Properties of Topological Concepts Associated with Weak Systems

Arafa A. Nasef⁽¹⁾, and M. Kamel El-Sayed⁽²⁾

 (1) Department of Physics and Engineering Mathematics, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, Egypt, e-mail: <u>arafa.nasef@eng.kfs.edu.eg</u>
 (2) Department of Basic Science, Higher Institute of Engineering and Technology Kafrelsheikh, Egypt e-mail: <u>dr.mkamel123@gmail.com</u>

Article Info	Abstract
Page Number: 6631 - 6641	The main objective of the research work is to presents the notions of w -
Publication Issue:	λ -open sets and W- λ -continuous functions on spaces with weak
Vol 71 No. 4 (2022)	systems and studied some of their properties. We describe the W- λ -
Article History Article Received: 25 March 2022	continuous function and the relation between W -continuity and W- λ -continuity.
Revised : 30 April 2022 Accepted: 15 June 2022 Publication : 19 August 2022	Keywords: Weak systems, w - λ -open sets, W - λ -continuous functions, W -continuous functions.

1. Introduction

The weak system was introduced in [2, 3, 9]. Which is nonempty set. And the notion of W - continuous function was defined as a function between weak systems. The study of objects definable in weak system [5,6,7,11,8,12] Topological spaces contain continuous functions have the same properties as W -continuous functions have been proved by them. Also, the first author and Roy [1] used weak system to define the concept of open sets w -b, $W - \beta$ -continuous functions. The w- λ -open sets, w- λ -interior W- λ -closure operators on a space with a weak system have been introduced. The notion of W- λ -continuous function have been studied. The relationship between W-continuity and W- λ -continuity have been discussed.

2. Preliminaries

Definition 2.1. ([9, 10]). w_S is called weak system of a non-empty set X which is denoted as a subfamily of the power set P(S) if $\phi \in w_S$ and $S \in w_S$. By (S, w_S) . Simply we call (S, w_S) a space with a **weak system** w_S on S. W $(s) = \{U \in w_S : s \in U\}$.

Definition 2.2. [9]. Let the space (S, w_S) be a weak system w_S on *S*. Which contains η , the interior and closure of η are defined as the following:

- (1) $w \operatorname{Int}(\eta) = \bigcup \{ U : \eta \supseteq U, U \in w_S \}.$
- (2) $w Cl(\eta) = \bigcap \{Q : Q \supseteq \eta, S \setminus Q \in w_S \}.$

Theorem 2.1. [9]. Let the space (S, w_S) with a weak system S on S and $\eta \subseteq S$.

- (1) $S = w \operatorname{Int}(S)$, $\phi = w \operatorname{Cl}(\phi)$.
- (2) $\eta \supseteq w \operatorname{Int}(\eta)$ and $Cl(\eta) \supseteq \eta$.
- (3) If $\eta \in w_S$, then $w \operatorname{Int}(\eta) = \eta$, $S \setminus Q \in w_S$, then $w \operatorname{Cl}(Q) = Q$.
- (4) If $\psi \supseteq \eta$, then $w \operatorname{Int}(\psi) \supseteq w \operatorname{Int}(\eta)$, $w \operatorname{Cl}(\psi) \supseteq w \operatorname{Cl}(\eta)$.
- (5) $w \operatorname{Int}(w \operatorname{Int}(\eta)) = w \operatorname{Int}(\eta)$, $w \operatorname{Cl}(w \operatorname{Cl}(\eta)) = w \operatorname{Cl}(\eta)$.
- (6) $w Cl(S \setminus \eta) = S \setminus w Int(\eta)$, $w Int(S \setminus \eta) = S \setminus w Cl(\eta)$.

Definition 2.3. [9]. Let (S, w_S) , (Y, w_Y) two spaces with weak systems w_S , w_Y . Then $q: S \to Y$ is W-continuous if $s \in S$, $V \in W(q(s))$, $U \in W(s)$ that $\sigma \supseteq q(U)$.

3. *w*- λ -Open Sets , *W*- λ -Continuity

Definition 3.1. Let the space (S, w_S) be **weak system** w_S on S and $S \supseteq \eta$. Then a subset η of S is w- λ -open set if w Cl (w Int (η)) $\supseteq \eta \bigcup w$ Int(w $Cl(\eta)$), w- λ -open set its complement is an w- λ -closed set. All of w- λ -open sets in S are denoted by $W \lambda O(s)$.

