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Abstract 

In this research, a resilient numerical approach for a coupled system of 

singly perturbed parabolic delay partial differential equations is designed 

and analyses. On the regular and layer components of the solution and 

their derivatives, design a priori bounds are derived. Shishkin and 

generalized Shishkin type appropriate layer adaptive meshes are defined in 

the spatial direction based on these a priori constraints. The problem is 

then discretized using the central difference scheme on layer-adapted 

Shishkin and generalized Shishkin type meshes in the spatial direction and 

an implicit Euler scheme on a uniform mesh in the temporal direction. A 

numerical approach to the issue is proposed, taking into account both 

generalized Shishkin meshes and relevant layer adapted Shishkin meshes. 

 

Keywords:partial differential equations, Parabolic Spatial 

 

 

1. Introduction 

We arrive at the numerical solution to the 1D parabolic CDPs with singly perturbed device and overlapping boundary 

layers. The proposed numerical approach includes both the implicit-Euler procedure for temporal spinoff and an 

upwind finite distinction scheme for spatial derivatives. To do so, build up the consistent convergence including the 

perturbation parameters, we learn about the plan for a piecewise uniform mesh shishkin. The steadiness assessment and 

Estimation of parameter-uniform error are produced for the cautious technique. The Richardson extrapolation method is 

used to raise the order of convergence from nearly first-order to essentially 2
nd

-order. Numerical experiments are done 

using the provided methods to support the theoretical conclusions. 

Think about the following: 1D parabolic system perturbed singly CD𝑄 ∶= Ω𝑥 ×  0, 𝑇 ,Ω𝑥 =  0,1 :  
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∂𝑢   

∂t
+ 𝐿𝑥,∈   𝑢  = 𝑓 ,  𝑦, 𝑤 ∈ 𝑄

𝑢   𝑌, 0 = 𝑢0      𝑥 , 𝑥 ∈ Ω𝑥
    ,

𝑢   0, 𝑤 = 0  , 𝑢   1, 𝑤 = 0   , 𝑤 ∈  0,𝑊 ,

             (1) 

As an example of the spatial differential opeator𝐿𝑥,𝜀   is given by 

𝐿𝑦,∈   ≡ −𝜀
𝜕2

𝜕𝑦2
− 𝐴 𝑦 

𝜕

𝜕𝑦
+ 𝐵 𝑦 , 

With ∈ = diag(∈1 , ∈2), A(y) = 𝑑𝑖𝑎𝑔 𝑎1 𝑦 , 𝑎2 𝑦  , 𝐵 𝑦 =  𝑏𝑙𝑚 (𝑦) 𝑙,𝑚=1
2  

We assume that ∈1, ∈2fulfill 0 <  ε1 ≤  ε2 ≪ 1, and the matrix of convection coefficients A must meet the following 

positive criteria: 

 a1 𝑦 ≥ 𝛼 > 0,  a2 𝑦 ≥ 𝛼 > 0.                      (2) 

Additionally, let us suppose that B is an L0 matrix with 

min 𝑦∈Ω𝑥    
 𝑏11 𝑦 + 𝑏12 𝑦 , 𝑏21 𝑦 + 𝑏22(𝑦) ≥ 𝛽 > 0    (3) 

If the model problem's data (1) are sufficiently smooth functions and meet adequate compatibility constraints, then the 

model problem (1) has a unique solution𝑢   𝑦, 𝑤 ∈ (𝐶𝜆
4(𝑄))2. Examples of typical assumptions for the source term and 

beginning condition are provided by 

𝑓 ∈ (𝐶𝜆
2(𝑄 ))2  𝑎𝑛𝑑 𝑢0     ∈ (𝐶0

4(Ω𝑦
    ))2                          (4) 

Problem (3.1) compatibility criteria are as follows. 

