Analysis Study of Failure Structural and Preventions before **Constructions**

Mohammad Mansoor Rafiq¹, Kishan P. Singh²

¹M.Tech. (Structures) Scholar, Department of Civil Engineering, Mangalayatan University, Aligarh, Uttar Pradesh, India.

¹mansoorrafiq@gmail.com

²Associate Professor and Director (IET), Mangalayatan University, Aligarh, Uttar Pradesh, India. ²programdirector.wilp@managalayatan.edu.in

Abstract

Article Info Page N Publico Vol 71

Page Number: 8012 - 8029	The construction industry is intrinsically related to the problem of structural
Publication Issue:	breakdowns that have been occurring recently. The accidental and violent
Vol 71 No. 4 (2022)	destruction of a building component or a component of it, as well as the
	structural components of scaffolding, forming elements, sheet piling, and
	excavation linings, constitute a structural failure. This type of failure can be
	defined as an example of a structural failure. Failures in structural integrity
	invariably result in monetary and environmental losses, both of which pose
	significant challenges for businesses. The analysis of the structural failures
	not only makes it possible to identify the factors that contributed to the
	failures, but it also makes it possible to provide solutions that will help
	prevent or reduce the likelihood that similar failures will occur in the future.
	It is a very significant component of an organization's overall business
	process management not just because of the potential threats to human life,
	the environment, and corporate responsibility, but also because of the
	potential costs to the firm financially. In a great number of research paper,
	artificial neural networks (ANNs) have been used to investigate various
	elements of RC buildings. They have mostly concentrated on the aftershock
	effect that earthquakes have on RC constructions. During the process of
	optimization, a trained artificial neural network (ANN) uses the information
	that is generated from a number of characteristics specified as design vectors
Article History	to carry out both deterministic and probabilistic constraint tests. The trained
Article Received: 25 March 2022	NN is then employed to forecast the structure response in terms of
Revised: 30 April 2022	probabilistic and deterministic constraint test owing to varied design factors.
Accepted: 15 June 2022	This is done by applying the learned NN. These values are the result of a
Publication: 19 August 2022	number of different phenomena, including basic periods, base bending

moments, base shear force, and top-floor displacement of buildings in two different directions. Therefore, it is necessary to make predictions regarding these factors.

1. INTRODUCTION

Failure of a building comes before its collapse. The failure can be characterized as a *defect*, *flaw*, *imperfection*, *deficiency*, *weakness*, *shortcoming*, *mistake*, *error*, *kink*, *bug*, or *fault* in the building parts and components that make up a building structure. These words all refer to the same thing. Failure of a structure can be attributed to the presence of forces that are acting on it. These might be static forces (forces that are stationary), such as the weight of the structure itself or the load that it is carrying, OR they can be dynamic forces (forces that are moving), such as those created by the *wind*, *the sea*, *automobiles*, *people*, etc.

The design of structures should satisfy three fundamental requirements:

- 1. Stability: The structure should be stable under the action of loads.
- 2. Strength: The structure should resist safely stresses induced by the loads.
- 3. Serviceability: The structure should perform satisfactorily under service loads.

The only way to ensure the stability, strength, and serviceability of a design is to adhere to the fundamental design principles [1].

The civil engineers and designers, who were ultimately persuaded by their experiences, came across a variety of hazy and unstructured challenges. [2][3][7] One of these issues is the structural failure that was determined to have occurred in the reinforced concrete (RC) building [5]. When developing structures that are optimal in terms of one or more parameters, employing the classic Limit state method is typically complex and time consuming due to the nature of the process. Recent studies have shown that Artificial Neural Networks [4] may be useful in finding solutions to a variety of issues that arise in everyday life. Therefore, the current work utilised the Three Layer Perceptron Feed-Forward Network (TLP-FFN) classifier in order to address the issue of predicting the structural failure of multistoried reinforced concrete buildings [10]. This was accomplished by

determining the likelihood that the structure of a multistoried RC building will fail in the near future.

