Some New Results for Certain Subclasses of Normalized Analytic Functions

Jadhav S.S

Department of Mathematics, Sundarrao More (Sr) College of Arts, Commerce and Science, Poladpur, Maharashtra, India

Abstract
In this Paper we define new subclasses of normalized regular functions
namely $\mathcal M$ (t, p, \alpha). Some examples for the functions in $\mathcal M(t,p,\alpha)$ are also
discussed. With certain condition we find the maximum radius in unit disc
for which functions in the subclass $\mathcal{M}(0, p, \alpha)$ to be in Y $((\alpha+1+ p)^2)$.
Keywords: regular functions, univalent functions

1. INTRODUCTION

Let A denote the family of all functions that are regular in unit disc $\mathcal{T} := \{z : |z| < 1\}$ and satisfy g(0)=0, g'(0)=1. Let $M = \{w : w \text{ is analytic in } D, |w(z)| \le 1, |z| \le 1\}$. S is set of all functions $g \in A$ that are univalent in D. [2] has introduced set $\mathcal{M}(\alpha)$ of all $f \in A$ which satisfies,

$$\left| \left(\frac{z}{g(z)} \right)^2 \mathbf{g}'(z) - 1 \right| \leq \alpha \qquad z \in D, \alpha \in \mathbb{R}^+$$
(1.1)

It is observed that well known Koebefunction given by:

$$K(z) = z (1-z)^{-2}$$

Then K (z) is member of $\mathcal{M}(1)$, but it is not the member of the class of all starlike function of order

 $2z+z^2$

t, where t > 0. Also the holomorphic function 2 is member $\mathcal{M}(1)$ but not belongs to class $S^*(t), t > 0$.

Y (λ) is the collection of all $g \in A$ with $g(z) \neq 0$ in punctured unit disc \mathfrak{V} , satisfying : $|(\frac{z}{g(z)})^n| \leq \lambda$ (1.2)

According to result due to Obradovic [1] and Ponnusamy,

 $Y(2\lambda) \subset \mathcal{M}(0,1,\alpha) \subset S$ for $0 \le \alpha \le 1$ and

In current years, the class $\mathcal{M}(0, 1, 1)$ were studied in detail by [2],[3],[4][5],[9]. In the next result we used the term $Y(\lambda)$: radius means the maximum value of the radius in unit disc for which the functions g (z) in $\mathcal{M}(0, p, \alpha)$ to be in $Y(\lambda)$.

Example1.1 Show that the function defined by

$$\frac{z-t}{f(z)} = p + \frac{\alpha}{16} (z-t)^3$$

belongs to the class
$$\mathcal{M}(t, \mathbf{p}, \alpha)$$
.
Let $g(z) = \frac{z-t}{f(z)} = p + \frac{\alpha}{16}(z-t)^3$

$$g'(z) = \frac{p - \frac{\alpha}{8}(z-t)^{3}}{(p + \frac{\alpha}{16}(z-t)^{3})^{2}}$$

$$\left| \left(\frac{z-t}{g(z)} \right)^{2} g'(z) - p \right| = \left| \frac{\left(p + \frac{\alpha}{16}(z-t)^{3} \right)^{2} (p - \frac{\alpha}{8}(z-t)^{3})}{(p + \frac{\alpha}{16}(z-t)^{3})^{2}} - p \right|$$

$$= \left| \frac{\left(p + \frac{\alpha}{16}(z-t)^{3} \right)^{2} (p - \frac{\alpha}{8}(z-t)^{3}) - p \left(p + \frac{\alpha}{16}(z-t)^{3} \right)^{2}}{(p + \frac{\alpha}{16}(z-t)^{3})^{2}} \right|$$

$$= \left| \frac{\alpha}{8} (z - t)^{3} \right|$$

$$= \frac{\alpha}{8} \cdot 8$$

$$= \alpha$$

Mathematical Statistician and Engineering Applications ISSN: 2094-0343 2326-9865

Hence $g(z) \in \mathcal{M}(t, p, \propto).z^3$

Example 1.2 Show that the function defined by

$$\frac{z}{g(z)} = p + \frac{\alpha}{2}(z)^3$$

belongs to the class $\mathcal{M}(0,p, \propto)$ and belongs to class $Y(2\propto)$ for $|z| < \frac{2}{3}$.

