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Abstract 

The objective of the work is to address the underlying limit esteem 

issue for the semi-direct space-time fragmentary dissemination 

condition utilizing an implied technique. The fundamental thought 

behind the methodology is to change over the issue into a logarithmic 

framework, which makes the calculations simpler. The consistency and 

security of the methodology are analyzed utilizing the strength 

framework investigation. Mathematical responses to models of semi 

straight fragmentary dissemination conditions are given. The acquired 

information is contrasted with accurate reactions. We inspect the 

blunder examination of the implied limited contrast plan, assembly, and 

solidness utilizing reasonable MATLAB models. 

Keywords: MATLAB, Stability, Initial Value Problem, Convergence, 

Diffusion Equation  

 

 

1. Introduction 

In the investigation of numerous biological, chemical, and physical phenomena, fractional 

differential equations are crucial. Therefore, the theory, methodology, and applications of fractional 

differential equations are of great interest to many academics. Therefore, it is necessary to research 

effective and dependable methods for obtaining accurate or approximation fractional differential 

equation solutions. The scholars have created some numerical methods and achieved 

approximations for the solutions of fractional differential equations that are both linear and 

nonlinear. 
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A number of researchers have analyzed various problems with a number of terms, and conditions 

having different methods. A few are cited here which are necessary to arrive at the problem in 

hand.Kazuaki (2021) studied onthe functional analytic approach to the problem of Markov process 

building in probability theory is the focus of this e-book. It is widely known that the difficulty of 

constructing Markov processes may be simplified to the study of boundary value problems for 

degenerate elliptic integro-differential operators of second order according to the Hille-Yosida 

theory of semi groups.Evgeniya et al. (2021) studied on theDiffusion processes which are 

important in a variety of domains, including medicine,metallurgy,physics,chemistry, and others. 

The problem of charged particle diffusion in a semi-infinite thin tube under the influence of an 

electromagnetic field is studied and solved in this study.Wang et al. (2020) look at a variety of 

ordinary differential equation models for diffusion of innovation and epidemiological models in this 

chapter. They review the classic idea of innovation diffusion, focusing on online social networks 

and examining multiple ordinary differential equation models for diffusion of invention.Aziz and 

Khan (2018) In this study, a HAAR wavelet-based collocation approach for numerical solution of 

diffusion is devised, one look at one-dimensional & two-dimensional hyperbolic partial method for 

providing equations. The numerical findings corroborate the correctness, effectiveness, and 

resilience of proposed technique.The objective of this study, according to Gunvant (2016), is to 

apply a few limited contrast procedures to get a mathematical answer for the underlying limit 

esteem issue (IBVP) for the semi linear fragmentary dissemination condition of variable request. 

Utilizing the Fourier methodology, the solidness and union of this procedure are 

investigated.Finally, the solution to a few numerical examples is investigated and graphically 

represented using MATLAB.D'Ambrosio and Paternoster (2014) the goal of this research is to 

use progressively adapted numerical solutions computational tools to solve partial differential 

equations simulating diffusion issue accurately and efficiently. A numerical research show that 

specific purpose integrates is so much more effective and precise than to use a general-purpose 

solution across both temporal and spatial.Bargieł and Tory (2015) The non - linear diffusing 

equation may be recast in a way that immediately proceeds towards its stochastic equivalent. The 

stochastic technique provides a greater understanding of the physical process by simulating the 

movements of molecules. The parallel version of our approach is incredibly efficient. In order to 

find linear Convection Diffusion (CD) equation series solutions, Fallahzadeh and Shakibi (2015) 

employ the hemitrope analysis technique (HAM). The work by Gurarslan and Sari (2011) 

revealedsatisfactory answers for both direct and nonlinear dissemination issues. Certain conditions 

were tackled utilizing a method with an unmistakable general quadrature approach in space and a 
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versatile soundness protection Runge-Kutta procedure across space. This approach can possibly be 

applied to extra nonlinear common differential conditions to create undeniably more reasonable 

models. The one-layered (1D) dispersion condition is a basic illustrative incomplete differential 

condition (PDE) that concedes voyaging wave arrangements, according to Griffiths and Schiesser 

(2012). This analytical solution is used to assess the numerical solution created using the method of 

lines (MOL). 