Objectives of the study

• Designing a structure that can sustain all applied loads for its anticipated lifetime is the aim of structural analysis and design. The purpose of a structure is to support weights and prevent collapse.

• Preventive maintenance is a collection of checks and tasks that help prevent equipment failure. Equipment uptime boosts industrial capacity and output. Unwanted downtime causes extra costs and lost production.

• Needs to reduce building and other construction failures competent design, clear engineering drawing transmission to the contractor, careful and competent construction, and efficient construction supervision utilizing ANN technique to bring all analyses under one roof.

2. ANN AND NEURAL NETWORK WITH STRUCTURE AND MATERIALS

This Predicting when a structure will fail has been and will continue to be one of the most difficult aspects of structural design. The problem becomes a significantly greater challenge in the event that RC buildings have multiple storeys. The necessity for failure prediction has arisen as a consequence of recent developments in structural design, and it must now be addressed. Statistical methods have traditionally been utilised for failure prediction; however, due to the ever-increasing complexity of designs and related characteristics, forecasting failure with a high level of accuracy has become highly laborious and challenging. Because of this, researchers started looking at other options for high accuracy prediction. A s it turned out, utilising Artificial Intelligence for such a data mining, analysis, and prediction mechanism came forth as a potential strategy for the same.

3. RESEARCH METHODOLOGY

Materials and methods

The structural failures that were caused by man (human faults) were examined because these are the types of reasons that people have some level of control over. It was suggested that certain actions be taken in order to lessen the likelihood of future failures. [9] The primary risk factors (threats) that could result in structural failures have been determined. Each threat's likelihood of occurrence (P), severity (S), and detection range (D) were evaluated.

RPN = P.S.D

Р	On a scale from 1 to 10, where 1 indicates that it never happens and 10 indicates that it happens in every production cycle, the probability coefficient is a measure that indicates the frequency with which the structural failure associated with a certain risk occurs.
	On a scale from 1 to 10, where 1 indicates that the risk of structural failure is not
S	very important and 10 indicates that the risk is very high, the severity coefficient indicates how serious the particular risk of structural failure is.
	On a scale from one to ten, with one being an easy possibility to stop and ten
	representing a very difficult one, the detection coefficient indicates how difficult
	it would be to prevent a certain kind of structural collapse from occurring (early
D	detection of the cause).

The RPN could be anything between 1 and 1000. The RPN number indicates the level of risk connected with the danger; the higher the value, the higher the level of risk. It is important to note that the primary reasons for the failure of the structures correspond to each stage of the investment process, beginning with investment planning (the design of the building) and continuing through its implementation (the construction of the building) and ending with operation (use). The FMEA (Failure Modes and Effective Analysis) approach was used throughout the design, construction, and operation phases of the life cycle of structures (Figure 1). A new risk priority number is assigned in addition to the three updated ratings (severity, incidence, and detectability) that are generated for each item that is fixed. After that, the overall RPN of the structure is computed for the whole thing. This value is frequently many tens of percent lower than the RPN that was initially calculated, in part because some of the factors that contributed to failures have been removed. The evaluation of the FMEA's usefulness is demonstrated by the comparison of the two RPNs, it can also be helpful in selecting what actions should be made.

Figure 1. FMEA in Structural Failures Analysis

Finding the Attributes and Methodology

It is possible to conduct an assessment of the danger posed by structural breakdowns by making use of the various stages of risk management. The following applications of these steps can be found throughout this paper:

	Risk	Based on an analysis of India's large-scale projects and
Step 1	Identification	bridges, the threats were found.