Let
$$g(z) = \frac{z}{p + \frac{\alpha}{2}z^3}$$

 $g'(z) = \frac{p - \alpha z^3}{\left(p + \frac{\alpha}{2}(z)^3\right)^2}$
 $\left|\left(\frac{z}{g(z)}\right)^2 g'(z) - p\right| = \left|\frac{\left(p + \frac{\alpha}{2}(z)^3\right)^2(p - \alpha(z)^3)}{\left(p + \frac{\alpha}{2}(z)^3\right)^2} - p\right|$
 $= \left|\frac{\left(p + \frac{\alpha}{2}(z)^3\right)^2(p - \alpha(z)^3) - p\left(p + \frac{\alpha}{2}(z)^3\right)^2}{\left(p + \frac{\alpha}{2}(z)^3\right)^2}\right|$
 $= |\alpha z^3|$
 $= \alpha |z^3|$
 $< \alpha$

Hence, $g(z) \in \mathcal{M}(0, p, \alpha)$.

Now,
$$\left(\frac{z}{g(z)}\right)^{'} = \frac{3\alpha}{2} z^{2}$$

 $\left|\left(\frac{z}{g(z)}\right)^{''}\right| = 3 \propto z$
 $\left|\left(\frac{z}{g(z)}\right)^{''}\right| < 2 \propto, \text{ for } |z| < \frac{2}{3}.$

Hence, $Y(2 \propto)_{radius for the function g(z) to be in} \mathcal{M}(0, p, \propto)$ is $\frac{2}{3}$

2. $Y((| \propto | + p + 1)^2)$ -Radius For The Class $\mathcal{M}(0, p, \propto)$ with Certain Condition Shaffer [7] gives following lemma.

Lemma 2.1 Let h (z) be analytic for |z| < 1 and Re h $(z) > k, 0 \le k < 1$. h (z) has following expansion,

h (z)=1+a_lz¹+ a_{l+1}z¹⁺¹ + -----,
$$l \ge 1$$
, then

(i)
$$|\mathbf{h}'(z)| \le 1 |z|^{l-1} \frac{(|h(z)+c|)^2}{c+1}$$
 for $|z| \le \frac{(1+l^2)^{\frac{1}{2}}-1}{l}$
(ii) $|\mathbf{h}'(z)| \le |z|^{l-2} (4|z|^2+l^2(l-|z|^2)^2 \frac{(|h(z)+c|)^2}{4(1-|z|^2)(1+c)}$

Where c=1-2k for
$$|z| > \frac{(1+l^2)^{\frac{1}{2}} - 1}{l}$$

Theorem 2.2. Let $f \in \mathcal{M}(0, p, \alpha)$ with $\operatorname{Re}^{\left(\left(\frac{z}{g(z)}\right)^2 g'(z)\right) > 0}$, then $\left|\left(\frac{z}{g(z)}\right)^n\right| \le (\alpha + |p| + 1)^2$ with $|p| - \alpha \ge 0$

Proof. Suppose $g \in \mathcal{M}(0, p, \alpha)$

$$\left|\left(\frac{z}{g(z)}\right)^2 g'(z) - p\right| < \infty$$

 $H_{g}(z) = \left(\frac{z}{g(z)}\right)^{2} g'(z) - p$ $\left| \left(\frac{z}{g(z)}\right)^{2} g'(z) - p \right| < \infty$ If $g(z) = z + a_{2}z^{2} + a_{3}z^{3} + \dots$ $t(z) = \frac{z}{g(z)} = b_{0} + b_{1}z + b_{2}z^{2} + b_{3}z^{3} + \dots$

Mathematical Statistician and Engineering Applications ISSN: 2094-0343 2326-9865

z=t(z)g(z)

