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Abstract 

Several structural characteristics of the Generalized Gamma Distribution 

(GGD) have been revealed in this work. Under four distinct loss functions, 

the Bayesian technique of determine has been used to determine the 

parameters of GGD using the Jeffrey's & extension of Jeffrey's priors. 

Through the use of simulated studies with various sample sizes and R 

software, the estimate so derived was compared with the traditional 

Maximum Likelihood Estimator employing MSE. Jeffrey's prior work has 

been extended to include the equation for the survival function. 

 

Keywords: -Likelihood, Bayesian, Generalized Gamma Distribution, R 

Software, Jeffrey’s Prior 

 

 

Introduction: Modeling duration requires a flexible family, and Stacy's (1962) Generalized 

Gamma Distribution (GGD) provides one such example. The GGD presents a variety of different 

form and hazard functions. Seufert (2021) Due to the fact that investigations into subjectivity 

Quality of Experience (QoE) utilise biassed assumptions regarding ordinal rating scale, Mean 

Percentage Score (MOS)-based assessments provide results that are problematic and misleading.  

 

Mishra et al. (2019) Epidemiological, statistical approaches for data processing and categorization 

are accessible. These methodologies can be applied to each and every specific circumstance. We 

went through parametric and non-parametric methodologies, their prerequisites, and how to choose 

appropriate statistical measurement and analysis, as well as interpretation of biological data, in this 

post. The Senators Sarmento and Costa (2019) The application of statistical software in both 

business and academic settings has become increasingly common during the past few years. 

Everyone from students and professors to experts and average users has had some experience with 
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statistical software at some time in their lives. In this study, we make an effort to make access to 

various theoretical concepts easier by providing a statistical review of such concepts.  

 

Peligrad (2018) conducted research on the exact modest and large eccentricity asymptotic in non-

logarithmic technique for linear procedures that have self-governing innovations. Since the linear 

processes that we investigate are universal in nature, we will refer to them as the "long memory 

case." Savsani and Ghosh (2017) in this article, we have developed a method for finding the 

posterior distribution of the Moderate Distribution by making use of the likelihood of a single 

observation and its ordinates. This method was inspired by Savsani and Ghosh's 2017 study.  

In the process of duration analysis in economics, distributions including exponential (Kiefer, 1984), 

gamma (Lancaster, 1979), &Weibull (Favero et al, 1994), which are all subfamilies of GGD, are 

used. Jasggia has also used the lognormal distribution, which is thought to be a limiting distribution, 

in economics (1991). In this section of the essay, Jeffreys' prior distribution is extended in order to 

estimate the posterior distribution of GGD. In order to get a precise assessment of the scale 

parameter of GGD, we have tested a number of alternative loss functions. 

Posterior density by using postponement of Jeffrey’s previous 

Let (X1,X2……Xn) be an n-piece random model that consumes the probability density function as 

𝑓(𝑥; 𝜆, 𝛽, 𝑘) =
𝜆𝛽

Γ𝑘
(𝜆𝑥)𝑘𝛽−1𝑒−(𝜆𝑥 )𝛽 , for 𝑥 > 0 and 𝜆, 𝛽, 𝑘 > 0. 

Given by is the probability function. 

𝐿(𝑥; 𝜆, 𝛽, 𝑘) =
𝜆𝑛(𝑘𝛽 )𝛽𝑛

Γ𝑛(𝑘)
  

𝑛

𝑖=1

𝑥𝑖
𝑘𝛽−1

𝑒−𝜆𝛽   𝑛
𝑖=1 𝑥𝑖 . 