		Based on the reasons for the structural failures,
		classification was developed. Disasters created by man and
		those produced by random causes (mostly owing to the
		force of nature) were divided into two primary categories
Ctory 2	II a - au d	(human errors). The design, construction, and exploitation
Step 2	Huzuru	subgroups of the second set of failures-human errors-
		are all strongly tied to the life cycle of a building.
		Using the FMEA method, namely the evaluation of a
		threat's probability (P), the severity of its effect (S), and the
		difficulty in detecting it (D). These information allowed for
	Risk	the calculation of the Risk Priority Number (RPN).
Stan 2	Assessment and	According to the structural failures, this number indicates
step s	Measurement	which of the dangers (causes) listed in stages 1 and 2 is the
		most serious.
		In the groupings of causes that have been analysed,
		preventative measures or risk reduction measures are
		adopted. As was previously noted, the FMEA method was
		utilised to examine how the risk of structural breakdowns
Stop 4	Diele	was managed. The United States military forces first used
Step 4	RISK	the FMEA approach in the late 1940s. It served as a
	Monitoring and	reliable design process in the aircraft sector in the 1960s.
	Response	
	Methods	

4. CAUSES OF STRUCTURAL FAILURES

The causes of structural failures can be split into two categories: those induced by man and those caused by random factors (random causes), such as *wind*, *snow*, and *storms* (resulting from human error). Both negligent behaviour and improper behaviour fall under the second category. Design, construction, and exploitation of a building item all involve structural flaws that are directly attributable to human activity. When it is too late to modify, hidden design flaws can become apparent. The use of too-low-quality materials causes significant issues during both the construction

and use stages. Its consequences can be extremely damaging. It's crucial to keep an eye out and do routine checks and repairs as needed during the exploitation.

Figure 2. Causes and consequences of structural failures

5. BACKGROUND STUDY AND SAMPLE DATA FOR INPUT

The collapse of numerous bridges has been analyzed by engineers in order to glean information about the reasons for the structure's demise, with the objectives of gaining knowledge and preventing expensive errors in the future. When a bridge fails, a cause of failure is usually reported as to why the bridge failed. As a result of these factors, a bridge may suffer from either a partial or a whole collapse, which h are both considered to be forms of bridge failure. A primary reason can be subdivided into two distinct types of causes of failure, which are referred to as enabling causes and trigger causes respectively. Both of these fall under the umbrella concept of being unsuccessful.

Table 1.	The listed	bridge	failures occur	after year 2000
----------	------------	--------	----------------	-----------------

Bridge	Туре	Year, Cause	Casualties	Sources
Bhagalpur Pedestrian	Arch bridge	collapsed onto a	At least	The Hindu
bridge (Bihar)		railway train as it	30 killed	News
		was passing		
		underneath Due to		
		unstable arch		
Kota Chambal Bridge	Cable stayed	During	Claimed	Reported by Road
(Rajasthan)	Bridge	Construction, the	48 lives	transport and
		construction		highways ministry
		sequence was not		
		followed		

Kadalundi River rail	Girder Bridge	Scouring, Pier	At least 57	Reported by
bridge (Kerala)		Unstable (Repair	killed	government
		needed)		investigators,
				Outlook India,
				Mapofindia.
Majerhat Bridge	RCC Girder	Mid — span	AT least	Reported by RVNL
collapse West	Bridae	failure of RCC	3 Killed	chief project
Benaal)		Girder. (Renair		manaaer
		required)		
Vivekananda Flyover	Steel girder,	Buckling Failure,	AT least	Collapse Of Kolkata
Bridge (West Bengal)	flyover bridge	Design error on	27 Killed	FlyoverPractitioner's
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Cantilever Beam		Perspective by
				N. Prabhakar
				& Dr. N. Subramanian
Sanvordem	footbridge made	The bridge was	2 Killed	India today
River Bridge	of steel	closed		News
(Goa)		for use but		
		, Overload a		
		portion of Girder		
		Collapsed		
Flvover	RCC Girder	Erosion of the	15-30	Committee bv
bridge	Bridae	soil.saturation	killed	Government.
(Andhra		and settlement		comment on
Pradesh)		But Poor		anvthina
		Construction.		
		Design Failure		
Rafiganj rail	Steel Girder	Terrorists	130	Times of
bridge	Bridge	sabotaged rail	+ killed	India News
(Bihar)	0	bridae.hiah		
		- speed		
		causing crash		
Veligonda	Railway Bridge	Scouring Failure,	114 killed	Times of
Railway		flood washed		India News
Bridge		rail bridge		
(Andhra		away		
Pradesh)				
Savitri River	Stone Arched	Dilapidated	28 Killed	IIT Report
Bridge (Maharashtra)	Bridge	Condition.		
	_	(Repair required),		
		About 100		
		years old.		