Computing and equating coefficient we get,

$$\frac{z}{g(z)} = 1 - a_2 z + (a_2^2 - a_3) z^2 + \dots$$

$$H_g(z) = 1-p+(a_3 - a_2^2)z^2 + \dots$$

$$H_g(z) + p = 1 + (a_3 - a_2^2)z^2 + \dots$$

$$(\mathrm{H}_{\mathrm{g}})'(z) = \left(\frac{z}{g(z)}\right)' - z \left(\frac{z}{g(z)}\right)'' - \left(\frac{z}{g(z)}\right)'$$

$$= -z \left(\frac{z}{g(z)}\right)^{"}$$
$$|\operatorname{H}_{g}(z) + p| \leq |\operatorname{H}_{g}(z)| + |p| < \alpha + |p|$$

$$- (\alpha + |p|) < Re(H_g(z) + p) < \alpha + |p|$$

$$0 \le Re(\mathrm{H}_{\mathrm{g}}(\mathrm{z}) + \mathrm{p}) < \propto +|p|$$

By applying lemma 2.1(i) with $H_g(z) + p, c=1-2k, k=0$ $|(H_g)'(z)| = |(H_g(z)+p)'|$

 $< |z| (\alpha + |p| + 1)^2$

Hence by (2.2) implies

$$|(\frac{z}{g(z)})| \leq |(\alpha + |p| + 1)^2$$
 for $|z| < r_0 = \frac{\sqrt{5} - 1}{2}$

Thus, g has $P((| \propto | + p + 1)^2 \text{ property for the disc for } |z| < r_0 = \frac{\sqrt{5}-1}{2}$. Similarly by lemma 2.1(ii)

$$|(\frac{z}{g(z)})^{"}| \leq \frac{1-|z|^{2}+|z|^{4}}{|z|(1-|z|^{2})} \frac{(|\alpha|+p+1)^{2}}{2} = \varphi(z) \text{ for } |z| > r_{0} = \frac{\sqrt{5}-1}{2}$$

Where,

$$\varphi(t) = \frac{1 - |t|^2 + |t|^4}{|t|(1 - |t|^2)} \frac{(\alpha + |p| + 1)^2}{2} \quad r_0 < t < 1$$

$$\varphi(\mathbf{r}_0) = 2 < \varphi(t) \text{ for } \mathbf{r}_0 < t < 1.$$

Here φ is increasing function with

Now we will prove that r_0 is the best possible value. Consider the function defined by

$$\frac{z}{z} = n - \alpha z \int_{-\infty}^{z} \frac{z+b}{dz} dz$$

$$\frac{1}{g_b(z)} = p - \propto z \int_0^\infty \frac{1}{1 + bz} dz$$

Where b is real and |b| < 1.

$$\left|\frac{z+b}{1+bz}\right| < 1.$$

$$e: \mho \to \mho as e(z) = \frac{z+b}{1+bz}$$

Let define the function

It is observed that e (z) is regular function.

$$| \propto z \int_0^z \frac{z+b}{1+bz} dz |= |\propto ||z^2|| \int_0^1 e(zt) dt|$$

$$\leq |\propto ||z^2| \int_0^1 |e(zt)| dt$$

$$\leq |\propto ||z^2| \int_0^1 |\frac{z+b}{1+bz}| dt$$

$$= \propto |z^2|$$

$$< \propto$$

We will prove that $\propto z \int_0^z \frac{z+b}{1+bz} dz \neq p.$

Conversly suppose that,

$$\propto z \int_0^z \frac{z+b}{1+bz} dz = p$$

Which together with (2.4) gives us that $|p| < \infty$.