We study the previousdelivery of being 

𝑔(𝜆) ∝ [det⁡|𝐼(𝜆)|]𝑐 , 𝑐 ∈ 𝑅+ 

𝑔(𝜆) = 𝜌
1

𝜆2𝑐
        (1) 

where  is constant. The following distribution of  is known by 

𝜋2(𝜆 ∣ 𝑥) ∝ 𝐿(𝑥 ∣ 𝜆)𝑔(𝜆)      (2) 

Using eq. (1) in eq. (2), we get 

𝜋2(𝜆 ∣ 𝑥) ∝
𝜆𝑛𝑘𝛽 −2𝑐𝛽𝑛

Γ𝑛 (𝑘)
𝑒−𝜆𝛽   𝑛

𝑖=1 𝑥𝑖
𝛽

  𝑛
𝑖=1  𝑥𝑖 

𝑘𝛽−1

𝜋2(𝜆 ∣ 𝑥) = 𝜌2𝜆
𝑛𝑘𝛽 −2𝑐𝑒−𝜆𝛽   𝑛

𝑖=1 𝑥𝑖
𝛽

    (3) 
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where 2 is independent of  . 

𝜌2
−1 =   

∞

0

𝜆𝑛𝑘𝛽 −2𝑐𝑒−𝜆𝜌   𝑛
𝑖=1 𝑥𝑖

𝛽

𝑑𝜆 

On resolving the above appearance, we get 

𝜌2 =
   𝑛

𝑖=1 𝑥𝑖
𝛽
 
𝑛𝑘−

2𝑐

𝛽
+1

Γ  𝑛𝑘 −
2𝑐

𝛽
+ 1 

 

calculating 2 in eq. (3), we get the posterior distribution given as below 

𝜋2(𝜆 ∣ 𝑥) =  
𝑒−𝜆𝛽   𝑛

𝑖=1 𝑥𝑖𝜆𝑛𝑘𝛽 −2𝑐   𝑛
𝑖=1 𝑥𝑖

𝛽
 
𝑛𝑘 −

2𝑐
𝛽
+1

Γ 𝑛𝑘−
2𝑐

𝛽
+1 

    (4) 

 

Squared error loss estimate Function (SELF) 

Squared error loss𝑙𝑆𝐼(𝜆 , 𝜆) = 𝑎(𝜆 − 𝜆)2for some constant a , the risk function is 

𝑅(𝜆 ) =   
∞

0
𝑎(𝜆 − 𝜆)2𝜋2(𝜆 ∣ 𝑥)𝑑𝜆      (5) 

By using eq. (4) in eq. (5), we take 

𝑅(𝜆 ) =   
∞

0

𝑎(𝜆 − 𝜆)2  
𝑒−𝜆𝛽   

𝑥𝑖
𝑖=1

𝑥𝑖𝜆𝑛𝑘𝛽 −2𝑐   𝑛
𝑖=1 𝑥𝑖

𝛽
 
𝑛𝑘−

2𝑐

𝛽
+1

Γ  𝑛𝑘 −
2𝑐

𝛽
+ 1 

𝑑𝜆  

𝑅(𝜆 ) =
𝑎   𝑛

𝑖=1 𝑥𝑖
𝛽
 
𝑛𝑘−

2𝑐

𝛽
+1

Γ  𝑛𝑘 −
2𝑐

𝛽
+ 1 

 
 
 
 
 𝜆 2   

∞

0

𝑒−𝜆𝛽   𝑛
𝑖=1 𝑥𝑖

𝛽

 𝜆𝛽 
𝑛𝑘−

2𝑐

𝛽 𝑑𝜆 +   
∞

0

𝑒−𝜆𝛽   𝑛
𝑖=1 𝑥𝑖

𝛽

 𝜆𝛽 
𝑛𝑘+

2(1−𝑐)

𝛽 𝑑𝜆

−2𝜆   
∞

0

𝑒−𝜆𝛽   𝑛
𝑖=1 𝑥𝑖 𝜆𝛽 

𝑛𝑘+
(1−2𝑐)

𝛽 𝑑𝜆
 
 
 
 
 

 

Resolving the above appearance, we have 

𝑅(𝜆 ) = 𝑎𝜆 2 + 𝑎
Γ  𝑛𝑘 −

2𝑐

𝛽
+

2

𝛽
+ 1 

   𝑛
𝑖=1 𝑥𝑖

𝛽
 

2

𝛽
Γ  𝑛𝑘 −

2𝑐

𝛽
+ 1 

−
2𝑎𝜆 Γ  𝑛𝑘 −

2𝑐

𝛽
+

1

𝛽
+ 1 

   𝑛
𝑖=1 𝑥𝑖

𝛽
 

1

𝛽
Γ  𝑛𝑘 −

2𝑐

𝛽
+ 1 

 