Remark 3.1. If a nonempty set given a **weak system** w_S on it is a topology, then w- λ -open set is λ -open [4].

Lemma 3.1. Let the space (S, w_S) be a **weak system** w_S on *S*. Then η is an w- λ -closed set if $\eta \supseteq w \operatorname{Int}(w \operatorname{Cl}(\eta)) \bigcup (w \operatorname{Cl}(w \operatorname{Int}(\eta)))$.

For (w-open set and w-closed) set is (w- λ -open, w- λ -closed) but for (w- λ -open and w- λ -closed) set is not w-open and w-closed).

Example 3.1. Let $S = \{a, b, c\}$ and let $w_S = \{\phi, \{a\}, \{b\}, S\}$ be a **weak system** on *S*. Assume $\eta = \{a, c\}$. So $w \ Cl \ (w \ Int(\eta)) \bigcup w \ Int(w \ Cl(\eta)) = \{a, c\}$. Then η is not w -open but $w - \lambda$ - open.

Theorem 3.1. Let the space (S, w_S) with a **weak system** w_S on *S*. The *w*- λ -open sets its union is always *w*- λ -open.

Proof. Let η_i be an *w*- λ -open sets for $i \in J$. Then Definition (3.1), Theorem (2.1) (4), will be: $\eta_i \subseteq w Cl(w \operatorname{Int}(\eta_i)) \bigcup w \operatorname{Int}(w Cl(\eta_i)) \subseteq w Cl(\bigcup \eta_i)) \bigcup w \operatorname{Int}(w Cl(\bigcup \eta_i))$.

This implies $\bigcup \eta_i \subseteq w \ Cl \ (w \operatorname{Int} (\bigcup \eta_i) \bigcup w \ \operatorname{Int} (w \ Cl \ (\bigcup \eta_i)) \ and \ so \ \bigcup \eta_i \ is \ w-\lambda$ -open.

Remark 3.2. Let the space (S, w_S) with a **weak system** w_S on *S*. For any two *w*- λ -open sets its intersection may not be *w*- λ -open.

Example 3.2. Let $S = \{a, b, c\}$ and $w_S = \{\phi, \{a, b\}, \{a, c\}, S\}$ a weak system in S. Then $\{a, b\}$, $\{a, c\}$ are w- λ -open sets. And $\{a\}$ is not w- λ -open that $w Cl \operatorname{Int}(\{\eta\})) \bigcup w \operatorname{Int}(w Cl(\eta)) = \phi$. For two w- λ -open sets its intersection is not w-g-open.

Theorem 3.2. Let the space (S, w_S) with a weak system w_S on S, then:

- (1) For w- λ -closed sets its intersection is always w- λ -closed.
- (2) For w- λ -closed sets its union fail to be w- λ -closed

Proof. (1) from Theorem (3.1).

(2) In Example (3.1), if $w_S = \{\phi, \{a\}, \{a, b\}, \{b, c\}, S\}$. $\{a\}$ and $\{b\}$ are w- λ -closed sets, their union $\{a, b\}$ not w- λ -closed.

Definition 3.2. Let the space (S, w_S) weak system w_S on S. For a subset $\eta \subset S$, $(w - \lambda$ -closure

of η , the *w*- λ -interior of η), is $w \lambda Cl(\eta)$ and $w \lambda Int(\eta)$, are defined :

 $w \ \lambda Cl(\eta) = \bigcap \{Q : \eta \subseteq Q, Q \text{ is } w \text{-} \lambda \text{-closed in } S \};$

 $w \ \lambda \operatorname{Int}(\eta) = \bigcup \{ U : U \subseteq \eta, z \text{ if } U \mid \text{is } w \text{-} \lambda \text{ -open in } S \}.$

Theorem 3.3. Let the space (S, w_S) a weak system w_S on S and $S \subseteq \eta$. Then