This section focuses on determining the numerical solution to the fractional semi linear diffusion 

problem in space-time. Consider the fractional semi-linear space-time diffusion equation: 

𝜕𝑥𝑢

𝜕𝑡𝑥
= 𝑥(𝑎, 𝑡)𝑅𝐷𝑎

𝛽
𝑢 𝑎, 𝑡 + 𝑓 𝑢 𝑎, 𝑡 , 𝑎, 𝑡                                 (1) 

0 < 𝑎 < 𝑙, 𝑥 𝑎, 𝑡 > 0,0 < 𝑡 ≤ 𝑇, 0 < 𝑎 ≤ 1,1 < 𝛽 ≤ 2 

𝑤𝑖𝑡𝑕𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑢 𝑎, 0 = 𝑔 𝑎  2  

𝑢 0, 𝑡 = 0 = 𝑢 𝑙, 𝑡                              (3) 

It is known as the spacetime fractional semi-linear diffusion equation's first initial boundary value 

problem (IBVP). Keep in mind 
𝜕𝑥𝑢

𝜕𝑡𝑥 and 𝑅𝐷𝑎
𝛽
𝑢(𝑎, 𝑡)are the fractional derivatives of order Caputo 

and Riemann−Liouville𝛼(0 < 𝛼 ≤  1) 𝑎𝑛𝑑𝛽(1 < 𝛽 ≤  2) 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 

 

Implicit Finite Difference Scheme: One discretizes the entire first IBVP (1) in this part (3). For 

each 𝛽 0 ≤ 𝑛 −  1 < 𝑛 according to Riemann-Liouville derivative is real & corresponds to the 

Grunwald-Letnikow derivative. The mathematical estimate of partial request differential conditions 

is an extra significant result of the connection between the Riemann-Liouville and Grunwald-

Letnikov thoughts. This permits the Riemann-Liouville definition to be utilized during issue plan 

and the Grunwald-Lettikov definition to be utilized during mathematical 

arrangement.For𝑅𝐷𝑎
𝛽
𝑢 𝑎, 𝑡 ,At all-time levels, we use the shifted Grunwald formula to approximate 

the 2
nd

 order space derivative. 

𝑅𝐷𝑎
𝛽
𝑢 𝑎𝑖 , 𝑡𝑘+1 =

1

𝑕𝛽
  𝑖+1

𝑗=0 𝑔𝑗𝑢 𝑥𝑖 − (𝑗 − 1)𝑕, 𝑡𝑘+1 + 𝑂(𝑕)        (4) 

where the Grunwald weights are defined as follows – 

𝑔0 = 1, 𝑔𝑗 = (−1)𝑗 (𝛽)(𝛽−1)(𝛽−2)…(𝛽−𝑗 +1)

𝑗 !
, 𝑗 = 1,2,3, …     (5) 

Now having equations (3) and (4) in equation (1). we get 
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𝑢 𝑎𝑖 , 𝑡𝑘+1 = 𝑢 𝑎𝑖 , 𝑡𝑘 + 𝑟   

𝑖+1

𝑗 =0

𝑔𝑗 𝑢 𝑎𝑖−𝑗+1, 𝑡𝑘+1 − 𝑏1𝑢 𝑎𝑖 , 𝑡𝑘 + 𝑏𝑘𝑢 𝑎𝑖 , 𝑡𝑘 + 

  𝑘−1
𝑗 =1  𝑏𝑗 − 𝑏𝑗 +1 𝑢 𝑎𝑖 , 𝑡𝑘−𝑗  + 𝑟1𝑓 𝑢 𝑎𝑖 , 𝑡𝑘 , 𝑎𝑖 , 𝑡𝑘 + 𝑅𝑖

𝑘+1       (6) 

Where 𝑟 = 𝑟 𝑖, 𝑘 =
𝑥𝑖

𝑘τ𝑥Γ(2−𝑥)

𝑕𝛽
, 𝑟1 = τ𝑥Γ(2 − 𝑥) 

 𝑅𝑖
𝑘+1 ≤ 𝑐1τ𝑥 τ1+𝑥 + 𝑕𝛽 + τ                                                               (7) 

Let 𝑢𝑖
𝑘be the numerical approximation of𝑢 𝑎𝑖 , 𝑡𝑘 and let 𝑓𝑖

𝑘(𝑢𝑖
𝑘)be the closest numerical 

approximation 𝑓 𝑎𝑖 , 𝑡𝑘 , 𝑢 𝑎𝑖 , 𝑡𝑘  . As a result, the whole discrete form of the initial IBVP (1)-(3) is 

obtained. 