 

𝑢0      𝑦 = 0  , 𝑦 ∈  0,1 ,

𝑓  𝑦, 0 − 𝐿𝑦,𝜀  𝑢0      𝑦 = 0  , 𝑦 ∈  0,1 ,

𝑓𝑤      𝑦, 0 + (𝐿𝑦,𝜀  )
2𝑢0      𝑦 − 𝐿𝑦,𝜀  𝑓  𝑦, 0 = 0  , 𝑦 ∈  0,1 .

                          (5) 

Compatibility criteria for the scalar case can be found here. 

a 1D parabolic CD IBVP system with SP diffusion coefficients 𝜀1,𝜀2 associated with each equation. To describe this 

case, boundary layers overlap along y = 0 on the left side of the spatial domain, hence a non-uniform mesh is used for 

the spatial variable while a uniform mesh is used for the temporal variable. Time semi discretization using the implicit-

Euler scheme is combined with spatial discretization using the upwind DS in the numerical approach. Estimates of 

magnitude of error 𝑂 𝑁−1𝐼𝑛 𝑁 + ∆𝑤 𝑁 is the spatial discretization parameter and t is the time step in the numerical 

solution. The estimated numerical solution is then refined using the Richardson extrapolation approach.  

The following is how this section is organized: several analytical properties of the continuous problem are established. 

We also go through the exact solution's derivative bounds for the temporal semi discrete scheme.  

2. The Solution's Limits And Derivatives 

An exact solution for a continuous issue (1) has analytical properties, for example its highest fundamental and its 

restrictions on solution derivatives. 

Lemma 1 Let (
∂

∂x
+ 𝐿𝑥,𝜀  ) Let t be the Differential operator described in (1), and we consider that the matrices A and B 

satisfy the conditions of (2) and (3)After that, 

𝑧 ≥ 0   𝑜𝑛 𝜕𝑄 𝑎𝑛𝑑  
∂

∂x
+ 𝐿𝑥,𝜀   𝑧 ≥ 0    𝑎𝑛𝑑 𝑄, 𝑤𝑒 𝑕𝑎𝑣𝑒 𝑧 ≥ 0   , 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥, 𝑡 ∈ 𝑄 .  

Proof. There is no other way to prove this lemma. Suppose that a point exists. 

(𝑥0, 𝑡0) ∈ 𝑄such that. 
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𝑚𝑖𝑛 𝑧1 𝑥0 , 𝑡0 , 𝑧2(𝑥0 , 𝑡0) = min min 𝑥 ,𝑡 ∈𝑄 𝑧1 𝑥, 𝑡 , min 𝑥,𝑡 ∈𝑄 𝑧2 𝑥, 𝑡  < 0.  

To keep things as broad as possible, we assume that 𝑧1 𝑥0 , 𝑡0 ≤ 𝑧2(𝑥0 , 𝑡0)Then, the first part of the structure(
∂

∂x
+

𝐿𝑥,𝜀  )𝑧  satisfies 

𝜕𝑧1

𝜕𝑡
+ 𝐿𝑥,𝜀1     𝑧  𝑥0, 𝑡0 ≤ 𝑏11 𝑥0 𝑧1 𝑥0 , 𝑡0 + 𝑏12 𝑥0 𝑧2 𝑥0 , 𝑡0 < 0, 

Because this lemma's hypothesis is false, it follows that  

𝑧 ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥, 𝑡 ∈ 𝑄 . 

The following lemma will assist us in this endeavor, as will the bound for the precise answer𝑢  . 

Lemma 2 The solution is as follows: 𝑢  The following estimate applies to the solution of the problem (1). 

 𝑢   𝑥, 𝑡 − 𝑢   𝑥, 0  ≤ 𝐶 𝑡,  𝑥, 𝑡 ∈ 𝑄 , 

In which C is not dependent of 𝜀1, 𝜀2 

Proof. We will only make an estimate for the first component u1, but the same procedure may be used to demonstrate 

the outcome for the second component u2. 