- (1) $\eta \supseteq w \lambda \operatorname{Int}(\eta)$ and $w \lambda Cl(\eta) \supseteq \eta$.
- (2) If $\psi \supseteq \psi$, then $w \lambda \operatorname{Int}(\psi) \supseteq w \lambda \operatorname{Int}(\eta)$, $w \lambda Cl(\psi) \supseteq w \lambda Cl(\eta)$.
- (3) η is $w \lambda$ -open iff $w \lambda \operatorname{Int}(\eta) = \eta$.
- (4) Q is $w \lambda$ -closed iff $w \lambda Cl(Q) = \eta$.
- (5) $w \lambda \operatorname{Int}(w \lambda \operatorname{Int}(\eta)) = w \lambda \operatorname{Int}(\eta)$, $w \lambda Cl(w \lambda Cl(\eta)) = w \lambda Cl(\eta)$.
- (6) $w \ \lambda Cl(X \setminus \eta) = X \ w \ \lambda \operatorname{Int}(\eta), \ w \ \lambda \operatorname{Int}(S \setminus \eta) = S \ w \ \lambda Cl(\eta).$

Proof. (1) and (2) clear.

- (3) and (4), from Theorem (3.1).
- (5) From (3) and (4).
- (6) For $\eta \subset S$, we have

 $S \setminus w \ \lambda \operatorname{Int}(\eta) = S \setminus \bigcup \{ U : U \subseteq \eta, U \text{ is } w \text{-} \lambda \text{-open} \}$

$$= \bigcap \{ S \setminus U : U \subseteq \eta, U \text{ is } w \text{-} \lambda \text{-open} \}$$
$$= \bigcap \{ S \setminus U : S \setminus \eta \subseteq S \setminus U, U \text{ is } w \text{-} \lambda \text{-open} \}$$
$$= w \ \lambda Cl \ (S \setminus \eta)$$

We have $w \lambda \operatorname{Int}(S \setminus \eta) = S \setminus w \lambda Cl(\eta)$

Theorem 3.4. Let the space (S, w_S) with a weak system w_S on S,

- (1) $w \lambda \operatorname{Int}(\eta \bigcup \psi) \supseteq w \lambda \operatorname{Int}(\eta) \bigcup w \lambda \operatorname{Int}(\psi),$
- (2) $w \lambda Cl(\eta) \cap w \lambda Cl(\psi) \supseteq w \lambda Cl(\eta \cap \psi)$

Theorem 3.5. Let the space (S, w_S) with a **weak system** w_S on S and $S \supseteq \eta$. Then $s \in w \lambda Cl(\eta)$ iff $\eta \cap \sigma \neq \phi$ for any w- λ -open set σ containing s.

Proof. If *w*- λ -open set σ containing *s*, $\eta \cap \sigma = \phi$. Then $S \setminus \sigma$ is *w*- λ -closed set that $S \setminus \sigma \supseteq \eta$ and $s \in S \setminus \sigma$. Then $s \notin w \lambda Cl(\eta)$.

Theorem 3.6. Let the space (S, w_S) be a **weak system** w_S on S and $\eta \subseteq S$. Then $s \in w \lambda \operatorname{Int}(\eta)$ iff there exists an $w \cdot \lambda$ -open set U that $\eta \supseteq U$.

Theorem 3.7. Every *w* -semi-open set is *w*- λ -open.

Proof. Let η be an w -semi-open set in (S, w_S) . Then $\eta \subset w Cl(w \operatorname{Int}(\eta))$. Then $\eta \subseteq w Cl(w \operatorname{Int}(\eta)) \bigcup w \operatorname{Int}(w Cl(\eta))$ and η is $w - \lambda$ -open in (S, w_S) .

Definition 3.3. Let a function $f : (S, w_S) \to (Y, w_Y)$ between two spaces with weak systems w_S and w_Y . Then q is W- λ -continuous if a point s and w-open set σ containing q(s), there w- λ -open set U containing x that $q(U) \subseteq \sigma$.

W-continuity \Rightarrow *W*- λ -continuity

The converse is not true

Example 3.3. Let $S = \{a, b, c\}$. Assume two weak systems defined :

 $w_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, S\}, \qquad w_2 = \{\alpha, \{a, b\}, \{a, c\}, S\}.$

Let the identity function $q:(S, w_1) \rightarrow (Y, w_2)$. Then q is W- λ continuous but not W-continuous.

Remark 3.3. Let the function $q:(S, w_S) \to (Y, w_Y)$ on two spaces with weak systems w_S and w_Y . If the weak systems w_S and w_Y are topologies on S and Y, then q is λ -continuous.