(1 + 𝛽𝑟)𝑢𝑖
1 − 𝑟   

𝑖+1

𝑗 =0,𝑗≠1

𝑔𝑗𝑢𝑖+1−𝑗
1 = 𝑢𝑖

0 − 𝑟1𝑓𝑖
0 𝑢𝑖

0 , 𝑘 = 0 

(1 + 𝛽𝑟)𝑢𝑖
𝑘+1 − 𝑟   𝑖+1

𝑗=0,𝑗≠1 𝑔𝑗𝑢𝑖+1−𝑗
𝑘+1 =  1 − 𝑏1 𝑢𝑖

𝑘 + 𝑟1𝑓𝑖
𝑘 𝑢𝑖

𝑘 +   𝑘−1
𝑗=1  𝑏𝑗 − 𝑏𝑗 +1 𝑢𝑖

𝑘−𝑗
+

𝑏𝑘𝑢𝑖
0, 𝑘 > 1          (8) 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑢𝑖
0 = 𝑔𝑖 , 𝑖 − 0,1,2, … . , 𝑚 − 1                                            9  

𝑢0
𝑘 = 0 = 𝑢𝑚

𝑘 , 𝑘 = 0,1,2, … . 𝑛.                                 (10) 

Put 𝑘 =  0, 𝑎𝑛𝑑𝑖 =  1, 2, . . . , 𝑚 −  1We get a group of (m − 1) calculations from the equation (8), 

which may be represented in the matrix equation as follows. 

𝐴𝑈1 = 𝑈0 + 𝑟2𝐹
0                                          (11) 

𝑤𝑕𝑒𝑟𝑒𝑈1 = [𝑢1
1, 𝑢2

1, … . , 𝑢𝑚−1
1 ]𝑇; 𝑈0 =  𝑢1

0, 𝑢2
0, … . , 𝑢𝑚−1

0  𝑇; 

𝐹0 =  𝑓1
0 𝑢1

0 , 𝑓2
0 𝑢2

0 , … . , 𝑓𝑚−1
0 (𝑢𝑚−1

1  ]𝑇 

where A is a square matrix of order (m - 1) × (m - 1) like that 

𝐴 =

 

 
 
 
 
 

1 + 𝛽𝑟 −𝑟𝑔0

−𝑟𝑔2 1 + 𝛽𝑟 −𝑟𝑔0

−𝑟𝑔3 −𝑟𝑔2 1 + 𝛽𝑟 −𝑟𝑔0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

−𝑟𝑔𝑚−1 −𝑟𝑔𝑚−2 ⋅ ⋅ −𝑟𝑔2 1 + 𝛽𝑟 

 
 
 
 
 

 

This can be expressed as 

𝐴𝑖,𝑗 =  

0,       when 𝑗 > 𝑖 + 1
1 + 𝛽𝑟,       when 𝑗 = 𝑖
−𝑟𝑔𝑖−𝑗+1,      otherwise 

  

Also for 𝑘 =  1, 𝑖 =  1, 2, . . . , 𝑚 −  1, the matrix equation is 
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𝐴𝑈2 =  1 − 𝑏1 𝑈
1 + 𝑏1𝑈

0 + 𝑟1𝐹
1 

In general, 𝑘 ≥  1, 𝑖 =  1, 2, . . . , 𝑚 −  1 we can write as 

𝐴𝑈𝑘+1 =  1 − 𝑏1 𝑈
𝑘 +  (𝑏𝑗 − 𝑏𝑗+1)

𝑘−1

𝑗 =1

𝑈𝑖
𝑘−𝑗

+ 𝑏𝑘𝑈0 + 𝑟1𝐹
𝑘                    (12) 

Where 𝐹𝑘 =  𝑓(𝑢1
𝑘), 𝑓(𝑢2

𝑘), … . , 𝑓(𝑢𝑚−1
𝑘 ) 𝑇 ; 𝑈𝑘+1 =  𝑢1

𝑘+1, 𝑢2
𝑘+1, … . , 𝑢𝑚−1

𝑘+1  𝑇; 

Stability: In this section, we talk about how stable the implicit finite difference scheme is.Let𝑢 𝑖
𝑘be 

the approximation of the implicit finite difference scheme (8)−(100), and let 𝑓𝑖
𝑘(𝑢 𝑖

𝑘)be the 

approximations of𝑓 𝑎𝑖 , 𝑡𝑘 , 𝑢 𝑎𝑖 , 𝑡𝑘  . 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝜖𝑖
𝑘 = 𝑢𝑖

𝑘 − 𝑢 𝑖
𝑘The round off error equation is 

obtained. 