Now in order to gain Bayesian estimator, we take
∂𝑅(𝜆 )

∂𝜆 
= 0 

∂

∂𝜆 

 
 
 
 

𝑎𝜆 2 +
𝑎Γ  𝑛𝑘 −

2𝑐

𝛽
+

2

𝛽
+ 1 

   𝑛
𝑖=1 𝑥𝑖

𝛽
 

2

𝛽
Γ  𝑛𝑘 −

2𝑐

𝛽
+ 1 

−
2𝑎𝜆 Γ  𝑛𝑘 −

2𝑐

𝛽
+

1

𝛽
+ 1 

   𝑛
𝑖=1 𝑥𝑖

𝛽
 

1

𝛽
Γ  𝑛𝑘 −

2𝑐

𝛽
+ 1  

 
 
 

= 0 

𝜆 =
1

   𝑛
𝑖=1 𝑥𝑖 

 
Γ 𝑛𝑘−

2𝑐

𝛽
+
1

𝛽
+1 

Γ 𝑛𝑘−
2𝑐

𝛽
+1 

      (6) 
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Remark: Replacing c=1/2 in eq. (6), the same Bayes estimation is got as in eq. (2) equivalent to the 

Jeffrey’s prior 

 

Estimation Al-Bayyati’s loss function (ALF): 

Al-Bayyati’s loss function 𝑙𝑁𝑙(𝜆 , 𝜆) = 𝜆𝑐1(𝜆 − 𝜆)2the risk function is given by 

𝑅(𝜆 ) =   
∞

0
𝜆𝑐1(𝜆 − 𝜆)2𝜋2(𝜆 ∣ 𝑥)𝑑𝜆      (7) 

Using eq. (4) in eq. (7), we devise 

𝑅(𝜆 )

=
𝑎   𝑛

𝑖=1 𝑥𝑖
𝛽
 
𝑛𝑘−

2𝑐

𝛽
+1

Γ  𝑛𝑘 −
2𝑐

𝛽
+ 1 

 
 
 
 
 𝜆 2  

∞

0

𝑒−𝜆𝛽   ∞
𝑖=1 𝑥𝑖

′

 𝜆𝛽 
𝑛𝑘+

 𝑐1−2𝑐 

𝛽 𝑑𝜆 +   
∞

0

𝑒−𝜆𝛽   ∞
𝑖=1 𝑥𝑗

′

 𝜆𝛽 
𝑛𝑘+

 𝑐1−2𝑐+2 

𝛽 𝑑𝜆

−2𝜆   
∞

0

𝑒−𝜆𝛽   ∞
𝑖=1 𝑥𝑖 𝜆𝛽 

𝑛𝑘+
 𝑐1−2𝑐+1 

𝛽 𝑑𝜆
 
 
 
 
 

 

Solving the above expression, we have 

𝑅(𝜆 ) =
𝜆 2Γ  𝑛𝑘 +

𝑐1

𝛽
−

2𝑐

𝛽
+ 1 

   𝑛
𝑖=1 𝑥𝑖

𝛽
 

9

𝛽
Γ  𝑛𝑘 −

2𝑐

𝛽
+ 1 

+
Γ  𝑛𝑘 −

2𝑐

𝛽
+

𝑐1

𝛽
+

2

𝛽
+ 1 

   𝑛
𝑖=1 𝑥𝑖

𝛽
 

902

𝛽
Γ  𝑛𝑘 −

2𝑐

𝛽
+ 1 

−
2𝜆 Γ  𝑛𝑘 −

2𝑐

𝛽
+

𝑐1

𝛽
+

1

𝛽
+ 1 

   𝑛
𝑖=1 𝑥𝑖

𝛽
 

9+1

𝛽
Γ  𝑛𝑘 −

1

𝛽
+ 1 

. 