Bridge Collapse	Girder	The bridge was	1 hurt	Times
at Siliguri	Bridge	in a dilapidated		of India News
(West Bengal)		condition,		
		(Repair		
		required)		
Charus	Deck type	Buckling Failure	Unknown	Failure
Bridge	Truss			of chauras
	Bridge			bridge,
				Harshad
Andheri	RCC Girder Bridge	Corrosion	5 Injured	Economictimes.
Bridge		Failure		indiatimes
Jahu	RCC Girder	Scouring	4 Killed	Jahu
Bridge	Bridge	Failure		Bridge Pankaj
Langi Durg	RCC Girder	Scouring Failure	Unknown	Foundation
Road Bridge	Bridge			failure of bridges,
				Narayan, 2018
CAHDOORA	RCC Girder Bridge	Scouring Failure	Unknown	Bridge failures
BRIDGE				in extreme flood
				events, Azmat
Mumbai	RCC Girder Bridge	Scouring Failure	2 Killed, 20	India today
–Goa bridge			Missing	

The next study takes the data from the previous collection of failed structures, merges and simulates the reasons and occurrences of those failures, and then analyses the combined data.

Table 2. Results of FME	A for the structural	failures caused by	human error (own study)
-------------------------	----------------------	--------------------	-------------------------

Cause of the	No	Ρ	S	D	RPN	Preventive Actions
Structural						
Failure						
Design	P1	1	10	9	90	-
mistakes						
Documentation	P2	1	10	9	90	-
mistakes						
	Cause of the Structural Failure Design mistakes Documentation mistakes	Cause of the Structural FailureNoDesign mistakesP1Documentation mistakesP2	Cause of the Structural FailureNoPDesign mistakesP11Documentation mistakesP21	Cause of the Structural FailureNoPSStructural FailureIIDesign mistakesP1110Documentation mistakesP2110	Cause of the Structural FailureNoPSDStructural FailureIIIIDesign mistakesP11109Documentation mistakesP21109	Cause of the Structural FailureNoPSDRPNStructural FailureIIIIIDesign mistakesP1110990Documentation mistakesP2110990

	Low quality of	P3	5	10	9	450	a set of regulations that must be
	the used						complied with, including a set of
	material						minimum criteria for the material
	Incorrect use	P4	3	9	9	243	The implementation of controls
	of material						during the building phase of a
Construction							new facility
Construction							
	Design	P5	2	10	8	160	-
	mistakes and						
	errors						
					_		
	Failure to	P6	6	8	7	336	Legal regulations that prohibit any
	comply with						and all participants in the
	the technology						investing process from behaving
	of						in an unprofessional manner. The
	construction						implementation of controls during
							the building phase of a new
							facility
	Bad quality of	P7	1	4	8	32	-
	connection of						
	individual						
	elements						
	Deviation from	P8	2	8	7	112	-
	the project						

	Malfunction –	P9	6	8	8	364	Legal regulations that prohibit any
	breach of duty						and all participants in the
	by the						investing process from behaving
	participants of						in an unprofessional manner.
	the						The implementation of controls
	construction						during the building phase of a
	process						during the building phase of a
							new facility
	Improper	P10	8	to	9	720	Observance of the prescribed time
Exploitation	exploitation of						limits for the inspections.
Exploitation	ready – made						Performing routine checks on the
	facility						facility's technical condition and
							performing routine upkeep and
							maintenance on the building.
	Lack of	D11	Q	to	Q	640	rules that are well established and
	Luck 0j	1 11	0	10	0	040	followed during routine
	increation of						inspections sanctions in the event
	the facility						that tachnical inspections and
	της γαζιμτή						modifications were not completed
							mounications were not completed
							as required.