(1 + 𝛽𝑟)𝜖𝑖
1 − 𝑟   

𝑖+1

𝑗 =0,𝑗≠1

𝑔𝑗𝜖𝑖+1−𝑗
1 = 𝜖𝑖

0 − 𝑟1  𝑓𝑖
0 𝑢𝑖

0 − 𝑓𝑖
0 𝑢 𝑖

0  , 𝑘 = 0 

(1 + 𝛽𝑟)𝜖𝑖
𝑘+1 − 𝑟   

𝑖+1

𝑗 =0,𝑗≠1

𝑔𝑗 𝜖𝑖+1−𝑗
𝑘+1 =  1 − 𝑏1 𝜖𝑖

𝑘 + 𝑟1  𝑓𝑖
𝑘 𝑢𝑖

𝑘 − 𝑓𝑖
𝑘 𝑢 𝑖

𝑘  + 

  𝑘−1
𝑗 =1  𝑏𝑗 − 𝑏𝑗 +1 𝜖𝑖

𝑘−𝑗
+ 𝑏𝑘𝜖𝑖

0, 𝑘 > 1                            (13) 

for 𝑖 =  1, 2, . . . , 𝑚 − 1, 𝑘 =  0, 1, 2, . . . , 𝑛. Assuming 𝐸𝑘 ∞ =
𝑚𝑎𝑥

1 ≤ 𝑖 ≤ 𝑚 − 1
 𝜖𝑖

𝑘   

We now examine the stability of the implicit finite difference scheme (8)-(10) using the induction 

approach. When we enter k = 0 into equation (13), we get 𝜖1 

Assume that 𝜖𝑙
1 = 𝑚𝑎𝑥  𝜖1

1 ,  𝜖2
1 , … ,  𝜖𝑚−1

1    

 𝜖𝑙
1 ≤ (1 + 𝛽𝑟) 𝜖𝑙

1 − 𝑟   

𝑖+1

𝑗 =0,𝑗≠1

𝑔𝑗  𝜖𝑙
1  

≤ (1 + 𝛽𝑟) 𝜖𝑙
1 − 𝑟   

𝑖+1

𝑗 =0,𝑗≠1

𝑔𝑗  𝜖𝑙−𝑗+1
1  

=  𝜖𝑙−1
0 + 𝑟1  𝑓𝑖

0 𝑢𝑖
0 − 𝑓𝑖

0 𝑢 𝑖
0   

≤  1 + 𝑟1𝐿  𝜖𝑙
0 

  𝐸1  ∞ ≤ 𝐶  𝜖0  ∞ ∵ 𝐶 = 1 + 𝑟1𝐿 

 

Let   𝐸𝑘+1  ∞ =  𝜖𝑙
𝑘+1 = 𝑚𝑎𝑥  𝜖1

𝑘+1 ,  𝜖2
𝑘+1 , … ,  𝜖𝑚−1

𝑘+1    and assume that 

  𝐸𝑗   ∞ ≤ 𝐶  𝜖0  ∞ , 𝑗 = 1,2, … 𝑘we get 
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 𝜖𝑙
𝑘+1 ≤ (1 + 𝛽𝑟) 𝜖𝑙

𝑘+1 − 𝑟   

𝑖+1

𝑗 =0,𝑗≠1

𝑔𝑗  𝜖𝑙
𝑘+1 

≤  (1 + 𝛽𝑟)𝜖𝑙
𝑘+1 − 𝑟   

𝑖+1

𝑗 =0,𝑗≠1

𝑔𝑗𝜖𝑙
𝑘+1 

 

  

𝑘−1

𝑗 =1

 𝑏𝑗 − 𝑏𝑗 +1  𝜖𝑖
𝑘−𝑗

 + 𝑏𝑘  𝜖𝑖
0 

≤  1 − 𝑏1  𝜖𝑙
𝑘  + 𝑟1𝐿 𝜖𝑙

𝑘  +  𝑏1 − 𝑏𝑘  𝜖𝑙
𝑘  + 𝑏𝑘  𝜖𝑖

0 

≤  1 + 𝑟1𝐿  𝜖𝑙
0 

  𝐸𝑘+1  ∞ ≤ 𝐶0  𝜖
0  ∞ ,  ∵ 𝐶0 = 𝐶 1 + 𝑟1𝐿  

 

As a result, we can prove the following theorem. 