 Set  

Φ    𝑥, 𝑡 = u   𝑥, 𝑡 − 𝑢0      𝑥 , 𝑤𝑕𝑒𝑟𝑒 u   𝑥, 0 = 𝑢0     (𝑥)  

Then Φ    fulfils the requirements of the following problem  

 

𝜕𝜙1

𝜕𝑡
+ 𝐿𝑥,𝜖1

𝜙   𝑥, 𝑡 = 𝑓1 𝑥, 𝑡 − 𝐿𝑥,𝜖1
𝑢0      𝑥 ,

𝜙1 𝑥, 0 = 0 𝑓𝑜𝑟 0 < 𝑥 < 1,

𝜙1 𝑥, 𝑡 = 0 𝑎𝑛𝑑 𝜙1 1, 𝑡 = 0 𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 𝑇.

  

Set 𝜑  (𝑥, 𝑡) = 𝐶 𝑡 when the positive constant is sufficiently large 𝐶 = (𝐶, 𝐶)𝑇 , as a result, it is simple to show that 

 

𝜕𝜓1

𝜕𝑡
+ 𝐿𝑥,𝜖1

𝜓   𝑥, 𝑡 = 𝐶 + 𝐶(𝑏11+𝑏12 )𝑡,

𝜓1 𝑥, 0 = 0 𝑓𝑜𝑟 0 < 𝑥 < 1,

𝜓1 𝑥, 𝑡 =  𝜓1 1, 𝑡 = 𝐶𝑡 𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 𝑇.

  

We can achieve this result by employing the maximal principle stated in Lemma2 

 𝜙1 𝑥, 𝑡  =  𝑢1 𝑥, 𝑡 − 𝑢1 𝑥, 0  ≤ 𝐶𝑡. 

Similarly, we can get  𝜙2 𝑥, 𝑡  =  𝑢2 𝑥, 𝑡 − 𝑢2 𝑥, 0  ≤ 𝐶𝑡. This brings the proof to a close.We examine the 

qualitative behavior graphically before getting into the thorough study of derivative bounds for the solution𝑢  (𝑥, 𝑡)of 

(1). 

Example 1:Consider the following problem (1), in which the values of A and B are provided as 

𝐴 =  
1 0
0 1

 ,   𝐵 =  
2 + 𝑥 −1
−1 2 + 2𝑥

  

as well as the source phrase𝑓 = (1,1)𝑇without any baseline or limit conditions. 
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Fig. 1: Example 3.1 numerical solution for 𝜺𝟏= 2-
8
, 𝜺𝟐= 2-

4
 and N = 64 at time t = 1 

 

Figure 1 depicts the overlapping boundary layers along the side x = 0. While both components have width boundary 

layers 𝑂  𝜀2𝐼𝑛 𝜀2 , 𝑜𝑛𝑙𝑦 𝑢1(𝑥, 𝑡) has an extra width sublayer 𝑂  𝜀1𝐼𝑛 𝜀1 , this phenomenon is depicted in Fig. 1. The 

differences in behavior between the two curves in the rightmost figure are very obvious. 

Theorem 1. For any non-zero integersk; k0, satisfying 0 ≤ 𝑘 + 𝑘0 ≤ 2the exact solution's derivatives 𝑢  = (𝑢1, 𝑢2)𝑇The 

following estimates are satisfied by the IBVP (1): 

 
𝜕𝑥𝑘+𝑘0𝑢𝑡
𝜕𝑥𝑘𝜕𝑡𝑘0

 ≤  

𝐶, 𝑓𝑜𝑟 𝑘 = 0

𝐶  1 +∈𝑙
−1 𝐵∈𝑙

0  𝑥  , 𝑓𝑜𝑟 𝑘 = 1,

𝐶 1 +∈𝑙
−1 (∈1

−1 𝐵∈1
0  𝑥 +∈2

−1 𝐵∈2
0  𝑥 ) , 𝑓𝑜𝑟 𝑘 = 2,

  

for all (x; t) 𝜖 𝑄  and l = 1, 2.         

