Generalized Pre-Semi Closed and Pre-Semi Open Sets in Intuitionistic Fuzzy Topological Spaces

R Revathy ¹ And P. Thirunavukarasu ²

¹Part Time Research Scholar, PG & Research Department of Mathematics Thanthai Periyar Government Arts & Science College, Thiruchirapalli, Tamil Nadu , India (Affiliated to Bharatidasan University) e-mail : rrevathy085@gmail.com

²Assistant Professor, PG & Research Department of Mathematics (Affiliated to Bharathidasan University) Thanthai Periyar Government Arts & Science College Thiruchirapalli, Tamil Nadu, India

email : ptavinash1967@gmail.com

Article Info Page Number: 6948 - 6953 Publication Issue: Vol 71 No. 4 (2022)

Article History Article Received: 25 March 2022 Revised: 30 April 2022 Accepted: 15 June 2022 Publication 19 August 2022

Abstract

The features of generalised pre-semi closed sets (gps -closed) in a topological space are defined in this chapter, and they are appropriately situated between preclosed sets and generalised pre-closed sets.

Keywords: - Intuitionistic fuzzy sets, Intuitionistic fuzzy topology, Intuitionistic fuzzy topologicalspaces, intuitionistic fuzzy ideal, generalized presemi closed sets

1. Introduction

Semi-open sets and semi-continuity in topological spaces were presented by Levine [3] in 1963. In 1970, he [4] proposed the concept of a generalised closed set (g - closed set). Maki et al. [5] established the concept of generalised preclosed sets and examined some of its basic features, whereas Sundaram and Sheik John [6] introduced the concept of weakly-closed sets. Dontchev [1] first proposed the idea of generalised semi-pre open sets in topological spaces in 1995.

In 1997, Gnanambal [2] established the notion of gpr - closed sets and investigated their features in topological spaces. The features of generalised pre-semi closed sets (gps - closed) in a topological space are defined in this chapter, and they are appropriately situated between pre-closed sets and generalised pre-closed sets.

Definition 1. Consider the subset A of the topological space (X, r) is generalized presemi closed (gps - closed) if $pcl(A) \square U$ whenever $A \square U$ and U is semi-open. **Theorem 2.** Each closed set is gps - closed. **Theorem 3.** Each *gps* – *closed* set is *gpr* – *closed*.

Theorem 4. Each *gps* – *closed* set is *gp* – *closed*.

Theorem 5. Each w – *closed* set is gps – *closed*.

Theorem 6. Each *gps* – *closed* set is *gprw* – *closed*.

Proof:

If A is a gps - closed set and $A \square U$ here U is the regular semi-open is. Each regular semi-open

set will be semi-open.

Hence $pcl(A) \square$ U.

Thus A is gprw - closed.

. Theorem 7. Each gps – closed is gsp – closed.

Proof:

If A is a gps – closed also $A \square$ U here U is open.

Each open set is said to be semi-open and $spcl(A) \square pcl(A)$, $spcl(A) \square U$. Therefore, A is gsp –

closed.

Theorem 8. If A be gsp – *closed* in (X, r). A is pre-closed only if $pcl(A) \square$ A is always semi closed.

Proof:

Necessity : Let A be gps - closed. Assume that A is pre-closed. Then pcl(A) = A and so $pcl(A) - A = \Box$.

Hence pcl(A) - A is semi closed.

Sufficiency : Assume that pcl(A) - A is semi closed. Since A is gps - closed, $pcl(A) - A = \Box$ by Theorem 7.That is pcl(A) = A.

Vol. 71 No. 4 (2022) http://philstat.org.ph Therefore *A* is pre-closed.

Theorem 9. A is a gps – closed subset of X so that $A \square B \square pcl(A)$ then B is also a gps – closed set in X.

Proof:

If *A* be gps – *closed* set of *X* so that $A \square B \square pcl(A)$.

If *U* is a semi open set of *X* so that $B \square U$.

Then $A \square U$.

Since A is gps - closed, we have $pcl(A) \Box U$.

Now $(B) \Box pcl(pcl(A)) = pcl(A) \Box U$. Therefore B is gps - closed set in .

2. Intuitionistic fuzzy generalized pre-semi closed set

Definition 10. An *IFS A* in an *IFTS* (X,τ) is said to be an intuitionistic fuzzy generalized pre-semi closed set (*IFGPSCS*) if $pcl(A) \square$ U whenever $A \square$ U and U is an *IFSOS* in (X,τ) . The family of all *IFGPSCSs* of an *IFTS* (X,τ) is denoted by *IFGPSC* (X).