Convergence: The convergence of the implicit finite difference scheme is investigated (8) in this 

section (10). Let𝑢 𝑎𝑖 , 𝑡𝑘 be the exact IBVP (1)−(3) solution at mesh point(𝑎𝑖 , 𝑡𝑘)and let𝑢𝑖
𝑘be the 

numerical solution of (8)-(10) calculated with the implicit finite difference technique.Define  

𝑒𝑖
𝑘 = 𝑢 𝑎𝑖 , 𝑡𝑘 − 𝑢𝑖

𝑘and𝐸𝑘 =  𝑒1
𝑘 , 𝑒2

𝑘 , … , 𝑒𝑚−1
𝑘  

𝑇
 

(1 + 𝛽𝑟)𝑒𝑖
1 − 𝑟   

𝑖+1

𝑗=0,𝑗≠1

𝑔𝑗𝑒𝑖+1−𝑗
1 = 𝑒𝑖

0 − 𝑟1  𝑓𝑖
0 𝑢𝑖

0 − 𝑓𝑖
0 𝑢 𝑖

0  + 𝑅𝑖
1, 𝑘 = 0 

(1 + 𝛽𝑟)𝑒𝑖
𝑘+1 − 𝑟   

𝑖+1

𝑗 =0,𝑗≠1

𝑔𝑗𝑒𝑖+1−𝑗
𝑘+1 =  1 − 𝑏1 𝑒𝑖

𝑘 + 𝑟1  𝑓𝑖
𝑘 𝑢𝑖

𝑘 − 𝑓𝑖
𝑘 𝑢 𝑖

𝑘  + 

  𝑘−1
𝑗 =1  𝑏𝑗 − 𝑏𝑗 +1 𝑒𝑖

𝑘−𝑗
+ 𝑏𝑘𝑒𝑖

0 + 𝑅𝑖
𝑘+1, 𝑘 > 1                    (14) 

where 𝑖 =  1, 2, . . . , 𝑚 −  1, 𝑘 =  0, 1, 2, . . . , 𝑛. 

 𝑅𝑙
𝑘+1 ≤ 𝑐1𝜏

𝛼 𝜏1+𝛼 + 𝑕𝛽 + 𝜏  for 𝑖 = 1,2, … , 𝑚 − 1, 𝑘 = 0,1,2, … , 𝑛 

Following is a proof that the convergence analysis may be established by the use of mathematical 

induction. In equation (14), when k is equal to zero, we get 𝑒1 

Assuming that   𝑒1  ∞ =  𝑒𝑙
1 = 𝑚𝑎𝑥

1≤𝑖≤𝑚−1
  𝑒𝑖

1  

 𝑒𝑙
1 ≤ (1 + 𝛽𝑟) 𝑒𝑙

1 − 𝑟   𝑖+1
𝑗 =0,𝑗≠1 𝑔𝑗  𝑒𝑙

1 

≤  (1 + 𝛽𝑟)𝑒𝑙
1 − 𝑟   𝑖+1

𝑗 =0,𝑗≠1 𝑔𝑗𝑒𝑙−𝑗+1
1  

=  𝑒𝑙
1 + 𝑟1  𝑓𝑖

0 𝑢𝑖
0 − 𝑓𝑖

0 𝑢 𝑖
0  + 𝑅𝑙

1 

≤  𝑒𝑙
0 + 𝑟1𝐿 𝑒𝑙

0 +  𝑅𝑙
1 

  𝐸1  ∞ ≤  𝑅𝑙
1 

               (15) 

𝑈𝑠𝑖𝑛𝑔𝑒0 = 0 𝑎𝑛𝑑 𝑅𝑙
1 ≤ 𝑐1τ𝑥(τ1+𝑥 + 𝑕𝛽 + τ)we have 
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  𝑒1  ∞ ≤ 𝑏0
−1𝑐1𝜏