Proof. We shall explore several situations to verify the boundaries of the derivative of the exact solution 𝑢   of (1). 

Case 1: We will explore the situation k0 =0. In this section, we will explore the situation for from lemma 2 we have  

 𝑢   ∞ ≤
1

1 − 𝛾
 

1

𝛾𝛽
 𝑓  

∞
+  𝑢   ∞  

Case 2: Let’s have a look at it. k=0 and k0 =1. Since 𝑢   0, 𝑡 = 𝑢   1, 𝑡 = 0   𝑓𝑜𝑟 𝑡 ∈ [0,1]because of which it follows 

𝑢  𝑡 = 0  .In addition, by employing the regularity condition (4), we obtain 𝑢  𝑡(𝑥, 0) ≤ 𝐶  for all𝑥 ∈ [0,1].When we 

differentiate (1) regarding t, we get 

 
𝜕

𝜕𝑡
+ 𝐿𝑥,∈    𝑢𝑡     𝑥, 𝑡 = 𝑢𝑡𝑡      − 𝜀𝑢𝑡𝑥𝑥         − 𝐴𝑢𝑡𝑥       + 𝐵𝑢𝑡    = 𝑓𝑡    .          (6) 

Since𝑓 is a reasonably smooth function, thus by applying the highest principle on it Q, We can then assume that 𝑢  𝑡  ≤ 𝐶  

Case 3lets look at the situation. In which k = 1 and k0 = 0: We get 

∂𝑢1

∂t
− 𝜀1

∂2𝑢1

∂t2
− 𝑎1

∂𝑢1

∂x
+ 𝑏11𝑢1 + 𝑏12𝑢2 = 𝑓1 , 𝑜𝑛 𝑄 . 

The preceding equation can be rewritten as follows: 

𝜀1
∂2𝑢1

∂x2 =
∂𝑢1

∂t
− 𝑎1

∂𝑢1

∂x
+ 𝑏11𝑢1 + 𝑏12𝑢2 − 𝑓1,(7) 

This suggests that ∈1  
𝜕𝑢1

𝜕𝑥
(𝜃, 𝑡) ≤ 2 𝑢   ∞. We get by integrating (7) regarding x and then integrating by parts. 
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∈1  
𝜕𝑢1

𝜕𝑥
 𝜃, 𝑡 −

𝜕𝑢1

𝜕𝑥
 0, 𝑡  

=  
𝜕𝑢1

𝜕𝑡
 𝑠, 𝑡 𝑑𝑠 −  𝑎1 𝑠 𝑢1 𝑠, 𝑡  0

𝜃 +
𝜃

0

 
𝜕𝑎1

𝜕𝑠
(𝑠)𝑢1 𝑠, 𝑡 𝑑𝑠

𝜃

0

+   𝑏11 𝑠 𝑢1 𝑠, 𝑡 + 𝑏12 𝑠 𝑢2 𝑠, 𝑡  𝑑𝑠 −  𝑓1 𝑠, 𝑡 𝑑𝑠.
𝜃

0

𝜃

0

 

As a result, we have obtained 

∈1  
𝜕𝑢1

𝜕𝑥
 0, 𝑡  ≤  𝑓1 ∞ +  

𝜕𝑢1

𝜕𝑡
 
∞

+ 𝐶( 𝑢1 ∞ +  𝑢2 ∞) 

By making use of the bound of  𝑢    and 𝑢  𝑡one is able to obtain 

 
𝜕𝑢1

𝜕𝑥
 0, 𝑡  ≤ 𝐶𝜀1

(−1)
 

The following is an expression for the equation (7):  

𝜀1
∂2𝑢1

∂t2 + 𝑎1
∂𝑢1

∂x
=

∂𝑢1

∂t
+ 𝑏11𝑢1 + 𝑏12𝑢2 − 𝑓1 ≡ 𝐴1(𝑥, 𝑡) (8) 