It contradicts to the assumption that $|p| - \propto \ge 0$

$$\therefore \propto z \int_0^z \frac{z+b}{1+bz} \, \mathrm{d}z \neq p.$$

$$\frac{z}{g_b(z)}\neq 0.$$

Hence

 g_b is well defined. 2

Let r_1 be fixed number such that,

$$\begin{aligned} \mathbf{r}_{0} < \mathbf{r}_{1} < 1 \text{ and } \mathbf{b}_{1} = \frac{1-2r_{1}^{2}}{r_{1}^{3}} \\ \therefore r_{1}^{2} (1-\mathbf{r}_{1}) < 1 - r_{1}^{2} \text{ and } 1 - r_{1}^{2} < r_{1}^{2} (1+\mathbf{r}_{1}) \\ \therefore r_{1}^{2} (1-\mathbf{r}_{1}) < 1 - r_{1}^{2} < r_{1}^{2} (1+\mathbf{r}_{1}) \\ r_{1}^{2} - r_{1}^{3} < 1 - r_{1}^{2} < r_{1}^{2} + r_{1}^{3} \\ - r_{1}^{3} < 1 - 2r_{1}^{2} < r_{1}^{3} \\ \therefore -1 < \frac{1-2r_{1}^{2}}{r_{1}^{3}} < 1 \\ \therefore -1 < \mathbf{b}_{1} < 1. \end{aligned}$$

Hence $|b_1| < 1$

With some simplification we will get

$$\left| \left(\frac{z}{g_{b_1}(z)} \right)^{n} \right| \le \frac{1 - r_1^2 + r_1^4}{r_1(1 - r_1^2)} \frac{(\alpha + |p| + 1)^2}{2} \quad \text{for } |z| > r_0 = \frac{\sqrt{5} - 1}{2}$$
$$= e(r_1) > 2 \frac{(\alpha + |p| + 1)^2}{2}$$
$$\therefore \left| \left(\frac{z}{g_{b_1}(z)} \right)^{n} \right| > (\alpha + |p| + 1)^2$$

: for $r_0 < r_1 < 1$ there exist function $g_{b_1} \in \mathcal{M}(0,p, \propto)$ such that

$$\left|\left(\frac{z}{g_{b_1}(z)}\right)^{''}\right| > (\alpha + |p| + 1)^2$$

Hence $\mathcal{M}(0, p, \propto)$ has $(\alpha + |p| + 1)^2$ property in disc $|z| < r_0 = \frac{\sqrt{5}-1}{2}$ but not in disc with longer radius.

REFERENCES

- 1. Obdarovic M, Ponnusamy S, New criteria and distortion theorems for univalent functions, Complex var. Theory Appl., 44(3)(2001), 173-191.
- 2. Obdarovic M, Ponnusamy S, Product of univalent functions, Mat. Comput. Model, 57(2013),793-799
- 3. Obdarovic M, Ponnusamy S, Univalent and starlikeness of certain transforms defined by convolution, J. Math. Anal. Appl., 336 (2007), 758-767
- 4. Obdarovic M, Ponnusamy S., Radius of univalence of certain combination of univalent and analytic function. Bull. Malays. Math. Sci. Soc. 35(2) (2012), 325-334.
- 5. Fournier R, Ponnusamy S., A class of locally univalent functions defined by differential inequality, Complex var. Elliptic Eq., 52(1)(2007),1-8
- 6. Ozaki S, Nunokawa M., The Schwarzian derivative and univalent functions, Proc. Am. Math. Soc, 33 (1972), 392-394.
- 7. Shaffer D.B., on the bounds for derivative and univalent functions, Proc. Am. Math. Soc., 33(1972), 392-394.
- 8. Obradovic M., Peng Z., Some new results for certain classes of univalent functions, Bull. Malaya. Math. Soc., 41(3), (2018), 1623-1628.
- 9. Owa S., Hayami T., and Generalized hankel determinant for certain classes, Int.J. of Math. Analysis, 4(52), 2010, 2573-2585.
- 10. Ponnusamy S., Vuorinen M., Univalence and convexity properties for Gaussian hypergeometric functions, Preprint 82, Department of Mathematics, University of Helsinki (1995).
- 11. Raina R., Sharma P., Sokol J., Certain classes of analytic functions related to the crescent shaped regions, Journal of Cont. Math.Analysis,53(6),355-362, (2018).
- 12. St, Ruscheweyh, Singh .V, On the order of star likeness of hyper geometric functions, J. Math. Anal Appl, 113,1-11(1986)
- 13. St. Rusceweyh, New criteria for univalent functions, proc. Amermath.soc. 49 (1975)109-115.
- Thange T., Jadhav S., On subclasses of univalent functions having negative coefficients using rusal differential operator, Advances in mathematics: scientific jour.9(4),2020,1945-1953