Now in order to gain Bayesian estimator, we take
∂𝑅(𝜆 )

∂𝜆 
= 0 ∣ 

∂

∂𝜆 

 
 
 
 𝜆 2Γ  𝑛𝑘 +

𝑐1

𝛽
−

2𝑐

𝛽
+ 1 

   𝑛
𝑖=1 𝑥𝑖

𝛽
 

𝑐1
𝛽

Γ  𝑛𝑘 −
2𝑐

𝛽
+ 1 

+
Γ  𝑛𝑘 −

2𝑐

𝛽
+

𝑐1

𝛽
+

2

𝛽
+ 1 

   𝑛
𝑖=1 𝑥𝑖

𝛽
 

𝑐1+2
𝛽

Γ  𝑛𝑘 −
2𝑐

𝛽
+ 1 

−
2𝜆 Γ  𝑛𝑘 −

2𝑐

𝛽
+

𝑐1

𝛽
+

1

𝛽
+ 1 

   𝑛
𝑖=1 𝑥𝑖

𝛽
 

𝑐1+1
𝛽

Γ  𝑛𝑘 −
1

𝛽
+ 1 

 = 0 

𝜆 =
1

   𝑛
𝑖=1 𝑥𝑖 

 
Γ 𝑛𝑘−

2𝑐

𝛽
+

𝑐1
𝛽
+
1

𝛽
+1 

Γ 𝑛𝑘−
2𝑐

𝛽
+

𝑐1
𝛽
+1 

     (8) 

Remark: Exchanging c=1/2 in eq. (8), the same Bayes estimation is got as in eq. (6) equivalent to 

the Jeffrey’s previous. 
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Precautionary Loss Function (PLF) 

By using precautionary loss function 𝑙𝑝𝑟 (𝜆 , 𝜆) =
(𝜆 −𝜆)2

𝜆 
the risk function is given 

𝑅(𝜆 ) =   
∞

0

(𝜆 −𝜆)2

𝜆 
𝜋2(𝜆 ∣ 𝑥)𝑑𝜆     (9) 

Using eq. (4) in eq. (9), we take 

𝑅(𝜆 ) =
   𝑛

𝑖=1 𝑥𝑖
𝛽
 
𝑛𝑘−

2𝑐

𝛽
+1

𝜆 Γ  𝑛𝑘 −
2𝑐

𝛽
+ 1 

 
 
 
 
    

∞

0

𝑒−𝜆𝜌   𝑛
𝑖=1 𝑥𝑖 𝜆𝛽 

𝑛𝑘+
2(1−𝑐)

𝛽 𝑑𝜆 + 𝜆 0
∞𝑒−𝜆𝜌   𝑛

𝑖=1 𝑥𝑖
𝛽

 𝜆𝛽 
𝑛𝑘−

2𝑐

𝛽 𝑑𝜆 

−2  
∞

0

𝑒−𝜆𝛽   ∞
𝑖=1 𝑥𝑖 𝜆𝛽 

𝑛𝑘+
(1−2𝑐)

𝛽 𝑑𝜆
 
 
 
 
 

 

On solving the above expression, we have 

𝑅(𝜆 ) =
Γ  𝑛𝑘 −

2𝑐

𝛽
+

2

𝛽
+ 1 

𝜆    𝑛
𝑖=1 𝑥𝑖

𝛽
 

2

𝛽
Γ  𝑛𝑘 −

2𝑐

𝛽
+ 1 

+ 𝜆 −
2Γ  𝑛𝑘 −

2𝑐

𝛽
+

1

𝛽
+ 1 

   𝑛
𝑖=1 𝑥𝑖

𝛽
 

1

𝛽
Γ  𝑛𝑘 −

2𝑐

𝛽
+ 1 

. 