Theorem 3.8. Let the function $q : (S, w_S) \to (Y, w_Y)$ on two spaces with **weak systems** w_S and w_Y . The following are equivalent:

- (1) q is W gg -continuous.
- (2) Every *w* -open set σ in *Y*, $q^{-1}(\sigma)$ is *w*- λ -open in *S*.
- (3) Each w -closed set ψ in Y, $q^{-1}(\psi)$ is w λ -closed in S.
- (4) $w Cl(q(\eta)) \supseteq q(w Cl(\eta))$ for $S \supseteq \eta$.
- (5) $q^{-1}(w \operatorname{Cl}(\psi)) \supseteq w \lambda \operatorname{Cl}(q^{-1}(\psi))$ for $Y \supseteq \psi$.
- (6) $w \lambda \operatorname{Int}(q^{-1}(\psi)) \supseteq q^{-1}(w \operatorname{Int}(\psi))$ for $Y \supseteq \psi$.

Proof. (1) \Rightarrow (2): Let *w* -open set denoted by σ in *Y* and $s \in q^{-1}(\sigma)$. \exists an *w*- λ -open set *U* containing *s* by the hypothesis, $f(U) \subseteq \sigma$. So, we have $s \in U \subseteq q^{-1}(\sigma)$ for all $s \in q^{-1}(\sigma)$. In Theorem (3.1), $q^{-1}(\sigma)$ is *w*- λ -open.

(2) \Rightarrow (3): It is clear.

(3) \Rightarrow (4): For $\eta \subseteq S$,

$$q^{-1}(w \ Cl(q(\eta))) = Q \supseteq q^{-1}(\bigcap (Q \subseteq Q : q(\eta) \text{ and } w \text{-closed}))$$
$$= \bigcap \{q^{-1}(Q) \subseteq S : q^{-1}(Q) \supseteq \eta \text{ and } Q \text{ is } w \text{-} \lambda \text{-closed}\}$$
$$\supseteq \bigcap \{K \subseteq S : K \supseteq \eta \text{ and } K \text{ is } w \text{-} \lambda \text{-closed}\}$$
$$= w \ \lambda Cl(A).$$

Hence $w Cl(q(\eta)) \supseteq q(w \lambda Cl(\eta))$.

(4) \Rightarrow (5): For $Y \supseteq \psi$, from (4),

$$q(w \ \lambda Cl(q^{-1}(\psi))) \subseteq w \ Cl(q(q^{-1}(\psi))) \subseteq w \ Cl(\psi).$$

Then we get $w \ \lambda Cl(q^{-1}(\psi))) \subseteq w \ Cl(\psi)$.

(5) \Rightarrow (6); For $\psi \subseteq Y$, from w Int $(\psi) = Y \setminus Cl(Y \setminus \psi)$ and (5),

$$q^{-1}(w \operatorname{Int}(\psi)) = q^{-1}(Y \setminus w \operatorname{Cl}(Y \setminus \psi))$$
$$= s \setminus q^{-1}(w \operatorname{Cl}(Y \setminus \psi))$$
$$\subseteq s \setminus w \operatorname{\lambda}\operatorname{Cl}((q^{-1})Y \setminus \psi))$$
$$= w \operatorname{\lambda}\operatorname{Int}(q^{-1}(\psi)).$$

Then $q^{-1}(w \operatorname{Int}(\psi)) \subseteq w \lambda \operatorname{Int}(q^{-1}(\psi))$.

(6) \Rightarrow (1): Let w-open set (σ) containing q(s) and $s \in S$. Then from Theorem (2.1), $s \in q^{-1}(\sigma) = q^{-1}(w \operatorname{Int}(\sigma)) \subseteq w \lambda \operatorname{Int}(q^{-1}(\sigma))$. Theorem (3.6), there is $w - \lambda$ -open set U containing s, $s \in U \subseteq q^{-1}(\sigma)$. Then q is $W - \lambda$ -continuous.