𝛼 𝜏1+𝛼 + 𝑕𝛽 + 𝜏  

Assume that this is the case for 𝑗,   𝑒𝑗   ∞ ≤ 𝑏𝑗−1
−1 𝑐1𝜏

𝛼 𝜏1+𝛼 + 𝑕𝛽 + 𝜏  

𝑗 = 1,2, … , 𝑘And   𝑒𝑙
𝑘+1 = 𝑚𝑎𝑥  𝑒1

𝑘+1 ,  𝑒2
𝑘+1 , … ,  𝑒𝑚−1

𝑘+1   Note that𝑏𝑗
−1 ≤ 𝑏𝑘

−1 

 𝑒𝑙
𝑘+1 ≤ (1 + 𝛽𝑟) 𝑒𝑙

𝑘+1 − 𝑟   

𝑖+1

𝑗 =0,𝑗≠1

𝑔𝑗  𝑒𝑙
𝑘+1 

≤  (1 + 𝛽𝑟)𝜖𝑙
𝑘+1 − 𝑟   

𝑖+1

𝑗=0,𝑗≠1

𝑔𝑗 𝜖𝑙−𝑗+1
𝑘+1  

 

=∣  1 − 𝑏1 𝑒𝑖
𝑘 + 𝑟1  𝑓𝑖

𝑘 𝑢𝑖
𝑘 − 𝑓𝑖

𝑘 𝑢 𝑖
𝑘  + 

  

𝑘−1

𝑗 =1

 𝑏𝑗 − 𝑏𝑗 +1 𝑒𝑖
𝑘−𝑗

+ 𝑏𝑘𝑒𝑖
0 + 𝑅𝑙

𝑘+1 ∣ 

≤  1 − 𝑏1  𝑒𝑖
𝑘  + 𝑟1   𝑓𝑖

𝑘 𝑢𝑖
𝑘 − 𝑓𝑖

𝑘 𝑢 𝑖
𝑘   + 

  

𝑘−1

𝑗 =1

 𝑏𝑗 − 𝑏𝑗 +1  𝑒𝑖
𝑘−𝑗

 +  𝑅𝑙
𝑘+1  

≤  1 − 𝑏1   𝑒
𝑘  ∞ + 𝑟1𝐿  𝑒𝑘  ∞ +  𝑏1 − 𝑏𝑘   𝑒𝑘  ∞ +  𝑅𝑙

𝑘+1 

≤ 𝑏𝑘
−1 1 + 𝑟1𝐿 𝑐1𝜏

𝛼 𝜏1+𝛼 + 𝑕𝛽 + 𝜏 

  𝑒𝑘+1  ∞ ≤ 𝐶0𝑘
𝛼𝜏𝛼 𝜏1+𝛼 + 𝑕𝛽 + 𝜏 ,  ∵  1 + 𝑟1𝐿 𝑐1 = 𝐶0 

 

If kτ ≤ T is a finite number, then we can prove the following theorem. 

Theorem 1: Let𝑢𝑖
𝑘be the close approximation of 𝑢(𝑎𝑖 , 𝑡𝑘)calculated by making use of an implicit 

finite difference method, & both the basis term and the situation of Lipschitz are met (3.9). If this is 

the case, there must be a positive constant 𝐶0such that 𝑢𝑖
𝑘 − 𝑢(𝑎𝑖 , 𝑡𝑘) ≤ 𝐶0(τ + h) 

 Test Problem 

Example 1: Take into consideration the fractional semi-linear space-time diffusion equation. 

𝜕0.9𝑢

𝜕𝑡0.9
=

𝜕1.8𝑢

𝜕𝑎1.8
+ 𝑢2 + 𝑓 𝑎, 𝑡, 𝑢 𝑎, 𝑡  , 0 < 𝑎 < 𝜋, 0 < 𝑡 ≤ 𝑇       16  

𝑤𝑖𝑡𝑕𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑢 𝑎, 0 =  𝑠𝑖𝑛𝑥                                          (17) 

𝑢 0, 𝑡 =  0 =  𝑢 𝜋, 𝑡                       (18) 

Where 𝑓 = 𝑡0.1𝑠𝑖𝑛𝑎𝐸1,1.1 𝑡 − 𝑒𝑡 sin(𝑎 + 0.9𝜋) − 𝑠𝑖𝑛2𝑎𝑒2𝑡and exact solution is 𝑢 𝑎, 𝑡 = 𝑒𝑡𝑠𝑖𝑛𝑎 

The following is an example of the discrete form of IBVP (16-18):- 
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(1 + 𝛽𝑟)𝑢𝑖
1 − 𝑟   