We get the following result by integrating (8) with regard to x: 

𝜕𝑢1

𝜕𝑥
 𝑥, 𝑡 =

𝜕𝑢1

𝜕𝑥
 0, 𝑡 exp  

− 𝜂1 𝑥 − 𝜂1 0  

𝜀2

 − 𝜀1
(−1)

 Λ1(𝑠, 𝑡) exp  
− 𝜂2 𝑥 − 𝜂1 0  

𝜀1

 𝑑𝑠
𝑥

0

 

Where𝜂1(x) is a definite integral of the indefinite a1 (x) (x; t), we are able to obtain that By making use of the bounds of 

𝜕𝑢1

𝜕𝑥
(0, 𝑡) andΛ1(𝑥, 𝑡) We are able to obtain that 

 
𝜕𝑢1

𝜕𝑥
 ≤ 𝐶  1 + 𝜀1

 −1 𝐵𝜀1
0  𝑥  . 

We can derive that in a similar method as well. 

 
𝜕𝑢2

𝜕𝑥
 ≤ 𝐶  1 + 𝜀2

 −1 𝐵𝜀2
0  𝑥  . 

Case 4 consider k=0 and k0=2. From the 𝑢   0, 𝑡 = 𝑢   1, 𝑡 = 0   𝑓𝑜𝑟 𝑡 ∈ [0,1]because𝑢  𝑡 = 𝑢  𝑡𝑡 = 0   Using the regularity 

criteria and the estimate from Case 2, we have  𝑢  𝑡𝑡(𝑥, 0) ≤ 𝐶  for all x ∈ [0, 1]. Following that, distinguishing (6) in 

relation to t, we obtain 

 
∂

∂x
+ 𝐿𝑥,𝜀   𝑢𝑡𝑡      = 𝑢𝑡𝑡𝑡        − 𝜀𝑢𝑡𝑡𝑥𝑥          − 𝐴𝑢𝑡𝑡𝑥        + 𝐵𝑢𝑡𝑡      = 𝑓𝑡𝑡      

Since𝑓 𝑡𝑡  maximal concept is used in Lemma 3.4 to obtain bounded function  𝑢  𝑡𝑡  ≤ 𝐶  𝑜𝑛 𝑄  

Case 5 In this section, we'll look at the situation. k = 1 and k0 = 1: To begin, we'll talk about derivative boundaries. u1, 

For a fixed 𝑡 ∈  0, 𝑇 ,, there exist𝜃 ∈ (0,1) such that 

∂2𝑢1

∂x ∂t
 𝜃, 𝑡 =

1

𝜀1

 
𝜕𝑢1

𝜕𝑡
 𝜀1, 𝑡 −

𝜕𝑢1

𝜕𝑡
 0, 𝑡  , 

This suggests that 𝜀1  
∂2𝑢1

∂x ∂t
 𝜃, 𝑡  ≤ 2  

𝜕𝑢1

𝜕𝑡
 
∞

,we have (9) by differentiating (7) regarding t and rearranging the terms. 

𝜀1
∂3𝑢1

∂x2 ∂t
=

∂2𝑢1

∂t2 − 𝑎1
∂2𝑢1

∂x ∂t
+ 𝑏11

𝜕𝑢1

𝜕𝑡
+ 𝑏12

𝜕𝑢2

𝜕𝑡
−

𝜕𝑓1

𝜕𝑡
.                 (9) 

We obtain by integrating (9) with corresponding to x and using the Case 3 technique. 