Lemma 3.2. Let the space (S, w_S) with a weak systems w_S on S and $S \supseteq \eta$,

(1) w Int (w Cl (w
$$\lambda Cl(\eta)$$
)) \bigcup w Cl (w Int (w $\lambda Cl(\eta)$)) \subseteq w $\lambda Cl(\eta)$,

(2) $w \lambda \operatorname{Int}(\eta) \subseteq w \operatorname{Int}(w \operatorname{Cl}(w \lambda \operatorname{Int}(\eta))) \bigcup w \operatorname{Cl}(w \operatorname{Int}(w \lambda \operatorname{Int}(\eta))) \subseteq w \operatorname{Int}(w \operatorname{Cl}(\eta)) \bigcup w \operatorname{Cl}(w \operatorname{Int}(\eta)).$

Proof. (1) For $\eta \subseteq S$, Theorem (3.3) $w \ \lambda Cl(\eta)$ is $w - \lambda$ -closed set. We have from Lemma (3.1), $w \operatorname{Int}(w \ Cl(\eta)) \subseteq w \operatorname{Int}(w \ Cl(\eta))) \subseteq w \ \lambda Cl(\eta)$.

Theorem 3.9. let the two spaces function $q:(S, w_S) \rightarrow (Y, w_Y)$ with weak systems w_S and w_Y , The following are equivalent:

- (1) Q is W- λ -continuous.
- (2) w Int $(w Cl(q^{-1}(\sigma))) \cup w Cl(w Int(q^{-1}(\sigma))) \supseteq q^{-1}(\sigma)$ for w-open set σ in Y.
- (3) $q^{-1}(Q) \supseteq w$ Int $(w Cl(Q))) \bigcup w Cl(w Int(q^{-1}(Q)))$ for w-closed set Q in Y.

(4)
$$q (w \operatorname{Iq}^{-1}(w \operatorname{Cl}(\psi)) \supseteq \operatorname{nt}(w \operatorname{Cl}(q^{-1}(\psi))) \bigcup w \operatorname{Cl}(w \operatorname{Int}(q^{-1}(\psi))) \text{ for } \eta \subseteq S.$$

(5) w Int
$$(w \operatorname{Cl}(q^{-1}(\psi))) \bigcup w \operatorname{Cl}(w \operatorname{Int}(q^{-1}(\psi))) \subseteq q^{-1}(w \operatorname{Cl}(\psi))$$
 for $\psi \subseteq Y$.

(6) $q^{-1}(w \operatorname{Int}(\psi)) \subseteq w \operatorname{Cl}(w \operatorname{Int}(q^{-1}(\psi))) \bigcup w \operatorname{Int}(w \operatorname{Cl}(q^{-1}(\psi))) \text{ for } \psi \subseteq Y$.

Proof. (1) \Leftrightarrow (2): definition of *w*- λ -open sets, theorem (3.8). It follows:

(1) \Leftrightarrow (3): lemma (3.1), theorem (3.8). It follows:

(3) \Rightarrow (4): Let $\eta \subseteq S$. Lemma (3.2), theorem (3.8), it follows:

w Int
$$(w Cl(\eta)) \bigcup w Cl(w Int(\eta)) \subseteq w \lambda Cl(\eta) \subseteq q^{-1} (w Cl(q(\eta)))$$
.

Then q (w Int (w Cl (η))) $\bigcup q$ (w Cl (w Int (η))) \subseteq w Cl q (η)).

(5) \Rightarrow (6): theorem (2.1), from (5) it follows:

$$q^{-1}(w \operatorname{Int}(\psi)) = q^{-1}(Y \setminus w \operatorname{Cl}(Y \setminus \psi))$$

= $S \setminus q^{-1}(w \operatorname{Cl}(Y \setminus \psi))$
 $\subseteq S \setminus w \operatorname{Int} \operatorname{Cl}(q^{-1}(Y \setminus \psi)) \cup w \operatorname{Cl}(w \operatorname{Int}(q^{-1}(Y \setminus \psi)))$
= $w \operatorname{Cl}(w \operatorname{Int}(q^{-1}(\psi))) \cup w \operatorname{Int}(w \operatorname{Cl}(q^{-1}(\psi))).$

Then, its obtained (6).

(6) \Rightarrow (1): Let σ be an *w*-open set in *Y*. By (6) and Theorem (2.1), we have $q^{-1}(V) = q^{-1}(w \operatorname{Int}(\sigma)) \subseteq w \operatorname{Cl}(w \operatorname{Int}(q^{-1}(\sigma))) \cup w \operatorname{Int}(w \operatorname{Cl}(q^{-1}(\sigma)))$. Then $q^{-1}(\sigma)$ is an *w*- λ -open set. by (2), *f* is *W*- λ -continuous.