Now in order to determine the Bayesian estimator, we have 
∂𝑅(𝜆 )

∂𝜆 
= 0 

∂

∂𝜆 
 

Γ 𝑛𝑘−
2𝑐

𝛽
+
2

𝛽
+1 

𝜆    𝑛
𝑖=1 𝑥

𝑖
𝛽
 

2
𝛽

Γ 𝑛𝑘−
2𝑐

𝛽
+1 

+ 𝜆 −
2Γ 𝑛𝑘−

2𝑐

𝛽
+
1

𝛽
+1 

   𝑛
𝑖=1 𝑥

𝑖
𝛽
 

1
𝛽

Γ 𝑛𝑘−
2𝑐

𝛽
+1 

 = 0  (10) 

Remark: Replacing c=1/2 in eq. (10), the same Bayes estimator is got as in eq. (2) equivalent to the 

Jeffrey’s prior 

 

Quadratic Loss Function (QLF) 

By using quadratic loss function 𝑙𝑞𝑑 (𝜆 , 𝜆) =  
𝜆 −𝜆

𝜆
 
2

the risk function is given by 

𝑅(𝜆 ) =   
∞

0
 
𝜆 −𝜆

𝜆
 
2

𝜋2(𝜆 ∣ 𝑥)𝑑𝜆      (11) 

Using eq. (4) in eq. (11), we have  

𝑅(𝜆 ) =   
∞

0

 
𝜆 − 𝜆

𝜆
 

2 𝑒−𝜆 𝛽   
𝑥𝑖
𝑖=1 𝜆𝑛𝑘𝛽 −2𝑐   𝑛

𝑖=1 𝑥𝑖
𝛽
 
𝑛𝑘−

2𝑐

𝛽
+1

Γ  𝑛𝑘 −
2𝑐

𝛽
+ 1 

𝑑𝜆 

Solving the above formula yields. 

𝑅(𝜆 ) = 𝜆 2    

𝑛

𝑖=1

𝑥𝑖
𝛽
 

2

𝛽 Γ  𝑛𝑘 −
2(𝑐+1)

𝛽
+ 1 

Γ  𝑛𝑘 −
2𝑐

𝛽
+ 1 

+ 1 − 2𝜆    

𝑛

𝑖=1

𝑥𝑖
𝛽
 

1

𝛽 Γ  𝑛𝑘 −
(2𝑐+1)

𝛽
+ 1 

Γ  𝑛𝑘 −
2𝑐

𝛽
+ 1 

. 

Now in order to determine the Bayesian estimator, we have 
∂𝑅(𝜆 )

∂𝜆 
= 0 
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∂

∂𝜆 

 
 
 
 𝜆 2   𝑛

𝑖=1 𝑥𝑖
𝛽
 

2

𝛽
Γ  𝑛𝑘 −

2(𝑐+1)

𝛽
+ 1 

Γ  𝑛𝑘 −
2𝑐

𝛽
+ 1 

+ 1 −
2𝜆    𝑛

𝑖=1 𝑥𝑖
𝛽
 

1

𝛽
Γ  𝑛𝑘 −

(2𝑐+1)

𝛽
+ 1 

Γ  𝑛𝑘 −
2𝑐

𝛽
+ 1 

 
 
 
 

= 0 

𝜆 =
1

   𝑛
𝑖=1 𝑥𝑖 

 
 Γ 𝑛𝑘−

(2𝑐+1)

𝛽
+1  

 Γ 𝑛𝑘−
2(𝑐+1)

𝛽
+1  

      (12) 

Remark: Exchanging c=1/2 in eq. (12), the same Bayes estimator is got as in eq. (2) equivalent to 

Jeffrey’s prior. 

 

Estimation of Survival function (SF) 

We may determine the survival function by utilising the posterior probability density function, such 

that 

𝑆 2(𝑥) =   
∞

0
𝑒−(𝜆𝑥 )𝛽𝜋2(𝜆 ∣ 𝑥)𝑑𝜆      (13) 

𝑆 1(𝑥) =
   𝑛

𝑖=1 𝑥𝑖
𝛽
 
𝑛𝑘−

2𝑐

𝛽
+1

Γ  𝑛𝑘 −
2𝑐

𝛽
+ 1 

   
∞

0

𝑒−(𝜆𝑥 )𝛽 𝑒−𝜆𝛽   𝑛
𝑖=1 𝑥𝑖

𝛽

𝜆𝑛𝑘𝛽 −2𝑐𝑑𝜆  

Using eq. (4) in eq. (13), we have 

𝑆 2(𝑥) =  
  𝑛

𝑖=1 𝑥𝑖
𝛽

𝑥
𝑖
𝛽
+  𝑛

𝑖=1 𝑥
𝑖
𝛽 

𝑛𝑘−
2𝑐

𝛽
+1

.      (14) 