Theorem 11. Each *IFCS* in (X, \Box) is an *IFGPSCS* in (X, τ) .

Proof:

Let *A* be an *IFCS*.

Let $A \square U$ and U be an *IFSOS* in (X, \square) . Then $pcl(A) \square cl(A) = A \square U$, by hypothesis.Hence A is an *IFGPSCS* in (X,τ) **Theorem 12.** Each *IFGPSCS* in (X,τ) is an *IFGPCS* in (X,τ) .

Proof:

Let A be an *IFGPSCS* in (X, \Box) and let $A \Box U, U$ is an *IFOS* in (X, \Box) .

Subsequently each *IFOS* in (X, \Box) is an *IFSOS* in (X, \Box) and by hypothesis $pcl(A) \Box U$. Hence *A* is an *IFGPCS* in (X, \Box) .

Theorem 13. Each *IFGPSCS* in (X, \Box) is an *IFGPRCS* in (X, \Box) .

Proof:

If A is an *IFGPSCS* in (X, \Box) and let $A \Box U, U$ is an *IFROS* in (X, \Box) .

Subsequently each *IFROS* in (X, \Box) is an *IFSOS* in (X, \Box) and by hypothesis $pcl(A) \Box U$. Hence *A* is an *IFGPRCS* in (X, \Box) .

Theorem 14. Each *IFGPSCS* in (X, \Box) is an *IFGSPCS* in (X, \Box) .

Proof:

Let A be an *IFGPSCS* in (X, \Box) and let $A \Box U, U$ is an *IFOS* in (X, \Box) .

Since every *IFOS* in (X, \Box) is an *IFSOS* in (X, \Box) and by hypothesis $spcl(A) \Box pcl(A) \Box U$. Hence *A* is an *IFGSPCS* in (X, \Box) .

Remark 15. The combination of any two *IFGPSCSs* in (X, \Box) will not be an *IFGPSCS* in (X, \Box) in universalas realized from the subsequent instance. **Example 16.** Let $X = \{a, b\}$ and let $\Box = \{0 \sim, H1, 1 \sim\}$ where $H1 = \Box x, (0.3, 0.2), (0.7, 0.8) \Box$. Then the *IFSs A* = $\Box x, (0.2, 0.4), (0.8, 0.6) \Box$ and $B = \Box x, (0.5, 0.1), (0.5, 0.9) \Box$ are *IFGPSCSs* in (X, \Box) but $A \Box B = \Box x, (0.5, 0.4), (0.5, 0.6) \Box$ is not an *IFGPSCS* in (X, \Box) .Let $U = \Box x, (0.5, 0.4), (0.5, 0.6) \Box$ be an *IFSOS* in (X, \Box) . Since $A \Box B \Box U$ but $pcl(A \Box B) = \Box x, (0.7, 0.8), (0.3, 0.2) \Box U$.

Remark 17. The combination of any two *IFGPSCSs* in (X, \Box) will not be an *IFGPSCS* in (X, \Box) in universal as realized from the subsequent instance.

Example 18. Let $X = \{a, b\}$ and let $\Box = \{0 \sim, H1, 1 \sim\}$ where $H1 = \Box x, (0.3, 0.2), (0.7, 0.8) \Box$. Then the *IFSs A* = $\Box x, (0.5, 0.9), (0.5, 0.1) \Box$ and $B = \Box x, (0.8, 0.4), (0.2, 0.6) \Box$ are *IFGPSCSs* in (X, \Box) but $A \Box B = \Box x, (0.5, 0.4), (0.5, 0.6) \Box$ is not an *IFGPSCS* in (X, \Box) .Let $U = \Box x, (0.5, 0.4), (0.5, 0.6) \Box$ be an *IFSOS* in (X, \Box) . Since $A \Box B \Box U$ but $pcl(A \Box B) = \Box x, (0.7, 0.8), (0.3, 0.2) \Box U$.

Theorem 19. Let (X, \Box) be an *IFTS*. Then for every $A \Box IFGPSC(X)$ and for every $B \Box IFS(X)$, $A \Box B \Box pcl(A)$ implies $B \Box IFGPSC(X)$.

Proof:

Let $B \square U$ and U be an *IFSOS* in (X, \square) . Then since $A \square B, A \square U$.

Since *A* is an *IFGPSCS*, it follows that $pcl(A) \Box U$. Now $B \Box pcl(A)$ implies $pcl(B) \Box pcl(pcl(A)) = pcl(A)[4]$. Thus, $pcl(B) \Box U$. This proves that $B \Box IFGPSC(X)$.