Definition 3.4. Let the function $q:(S, w_S) \to (Y, w_Y)$ on spaces (S, w_S) and (Y, w_Y) with weak systems w_S and w_Y . Then q is W- λ -open if w-open set G in S, q(G) is w- λ -open in Y.

Theorem 3.10. Let the function $q:(S, w_S) \rightarrow (Y, w_Y)$ on space (S, w_S) and (Y, w_Y) with weak system w_S and w_Y . The following are equivalent:

- (1) q is W- λ -open.
- (2) $q(w \operatorname{Int}(\eta)) \subseteq w \lambda \operatorname{Int}(q(\eta))$ for each $A \subseteq S$.
- (3) w Int $(q^{-1}(\psi)) \subseteq q^{-1}(w \lambda \operatorname{Int}(\psi))$ for each $\psi \subseteq Y$.

Proof. (1) \Rightarrow (2): For $\eta \subseteq S$, from *W*- λ -openness of *q*

 $q(w \operatorname{Int}(\eta)) = w \lambda \operatorname{Int}(q(w \operatorname{Int}(\eta))) \subseteq w \lambda \operatorname{Int}(q(\eta)).$

Then, $q(w \operatorname{Int}(\eta)) \subseteq w \lambda \operatorname{Int}(q(\eta))$.

(2)
$$\Rightarrow$$
 (3): For $\psi \subseteq Y$, $q(w \operatorname{Int}(q^{-1}(\psi))) \subseteq w \lambda \operatorname{Int}(q(q^{-1}(\psi))) \subseteq w \lambda \operatorname{Int}(\psi)$. Then
 $w \operatorname{Int}(q^{-1}(\psi)) \subseteq q^{-1}(w \lambda \operatorname{Int}(\psi))$.

(3) \Rightarrow (1): *G* is an *w*-open set in *S*. Then:

$$G = w \operatorname{Int}(G) \subseteq w \operatorname{Int}(q^{-1}(q(G))) \subseteq q^{-1}(w \lambda \operatorname{Int}(q(G))).$$

Then $q(G) \subseteq w \lambda \operatorname{Int}(q(G))$, so f(G) is $w - \lambda$ -open.

4. Some Applications

Definition 4.1. Let the space (S, w_S) with a **weak system** w_S . Then (S, w_S) is an w- T_2 [4] (resp. w- λ - T_2) space if the pair points s, y of $S \exists$ disjoint w-open (resp. w- λ -open) U, V sets containing s, y

Remark 4.1. Every $w - T_2$ space is an $w - \lambda - T_2$ space. But the converse is not true as in the next example.

Example 4.1. Let $S = \{a, b, c\}$ and $w_S = \{\phi, \{a\}, \{b\}, S\}$ be a **weak system** on *S*. Then $\lambda(S) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$. Thus (S, w_S) is $w - \lambda - T_2$ but not $w - T_2$ space.

Theorem 4.1. Let the two spaces (S, w_S) and (Y, w_Y) be S and Y with weak systems w_S and w_Y . If $\exists W - \lambda$ -continuous injective function $q: (S, w_S) \rightarrow (Y, w_Y)$ that (Y, w_Y) is $w - \lambda - T_2$ then (S, w_S) is $w - T_2$

Proof. Let two distinct points s_1 and s_2 of S. Then as q injective, $q(s_1) \neq q(s_2)$. Thus \exists two disjoint w- λ -open sets σ_1 and σ_2 containing s_1 and s_2 , respectively. Since q is W- λ -continuous, $\exists w$ -open sets U_1 and U_2 such that $s_1 \in U_1$ and $q(U_1) \subseteq \sigma_1$ in y subset of Y that $(U \times \sigma) \cap G(q) = \phi$.

Definition 4.2. A function $q:(S, w_S) \to (Y, w_Y)$ is $W - \lambda$ -closed graph if $(s, y) \in (S \times Y) \setminus G(q)$, $\exists w_S$ -open set U containing s in S and an w_Y -open set σ in Y containing y that $(U \times V) \cap G(q) = \phi$.

