

w p q D w p q p q D



 
     

 
     

  

   
   

   
    

The employment of logarithmic function and the inequality (3.3), the above formulated equation 

delivers the subsequent character: 

   
2 2 (1 )1 (1 ) 1

1 1

1
log log

1 1
i

n n
l

D i i i D i i i

i i

w p q D w p q
     

 

    

 

   
       

                                    (3.14) 

If 1,  then equation (3.14) provides the subsequent form: 
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   
2 2

1/

(1 )1 (1 ) 1

1 1

log logi

n n
l

D i i i D i i i

i i

w p q D w p q



         

 

   
   

   
                                                  (3.15) 

Similarly, for 1,  we can proceed to prove the following consequence: 

   
2 2

1/

(1 )1 (1 ) 1

1 1

log logi

n n
l

D i i i D i i i

i i

w p q D w p q



         

 

   
     

   
                                           (3.16) 

Now, since 1 1,and    we must have 0   . By the employment of this actuality, the above 

equation (3.15) and (3.16) bring about the subsequent mathematical appearance: 

2 2

2 2

1/

(1 )1 (1 )1

11

1/
1

(1 )1 (1 )

1
1

1 1
log log

i
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i i ii i i
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D Dn
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i i i

i i i
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w p q Dw p q

w p q w p q D



    


     

   

   




   




  
  
   

    
     



 
                                  (3.17) 

Proceeding on comparable lines, that is, if 1 1,and   then 0   , the expression (3.17) 

immediately gets verified. Consequently, in every case we scrutinize that the manifestation (3.17) 

always holds good and the theorem gets established. 

Note-III: From the above theorem, we have developed subsequent suitable codes, one through 

Kapur’s [5] discrete divergence model and another one through Parkash and Kumar’s [17] discrete 

weighted parametric divergence model for the discrete probability space: 

2 2

2 2
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1 1/
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1

1
1. log
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n
l

i i
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i

p q D
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p q D



  



  
 

   



   



 
 
 


  

 
 





 

2 2

2 2

1/

(1 )1 (1 )

1

1 1/

(1 )1 (1 )

1

1
2. log
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i

n
l

i i i
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w D
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l

i i i

i

w p q D
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w p q D



   



   
 

   



   



 
 
 

  
 
 




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Proceeding on comparable defenses, one can create countless new innovative weighted and non-

weighted parametric suitable codes through weighted and non-weighted discrete parametric 

divergence models. 

Note-IV: It is further observed that in an experimentation dealing with the proclamation about 

probabilities of dissimilar events, two varieties of errors are plausible, explicitly one because of the 

nonappearance of adequate data or indistinctness in test results and other from erroneous data. 

Shannon’s information model can be second-handed to enlighten the error because of ambiguity 

only whereas the both types of errors can be explained by using a measure identified as measure of 

inaccuracy which ascertains applications in statistical inference and a concept anticipated by 

Kerridge [9].  Different instigators anticipated new inaccuracy models for the reasons that of their 

applicability in statistics, coding theory and supplementary associated fields.  

Sathar et. al [26] made investigations about the past inaccuracy model and consequently 

recommended nonparametric estimators for these models. The authors made rigorous study of the 

asymptotic properties of these estimators under convinced appropriate and reliability conditions. 

Additionally, the authors made comparisons for the performance of the projected estimators by 

employing Monte-Carlo simulation technique. Numerous investigators projected their own 

inaccuracy models for delivering their applications in the discipline of coding theory. Proceeding on 

comparable lines and following Kapur’s [6] advancement, one can prepare suitable codes for the 

supplementary information models including inaccuracy models. In the sequel, we exemplify the 

significant association surrounded by the suitable codes and the inaccuracy models.  

4. DEVELOPMENT OF SUITABLE CODE VIA INACCURACY MEASURE 

Theorem-4.1: If 1 2 3, , ,..., nl l l l are the lengths of a code, then the subsequent inequality is factual: 

2 2 (1 )1 (1 )

1

1

1
( : ) log ; 1

( 1)

n
li

i i

i
D

n

i

i

p q D

K P Q
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  








 

    





 
 
 

     
  
  





                                                    (4.1) 

where 

(1 )

1

1

1
( : ) log ; 1

( 1)

n

i i

i
D n

i

i

p q

K P Q

p

 














 





                                                                                  (4.2) 

https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=745314
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is Kapur’s [5] inaccuracy model of order .  

Proof: To establish the above theorem, we bring into play Holder’s inequality and Kapur’s [6] 

inequality prearranged by the subsequent demonstration: 

1

1

1i

n
l

i i

i

p q D




                                                                                                                                (4.3) 

Substituting

2 2

1
11 1

1
, , 1 ,il

i i i i i ix p q D y p q p q
 

  






  


     in Holder’s inequality, we get 

hold of the subsequent inequality: 

2 2

1
1 11 1

1
1 11 1

1 1 1

i i
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l l

i i i i i i

i i i

p q D p q D p q


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  

  


    

  

                       

    

With the facilitation of logarithmic function and the application of inequality (4.3), we acquire the 

subsequent relation: 

2 2 (1 )1 (1 ) 1

1 1

1
log log 0

1 1
i

n n
l

D i i D i i

i i

p q D p q
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D i i D i i

i i

p q p q D
    

  

     

 

   
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Thus, we have the subsequent expression: 
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Consequently the theorem gets established. 

Note-V: Commencing from the above theorem, we have shaped a subsequent suitable code through 

Kapur’s [5] inaccuracy model: 
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With the analogous arguments discussed above, one can produce innumerable new-fangled 

parametric suitable codes through inaccuracy models. 

Concluding Remarks: In the literature of theory of coding, a multiplicity of ground-breaking mean 

lengths can be produced subsequent to the inspection of a collection of discrete entropic, divergence 

and inaccuracy models. The foremost intention of our learning in this communication is to widen 

the literature on best 1:1codes, the UD codes and suitable codes. The present comprehensive study 

is an accurate footstep in this direction in which we have completed the illustration for providing 

the association between discrete entropic models and the best 1:1 codes. Our wide-ranging study 

reveals the information that there survive an involvement sandwiched between own mean codeword 

length and best 1:1 code. Additionally, we have fabricated a well-built relation flanked by best 1:1 

and UD code. Furthermore, we have provided the contribution of divergence and inaccuracy models 

for the development of suitable codes. This innovative inspiration can be made capable of extension 

with the generation of an assortment of new-fangled information entropic models along with the 

conversation of their association with coding theory. With analogous judgment and by engendering 

a multiplicity of continuous entropic models, this comprehensive learning can be completed for an 

assortment of codes together with best 1:1, suitable codes and UD codes.  
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