P8. Deviations from the project (RPN = 112) and P5. Design mistakes and errors (not detected during the design process) (RPN = 160), both of which have a value that is greater than 100, but at the same time, they have a probability of occurrence that is very low (P = 2). Because of this, the reasons for which RPN is more than 240 were further investigated because there is a direct connection between the issue that was analysed and the data that was obtained. The authors reached their conclusion based on the analyses that were carried out, and they came to the conclusion that, from the perspective of the problem that was analysed, it is essential to select for further analysis those causes whose value is greater than 240. The analysis focuses on those causes that occur more frequently throughout the course of the study. The RPN values for each individual factor contributing to the structural failures are listed, and the limit level is indicated by the red line (240).

Table 2 outlines potential preventative measures to take in the event that the RPN for the cause in question is greater than 240. As can be seen, seven of the eleven causes were involved here.

Figure 3. RPN of the structural failure caused by human error (own study based on online and news feeds study)

P10, improper use of a ready-made facility (RPN = 720), and P11, failure to conduct routine facility inspections (RPN = 640) are examples of these violations. For the causes with RPNs more than 240, preventive measures were suggested based on the risk analysis:

- □ Controls at the construction stage of a new facility
- Regulations including the minimum parameters with which the material must comply
- Legal provisions preventing unprofessional actions of all participants
 of the investment process
- □ Compliance with the inspection deadlines
- □ Conducting regular inspections of the technical condition
- \Box and regular renovation of the facility
- □ Clearly defined rules for periodic inspection
- □ Sanctions for failure to carry out technical inspections and renovations

Causes and Prevention of Structural Failures

The layout plan cannot be utilised to train an ANN since the ANN method only understands numeric data. Below are the raw data that were utilised to calculate important parameters or attributes [11][12].

1. Number of Columns	8.Width of Beam		
2. Number of Beams	9.Breadth of Column		
3. Area	10.Width of Column		
4.Height of Parapet	11.Grade of Steel		
5.Thickness of Side Wall	12. Grade of Concrete		
6.Thickness of Interior Wall	13. Bearing Capacity of Soil		
7.Depth of Beam	14. Reinforcement Area		

The strength of the structures and each node of the structures must be evaluated using tools from the engineers' side. Three further inputs (findings, causes of building collapse, and major recommendations) are chosen to assess the classification outcome after this initial set of inputs.

6. **RESULT DISCUSSION**

ANN and Study of Layers

Artificial neurons (or nodes) are technically defined as structures made up of densely interconnected adaptable basic processing units that can do parallel computing at a huge scale of data processing and knowledge representation. [13] High parallelism, robustness, fault tolerance, learning, the ability to handle ambiguous and fuzzy input, and generalizability are all features that ANNs have successfully incorporated (Jain et al. 1996).

Many learning algorithms can be used to train a NN [14]. One of the core learning algorithms, the perceptron learning rule, has been created to find the best weight vector over an infinite number of repetitions, regardless of the original weight vector. It has been found that this rule only applies to classes that can be linearly separated. The performance of NN has been improved by a number of network architectures.

A variety of factors, including multiple layers of artificial neurons, connections between layer neurons, and the activation function of each neuron, constitute an ANN structure. Input, hidden, and output layers are the three progressively integrated levels that make up a standard ANN. In each of these layers, a neuron has its own summarised inputs that determine its own amount of activation. The layered neurons may have complete or incomplete connectivity. A typical ANN structure with three layers is seen in Figure 2. Because the target values serve as the supervisor in the supervised training approach, which is used to train the ANN, errors between the target values and output values are corrected. Unsupervised ANN training is a different variety. Since there are no target values, the un-supervised system performs its training by ordering its own weights. Back-propagation network (BPN) technique is a supervised ANN training approach utilised in Figure 9.