Lemma 4.1. A function $q:(S, w_S) \to (Y, w_Y)$ has $W \to \lambda$ -closed graph iff for $(s, y) \in (S \times Y) \setminus G(q)$, \exists an w_S -pen set U containing s in S and an w_Y -open set σ of Y containing y that $q(U) \cap \sigma = \phi$.

Theorem 4.2. A function $q:(S, w_S) \rightarrow (Y, w_Y)$ is $W - \lambda$ -continuous and (Y, w_Y) is $w - \lambda - T_2$, then G(q) is $W - \lambda$ -closed

Proof. Let $(s, y) \in (S \times Y) \setminus G(q)$. Then $y \neq q(s)$. Since Y is $w - \lambda - T_2$, $\exists w - \lambda$ -open sets σ and Z in Y containing y and q(s), that $\sigma \cap Z = \phi$. Since q is $W - \lambda$ -continuous, \exists an w-open set U in S containing s that $q(U) \subseteq Z$. Thus $q(U) \cap \sigma = \phi$. Then by Lemma (4.1) G(q) is $W - \lambda$ -closed.

Theorem 4.3. If the injective W- λ -continuous function denoted by $q:(S, w_S) \to (Y, w_Y)$ with a W- λ -closed graph, then (S, w_S) is w- T_2 .

Proof. Let any two points s and y of S. then f is injective, $q(s) \neq q(y)$ and $(s, q(y)) \in (S \times Y) \setminus G(q)$. Since G(q) by Lemma (4.1), is W- λ -closed, \exists an w-open set U in S containing s and an w- λ -open set V containing q(y) in Y that $q(U) \cap \sigma = \phi$. q is W- λ -

continuous, \exists an *w*-open set *G* in *S* that $\sigma \supseteq q(G)$. Then $q(G) \cap q(U) = \phi$ that $G \cap U = \phi$. Then *S* is *w*-*T*₂.

5. Conclusions

The concept of w- λ -open sets, w- λ -continuity have been introduced and their properties are studies, we hope that this paper is inst a beginning of a new **weak system**. It will inspire many contribute to the cultivation of generalized topology under the name of **weak system** in the field of discrete mathematics.

References

- [1] A. A. Nasef and B. Roy, m- open sets and M- continuous functions on space with miximal structures, Jour. of Adv. Res. in Applied Math., 5(1), no. 1 (2013), 53-59.
- [2] A. A. Azzam, A. M. Khalil, and S. G. Li, "Medical applications via minimal topological structure," Journal of Intelligent and Fuzzy Systems, vol. 39, no. 3, pp. 4723–4730, 2020.
- [3] B. Almarri and A. A. Azzam, Energy Saving via a Minimal Structure, mathematical problems in engineering, 15 Jun 2022.
- [4] D. Andricjevic, On b-open sets, Mat, Vesnik, 48, 1996.
- [5] H. Maki, K. C. Rao and A. Nagoor Gani, On generalizing semi-open and preopen sets, Pure Appl. Math. Sci., 49 (1999).
- [6] O. Tantawy, M. Abd Allah, and A. Nawar, "Generalization of Pawlak's rough approximation spaces by using ij-χ-open sets and its applications open sets and its applications," Journal of Intelligent and Fuzzy Systems, vol. 33, no. 3, pp. 1327–1337, 2017.
- [7] S.Modak, "Minimal spaces with a mathematical structure", Journal of the Association of Arab Universities for Basic and Applied Sciences, 23 May 2016.
- [8] S. Buadong, C. Viriyapong and C. Boonpok "On Generalized Topology and Minimal Structure Spaces", Int. Journal of Math. Analysis, 5(31), 2011.
- [9] V. Popa and T. Noiri, On M-continuous functions. Anal. Univ. "Dunarea de Jos" Galati. Ser. Mat. Fiz. Mec. Teor., (2), 18 (23) (2000). 31-41.
- [10] V. Popa and T. Noiri, On the definitions of some generalized forms of continuity under minimal conditions, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 22 (2001), 9-18.

- [11] W. Johnson. "Interpretable sets in dense o-minimal structures". J.Symbolic Logic, 83(4):1477–1500, 2018
- [12] Y. Peterzil and A. Rosel, "Definable one-dimensional topologies in o-minimal structures," Arch. Math. Logic, 59(1-2), 2020