𝜀1  
∂3𝑢1

∂x2 ∂t
(0, 𝑡) ≤  

𝜕𝑓1

𝜕𝑡
 
∞

+  
∂2𝑢1

∂t2
 
∞

+ 𝐶  
𝜕𝑢1

𝜕𝑡
 
∞

+  
𝜕𝑢2

𝜕𝑡
 
∞
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Making use of the bound of  𝑢  𝑡   𝑎𝑛𝑑  𝑢  𝑡𝑡   we obtain 

 
𝜕2𝑢1

𝜕𝑥𝜕𝑡
 0, 𝑡  ≤ 𝐶𝜀1

(−1)
 

It is now possible to express (9) as 

𝜀1

∂3𝑢1

∂x2 ∂t
+ 𝑎1

∂2𝑢1

∂x ∂t
= 𝐴2 𝑥, 𝑡 , 𝑤𝑕𝑒𝑟𝑒 𝐴2 𝑥, 𝑡 =  

∂2𝑢1

∂t2
+ 𝑏11

𝜕𝑢1

𝜕𝑡
+ 𝑏12

𝜕𝑢2

𝜕𝑡
−
𝜕𝑓1

𝜕𝑡
 

Case 3 argument can lead us to this conclusion. 

 
𝜕2𝑢1

𝜕𝑥𝜕𝑡
 ≤ 𝐶  1 + 𝜀2

 −1 𝐵𝜀2
0  𝑥  . 

Similarly, the needed bound for component may be determined in the same way u2. 

Case 6. Take, for example, the situation in which k = 2 and k0 = 0: We will offer you with an estimate for the 

component u1To begin, consider the first component of (1) as shown in the following form 

𝜀1
∂2𝑢1

∂x2 =
∂𝑢1

∂t
− 𝑎1

∂𝑢1

∂x
+ 𝑏11𝑢1 + 𝑏12𝑢2 − 𝑓1                  (10) 

Following the approach stated in Case 3, one could be 

 
𝜕2𝑢1

𝜕𝑥2
 0, 𝑡  ≤ 𝐶𝜀1

2 

It is straightforward to calculate that from (10) and the preceding estimate. 

 
𝜕2𝑢1

𝜕𝑥2
 0, 𝑡  ≤ 𝐶𝜀1

2 

Differentiating (10) in relation to another x, There is nothing we can do about it 

𝜀1
∂3𝑢1

∂x3 + 𝑎1
∂2𝑢1

∂x2 = 𝐴3 𝑥, 𝑡 . 𝑜𝑛 𝑄                      (11) 

𝑤𝑕𝑒𝑟𝑒 𝐴3 𝑥, 𝑡 = −
𝜕𝑓1

𝜕𝑥
−
𝜕𝑢1

𝜕𝑥

𝜕𝑢1

𝜕𝑥
+
𝜕(𝑏11𝑢1 + 𝑏12𝑢2)

𝜕𝑥
+  

∂2𝑢1

𝜕𝑥 ∂t
 

Case 3 and Case 5 can be used to obtain the desired result. 

 𝐴3(𝑥, 𝑡) ≤ 𝐶  1 + 𝜀1
1𝐵𝜀1

0  𝑥 𝜀2
1𝐵𝜀2

0  𝑥  . 

Then, using Case 3's reasoning and the bound of A3(x, t), we may deduce that 

 
𝜕2𝑢1

𝜕𝑥2
 ≤ 𝐶  1 + 𝜀1

−1(𝜀1
−1𝐵𝜀2

0  𝑥 + 𝜀2
−1𝐵𝜀2

0  𝑥  . 

In a similar vein, one can get an estimate for u2. This brings the proof to a close. 

3. Conclusion 

In this study, a coupled system of singularly perturbed parabolic PDEs with time delay has been taken into 

consideration (2). We discretized the issue using the finite difference operator, which consists of an implicit Euler 

scheme for time and a central difference scheme for space, on a rectangular mesh consisting of Shishkin mesh or 

generalised Shishkin mesh in the space direction and uniform mesh in the time direction. It has been demonstrated that 

the suggested numerical method for Shishkin and generalised Shishkin meshes uniformly converges in the maximum 

norm. It is demonstrated that, regardless of the perturbation parameters, the suggested numerical technique converges 

with first order in time and nearly second-order in space. The theoretical convergence conclusions were supported by 

numerical results. 
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