𝑖+1

𝑗=0,𝑗≠1

𝑔𝑗𝑢𝑖+1−𝑗
1 = 𝑢𝑖

0 − 𝑟1 𝑢𝑖
0 2, 𝑘 = 0

(1 + 𝛽𝑟)𝑢𝑖
𝑘+1 − 𝑟   

𝑖+1

𝑗 =0,𝑗≠1

𝑔𝑗𝑢𝑖+1−𝑗
𝑘+1 =  1 − 𝑏1 𝑢𝑖

𝑘 + 𝑟1 𝑢𝑖
𝑘 

2
+

  

𝑘−1

𝑗 =1

 𝑏𝑗 − 𝑏𝑗 +1 𝑢𝑖
𝑘−𝑗

+ 𝑏𝑘𝑢𝑖
0, 𝑘 > 1

 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑢𝑖
0 = sin 𝑖𝑕 ,   𝑖 = 0,1,2,3,4,5,6.  ∴ 𝑕 =

𝜋

6
  

𝑢0
𝑘 = 0 = 𝑢𝑚

𝑘 ,   𝑘 = 0,1,2, … . , 𝑛 

 

Figure 1: When t equals 0.02 and t equals 0.05, a comparison is made between the exact 

answer and the numerical solution 

 

Table 1: In the table that follows, a comparison is made between the particularanswer and the 

numerical answer at the time t = 0.01. 

u(a, t) I.F.D.M. Particulara

nswer 

Absolute 

Error 

Relative 

Error 

% Error 

𝑢  
𝜋

6
, 0.01  0.5064 0.5050 0.0014 0.0028 0.2772 

𝑢  
𝜋

3
, 0.01  0.8751 0.8747 0.0004 4.573× 10−4 0.04578 

𝑢  
𝜋

2
, 0.01  1.0103 1.0101 0.00024 2.376× 10−4 0.0238 

𝑢  
2𝜋

3
, 0.01  0.8754 0.8747 0.0007 8.0027× 10−4 0.08 

𝑢  
5𝜋

6
, 0.01  0.5064 0.5050 0.0014 0.0028 0.2772 

Example 2: Take into consideration the fractional semi-linear space-time diffusion equation. 
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𝜕𝑎𝑢

𝜕𝑡𝑎
=

𝜕𝛽𝑢

𝜕𝑎𝛽
+ 𝑠𝑖𝑛𝑢, 0 < 𝑎 < 1, 0 < 𝑡 ≤ 𝑇                            (19) 

𝑤𝑖𝑡𝑕𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑢 𝑎, 0 = 𝑥 1 − 𝑥                          (20) 

𝑢 0, 𝑡 = 0 = 𝑢 1 − 𝑡                      (21) 

The discrete IBVP (19-) (21)- 

(1 + 𝛽𝑟)𝑢𝑖
1 − 𝑟   

𝑖+1

𝑗 =0,𝑗≠1

𝑔𝑗𝑢𝑖+1−𝑗
1 = 𝑢𝑖

0 − 𝑟1 sin 𝑢𝑖
0  , 𝑘 = 0 

(1 + 𝛽𝑟)𝑢𝑖
𝑘+1 − 𝑟   

𝑖+1

𝑗 =0,𝑗≠1

𝑔𝑗𝑢𝑖+1−𝑗
𝑘+1 =  1 − 𝑏1 𝑢𝑖

𝑘 + 𝑟1 sin 𝑢𝑖
𝑘  + 

  

𝑘−1

𝑗 =1

 𝑏𝑗 − 𝑏𝑗 +1 𝑢𝑖
𝑘−𝑗

+ 𝑏𝑘𝑢𝑖
0, 𝑘 > 1 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑢𝑖
0 = 𝑖𝑕 1 − 𝑖𝑕 , 𝑖 = 0,1,2,3,4,5. (∵ 𝑕 = 0.2) 

𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑢0
𝑘 = 0 =  𝑢𝑚

𝑘  , 𝑘 = 0,1,2, … . , 𝑛. 

 

Figure 2: The numerical solution of the function u(a, t) at a variety of time steps for the cases 

where = 0.9 and = 1.8 

2. Conclusions 

Finding the mathematical answer for semi direct fragmentary incomplete differential conditions 

should be possible very successfully utilizing this strategy. The understood limited distinction 

strategy is made steady and ready to unite with the assistance of the lattice approach. Issues with 

numbers are utilized to show how the speculations work. 
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