 

SIMULATION STUDY OF GENERALIZED GAMMA DISTRIBUTION (GGD) 

A simulation research was carried out with the assistance of the R programming language in order 

to investigate and evaluate the accuracy of the estimations for three distinct sample sizes (n = 25, 

50, and 100), which respectively represented a small, medium, and big data collection. Both 

traditional and Bayesian approaches to estimation are utilised in the process of determining the 

value of the scale parameter for the generalised gamma distribution. Within the framework of the 

Bayesian method of estimation, we make use of Jeffrey's & an extension of Jeffrey's former while 

considering a variety of loss functions. When determining the value for the scales parameter, we 

looked at = 1.0, 1.5, & 2.0. Jeffrey's extension had values of c equal to 0.5, 1.0, and 1.5 

respectively. The following values have been determined for the c1 loss parameter: 1, -1, 2, and -2. 

Following the calculation of the scale parameter for each method, this process was repeated two 

thousand times. The findings are summarised in the tables that are shown below. 
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Table 1: Mean Squared Error for    under Jeffrey’s prior 

n 𝜆 𝛽 𝜅 𝜆𝑀𝐿  𝜆𝑠𝑙  𝜆𝑁𝐼  

C1=1 C1=-1 C1=2 C1=-2 

25 1.0 0.5 0.5 1.0834 1.0244 1.2256 0.9843 1.1135 0.5734 

1.5 1.0 1.0 0.6857 0.6852 0.6632 0.7305 0.6413 0.7305 

2.0 1.5 1.0 0.6823 0.6810 0.6786 0.6863 0.6760 0.6863 

50 1.0 0.5 0.5 1.1597 1.2941 1.0642 1.0851 1.1223 0.4792 

1.5 1.0 1.0 0.4263 0.4261 0.4152 0.4485 0.4044 0.4485 

2.0 1.5 1.0 0.7523 0.7523 0.7513 0.7544 0.7502 0.7544 

100 1.0 0.5 0.5 1.9086 1.9086 1.9019 1.2507 0.9669 0.1199 

1.5 1.0 1.0 0.8329 0.8329 0.8275 0.8437 0.8222 0.8437 

2.0 1.5 1.0 0.7775 0.7775 0.9631 0.9647 0.7764 0.8081 

ML=MaximumProbability,Sl=squared mistakeLF,Pr=defensiveLF,qd=quadraticLF,Nl=Al-

Bayyati’sLF 

 

The Bayes estimate using Al-loss Bayyati's function and Jeffrey's prior yields the minimum values 

in the majority of instances, particularly when the loss parameter C1 is set to -2 in the table 1 that 

was just presented. Therefore, it is possible for us to draw the conclusion that the Bayes estimator 

works well when Al-loss is used. Comparing Bayyati's function to other loss functions and the 

traditional estimator 

Table 2: Mean Squared Error for    under extension of Jeffrey’s prior 

n 

 

𝜆 𝛽 𝜅 C 𝜆𝑀𝐿  𝜆𝑠𝑙  𝜆𝑝𝑟  𝜆𝑞𝑑  𝜆𝑁𝐼  

C1=1 C1=-1 C1=2 C1=-2 

25  

1.0 

 

0.5 

 

0.5 

0.5 0.5838 0.2311 0.2950 0.1948 0.2628 0.1948 0.3089 0.0571 

1.0 0.7738 0.2578 0.1734 0.3786 0.3251 0.1366 0.1491 0.0891 

1.5 0.1787 0.1868 0.5601 0.1028 0.3462 0.1028 0.2022 0.0753 

 

1.5 

 

1.0 

 

1.0 

0.5 0.8879 0.8875 0.8666 0.9304 0.8456 0.9304 0.8047 0.6241 

1.0 0.8155 0.8586 0.8367 0.9037 0.8147 0.9037 0.7717 0.4614 

1.5 0.8769 0.9630 0.9411 1.0082 0.9191 0.9883 0.8761 0.2706 

 