Figure 4. A typical 3-layer perception feed forward network

ANN for FMEA: To correlate the causality and severity among system aspects, there are numerous traditional and classical FMEA systems accessible (parameters). They all have their own benefits and drawbacks, but one common flaw among them all is that none of them can deal with an unanticipated failure occurrence; as a result, they can only recognise data that has already been saved in their database. Due to this serious flaw, a traditional FMEA system,

- 1. Easily integrate with other reliability design systems
- 2. Promptly associate failure modes, effects, causes with corrections
- 3. Appropriately interpret a defect process
- 4. Necessarily memorize the newly occurred failures
- 5. Competently predict future failures

The purpose of a study will dictate both the path that the research will take and the findings that

will be obtained. It is essential to have a solid understanding of the points of agreement and disagreement amongst the parties involved. The most important outcomes obtained from research activities are referred to as the primary findings. They are examined to see whether or not the objectives of the research have been accomplished. The most important conclusions from the study that was based on both self-analysis and surveys [8], which provides, to some extent, evidences on the causes of building collapse in main and common terms. The five columns that follow indicate three inputs, one suggestion, and one output respectively. This data is being fed into ANN at this time (3-layer perception feed-forward network).

A confusion Calculating a matrix in order to provide a visual representation of how well a classification system works is the task at hand. The rows of the matrix list the examples that belong to each actual class, whereas the columns of the matrix list the examples that correspond to each predicted class. This helps to discover any form of misclassification that may have occurred as a result of the classifier. It gives analysis that is more extensive than just the accuracy of classification. Because it is possible for classification accuracy to generate deceptive results when the quantity of samples in various classes change substantially, it is not a reliable indicator to use when evaluating the effectiveness of a classifier. The following is a list of possible definitions for the entries in the confusion matrix:

True positive (TP) is the number of "positive" instances categorized as "positive". False positive (FP) is the number of "negative" instances categorized as "positive". False negative (FN) is the number of "positive" instances categorized as "negative". True negative (TN) is the number of "negative" instances categorized as "negative".

$Accuracy = \frac{tp + tn}{tp + fp + fn + tn}$	$Precision = \frac{tp}{tp + fp}$	$FP rate = \frac{fp}{fp + tn}$
$Recall = \frac{tp}{tp + fn}$	$F - measure = 2*\frac{F}{P}$	r ecision * Recall r ecision + Recall

	Training	Validation	Testing	Overall
Accuracy	100	100	80	99
Precision	100	100	100	100
Recall	100	100	50	98.04
Fp – rate	0	0	0	0
F – Measure	100	100	66.67	99.01

Table 3. Performance measures of the proposed model for different phases

According to Table 3, it was determined that the "Testing" phase was successful in achieving 100% precision, while the total recall for the proposed model attained a value of 98.04%. Consequently, the proposed system is both promising and effective in terms of determining the current status of the RC building structure that has several storeys.

6. CONCLUSION

In situations when there is a large concentration of the government ought to provide assistance to the population. Buildings are required to have geotechnical reports available before, during, and after construction has been completed. The price of building supplies have to be subsidised by the government in order to limit the number of instances in which people buy substandard building materials. The government is responsible for ensuring that the building regulations are followed to the letter, and it must also revise the laws that are currently in place so that they are in accordance with the most recent developments in construction technology and practise. The general public ought to be educated by the government on the significance of purchasing property insurance. The public and commercial sectors ought to collaborate in order to make investments in emerging building technologies. These technologies have the potential to assist in lowering the cost of building construction while simultaneously maintaining its quality [15]. It is imperative that the government establish a task force for the purpose of ensuring the stringent execution of building codes and the imposition of penalties on those who fail to do so. This task force must include specialists working in the built environment [6]. It is the responsibility of the government to ensure that random, continuous testing of building materials is performed on all building materials, including those that are manufactured domestically and those that are imported, in order to determine when expected standard specifications have been deviated. It is imperative that competent supervision be carried out at each stage of the building construction process, and the practice of using artisans with poor levels of expertise should be abolished. We are only allowed to utilize construction methods that have been approved. Those homes that did not pass the stress test are required to be flagged for demolition. Penalties need to be imposed for the conversion, addition, and alteration of sanctioned buildings that are done illegally.