Theorem 20. Let A be an *IFSOS* and an *IFGPSCS* in (X, \Box) , then A is an *IFPCS* in (X, \Box) .

Proof:

Since $A \square A$ and A is an *IFSOS* in (X, \square) , by hypothesis, $pcl(A) \square A$. Always $A \square pcl(A)$. Therefore pcl(A) = A. Hence A is an *IFPCS* in (X, \square) . **Theorem 21.** Let A be an *IFGPSCS* in (X, \square) then pcl(A) - A does not contain any non empty *IFSCS*.

Proof:

Let *F* be an *IFSCS* such that $F \square pcl(A) - A$. Then $F \square X - A$ implies

 $A \square X - F$. Since A is an *IFGPSCS* and X - F is an *IFSOS*, $pcl(A) \square X - F$. That is $F \square X - pcl(A)$. Hence $F \square pcl(A) \square (X - pcl(A)) = \square$. This shows $F = \square$.

3. Intuitionistic Fuzzy Generalized Pre-Semi Open Sets

In this section, the concept of an intuitionistic fuzzy generalized pre-semi opensets is introduced and some of their properties are studied.

Definition 22. An *IFS A* is said to be an intuitionistic fuzzy generalized presemi open set (*IFGPSOS*) in (X, \Box) if the complement A^c is an *IFGPSCS* in *X*.

The family of all *IFGPSOSs* of an *IFTS* (X, \Box) is denoted by *IFGPSO*(X).

Definition 23. Let *A* be an *IFS* in an *IFTS* (X, \Box). Then intuitionistic fuzzy generalized pre-semi interior of

A(gpsint(A)) and intuitionistic fuzzy generalized pre-semi closure of A(gpscl(A)) are defined by

(i) $gpsint(A) = \Box \{G/G \text{ is an } IFGPSOS \text{ in } X \text{ and } G _A\}$.

(ii) $gpscl(A) = \Box \{K/K \text{ is an } IFGPSCS \text{ in } X \text{ and } A \Box K \}$. Note that for any *IFS* A in (X, \Box) , we have $gpscl(A^c) = (gpsint(A))^c$ and $gpsint(A^c) = (gpscl(A))^c$.

Theorem 24. Let (X, \Box) be a *IFTS*. Then for every $A \Box IFGPSO(X)$ and for every $B \Box IFS(X)$, $pint(A) \Box B \Box A$ implies $B \Box IFGPSO(X)$.

Proof:

Let *A* be any *IFGPSOS* of *X* and *B* be any *IFS* of *X*, such that

 $pint(A) \square B \square A.$

Then A^c is an *IFGPSCS* in *X* and $A^c \square B^c \square pcl(A^c)$. By Theorem, B^c is an *IFGPSCS* in (X, \square) . Therefore *B* is an *IFGPSOS* in (X, \square) . Hence $B \square IFGPSO(X)$.

Theorem 25. An *IFS A* of an *IFTS* (X, \Box) is an *IFGPSOS* in (X, \Box) if and only if $F \Box pint(A)$ whenever F is an *IFSCS* in (X, \Box) and $F \Box A$.

Proof:

Necessity: Suppose A is an *IFGPSOS* in (X, \Box) .

Let *F* be an *IFSCS* in (X, \Box) such that $F \Box A$. Then F^c is an *IFSOS* and $A^c \Box F^c$. By hypothesis A^c is an *IFGPSCS* in (X, \Box) , we have $pcl(A^c) \Box F^c$. Therefore $F \Box pint(A)$, since $(pcl(A))^c = pcl(A)^c[4]$. Sufficiency: Let *U* be an *IFSOS* in (X, \Box) such that $A^c \Box U$. By hypothesis, $U^c \Box pint(A)$. Therefore $pcl(A^c) \Box U$ and A^c is an *IFGPSCS* in (X, \Box) . Hence *A* is an *IFGPSOS* in (X, \Box) .

References

- [1]J.Dontchev, On generalizing semi-pre open sets, Mem. Fac. Sci. Kochi. Univ. Ser. A, Math., 16, (1995), 35-48.
- [2]Y.Gnanambal, On generalized pre-regular closed sets in topological spaces, Indian J. Pure App.Math., 28, (1997), 351-360.
- [3]N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70, (1963), 36-41.zN.Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19, (1970), 89-96.
- [4]H. Maki, J. Umehara and T. Noiri, Every topological space is pre- T_{1/2} space,Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 17, (1996), 33-42.
- [5]P.Sundaram and M.ShiekJohn, On ! -closed sets in topology, Acta SinciaIndica., 4, (2000), 389-392.