2.0 

 

1.5 

 

1.0 

0.5 1.1271 1.2578 1.3295 1.3889 1.5483 1.4604 1.2710 1.0525 

1.0 1.4098 1.1535 1.4532 1.4886 1.6567 1.2551 1.6148 1.075 
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1.5 1.3308 1.4242 1.4725 1.2556 1.4919 1.2400 1.4484 1.0278 

50  

1.0 

 

0.5 

 

0.5 

0.5 0.9244 0.4822 0.1015 0.4309 0.6661 0.4309 1.0517 0.1898 

1.0 0.9288 0.2332 1.0292 0.5212 0.2195 0.5212 0.3160 0.1965 

1.5 0.6407 0.8001 0.1095 0.2509 0.1676 0.7764 0.2780 0.1382 

 

1.5 

 

1.0 

 

1.0 

0.5 0.8442 0.8441 0.8336 0.8657 0.8230 0.8657 0.8020 0.7097 

1.0 1.0558 1.0752 1.0655 1.0949 1.0557 1.0949 1.0361 0.9147 

1.5 0.9252 0.9670 0.9565 0.9883 0.9460 0.9883 0.9250 0.8198 

 

2.0 

 

1.5 

 

1.0 

0.5 1.8551 1.8551 1.8434 1.8783 1.8320 1.8783 1.8088 1.6360 

1.0 1.6263 1.6511 1.6388 1.6761 1.6263 1.6761 1.6017 1.2201 

1.5 1.6536 1.7030 1.6907 1.7281 1.6783 1.7281 1.6535 1.2641 

100  

1.0 

 

0.5 

 

0.5 

0.5 1.4077 0.5084 0.7676 0.3731 0.1842 0.2499 0.5785 0.1400 

1.0 1.1779 0.4541 0.2198 0.1993 0.5784 0.8096 0.1011 0.0982 

1.5 1.7517 0.3001 0.6765 0.7517 0.1431 0.5004 0.3364 0.1322 

 

1.5 

 

1.0 

 

1.0 

0.5 0.8333 0.8332 0.8278 0.4557 0.8225 0.8440 0.8118 0.3914 

1.0 0.9041 0.9146 0.9092 0.9251 0.9041 0.9251 0.8937 0.7525 

1.5 0.8830 0.9043 0.8990 0.9150 0.8935 0.9150 0.8830 0.7436 

 

2.0 

 

1.5 

 

1.0 

0.5 1.6398 1.6397 1.6336 1.6521 1.6275 1.6521 1.6153 1.1885 

1.0 1.6123 1.6248 1.6184 1.6370 1.6123 1.6370 1.5998 1.0497 

1.5 1.5403 1.5654 1.5592 1.5782 1.5527 1.5782 1.5403 1.1252 

ML=MaximumLikelihood,Sl=squarederrorLF,Pr=precautionaryLF,qd=quadraticLF,Nl=Al-

Bayyati’sLF 

 

Generally, especially when loss parameter C1 is -2, Bayes' estimate using Al-loss Bayyati's function 

under extension of Jeffrey's previous yields the lowest values, regardless of whether the extension 

of Jeffrey's prior is 0.5, 1.0, or 1.5, as shown in table 2 above. Particularly when loss parameter C1 

is -2, this is true. It follows that Al-loss Bayyati's function provides a Bayes estimate that is superior 

to other loss functions and the conventional estimator. 

 

Conclusion:  

To calculate the generalised gamma distribution's scaling parameter, the primary focus of our 

research was on traditional methods of estimation as well as Bayesian methods. The Mean Squared 

Error (MSE) method is utilised to analyse the differences between the estimates, and the outcomes 
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are detailed in the tables that are located above.Based on the findingsWhen compared to other loss 

functions & the classical estimation, we see that the Bayes estimator under Al-loss Bayyati's 

function has the lowest MSE values for both priors (Jeffrey's and the extension of Jeffrey's prior). 

The majority of the time, this is the case. As a consequence, we may infer that when the loss 

parameter C1 is set to -2, the Bayes estimator using Al-loss Bayyati's function is effective. 
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