Reference

- Amadi, A. N., Eze, C. J., Igwe, C. O., Okunlola, I. A., Okoye, N. O. (2012). Architect's and geologist's view on the causes of building failures in Nigeria. Modern Applied Science, 6(6), 31-38.
- 2. Ayedun, C. A., Durodola, O. D., Akinjare, O. A. (2011). An empirical ascertainment of the causes of building failure and collapse in Nigeria. Medit. J. Soc. Sci., 3(1), 313-322.
- Ayolabi, E. A., Folorunso, A. F., Oloruntola, M. O. (2010). Constraining Causes of Structural Failure Using Electrical Resistivty Tomography (ERT): A Case Study of Lagos, Southwestern, Nigeria. In Proceedings of the Symposium on the Application of Geophyics to Engineering and Environmental Problems, 2, 877-893.
- 4. Bagci, M. (2010), "Neural network model for Moment-Curvature relationship of reinforced concrete sections", Math. Comput. Appl., **15**(1), 66-78.
- Blikharskyy, Yaroslav, Nadiia Kopiika, and Jacek Selejdak. 2020. Non-uniform corrosion of steel rebar and its influence on reinforced concrete elements' reliability. Production Engineering Archives 26: 67–72.
- Boyle, Carol, Gavin Mudd, James R. Mihelcic, Paul Anastas, Terry Collins, Patricia Culligan, Marc Edwards, Jeremy Gabe, Patricia Gallagher, Handy Susan, and et al. 2010. Delivering sustainable infrastructure that supports the urban built environment. Environmental Science & Technology 44: 4836–40.
- Czajkowska, Agnieszka. 2019. Analysis of causes of structural failures of buildings using TQC tools. MATEC Web Conference 284: 08002.
- Dahiru, D., Okotie, A. J. (2010). Appraisal of Building Survey Practice in Nigeria. J. Engine. Appl. Sci., 5(3), 181-192.
- 9. Deptuła, Anna Małgorzata, and Ryszard Knosala. 2015. Risk assessment of the innovative

projects implementation. Management and Production Engineering Review 6: 15–16.

- Ede, A. N., Akpabot, A. I., Olofinnade, O. M., Oyeyemi, K. D. (2018). forecasting the hazards of seismic induced building collapse in lagos nigeria through quality of reinforcing steel bars. Int. J. Mech. Engine. Tech., 9(8), 766-775.
- Elazouni, A.M., Nosair, I.A., Mohieldin, Y.A. and Mohamed, A.G. (1997), "Estimating resource requirements at conceptual stage using neural networks", J. Comput. Civil Eng., 11(4), 217-223.
- 12. Erdem, H. (2010), "Prediction of moment capacity of reinforced concrete slabs in fire using artificial neural networks", Adv. Eng. Softw., **41**(2), 270-276.
- 13. Gupta, R., Kewalramani, M. and Goel, A. (2006), "Prediction of concrete strength using neural-expert system", J. Mater. Civil Eng., **18**(3), 462-466.
- 14. Kameli, I., Miri, M. and Raji, A. (2011), "Prediction of target displacement of reinforced concrete frames using Artificial Neural Networks", Adv. Mater. Res., **255**, 2345-2349.
- Oke, A., Abiola-Falemu, J. (2009). Relationship between building collapse and poor quality of materials and workmanship in Nigeria. In Construction and Building Research Conference of the Royal Institution of Chartered Surveyors, 873-884.