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Abstract 

In this study, a robust estimator has been employed to replace the average 

vectors and correlation matrix in the traditional Hotelling's 𝑇2 statistic. 

This modification makes use of the M-estimator. In order to demonstrate 

the modified Hotelling's 𝑇2 statistic's advantage over the conventional 

Hotelling's 𝑇2 statistic with regard to anomalies, the behavior of the 

changed Hotelling's 𝑇2 statistic has indeed been compared to the standard 

Hotelling's 𝑇2 statistic and explained. Whenever the number of samples, 

n, and the dimensions, p, are minimal, the modified Hotelling's 𝑇2 statistic 

performs higher than the original Hotelling's 𝑇2. 

Keywords:M-estimator, Robust Estimation, 𝑇2 data from Hotelling’s. 

 

1. Introduction 

Statistical data one of techniques of multivariate statistical that is frequently was using to assess 

mean-related assumptions is Hotelling's 𝑇2 [1]. In honour of Norman Hotelling, which initially 

discovered its distribution of the sample, it is known as Hotelling's 𝑇2 [2,13]. The square of the 

unitary t is a multidimensional generalization known as Hotelling's 𝑇2. Hotelling's 𝑇2 analyses 

different organizations across many regression models concurrently, in contrast to multivariate 𝑇2 

[3]. 

Hotelling's 𝑇2 can be utilized in a variety of contexts. The Hotelling's 𝑇2 statistic, for instance, is 

employed to evaluate influence on all aspects between two data sets. The solitary Hotelling's 𝑇2 is 

evaluated in this study, and every one of the studied variables corresponds to a statistical trait. In 

addition, matched comparisons, repeating measurements, and Hotelling's 𝑇2 are utilized to evaluate 
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mean vector over two different samples [2]. Several implementations' specifics are provided in [2]. 

In addition, Hotelling's 𝑇2 are utilized for the flowchart [3]. 

The 𝑇2 efficiency of Hotelling's was already assessed in this research. Furthermore, Hotelling's 𝑇2 

is susceptible to extremes [4], even a solitary extremely severe exception can significantly skew the 

results [5]. Several exceptions also create a "blurring effect," which lowers the effectiveness of the 

standard Hotelling's 𝑇2 [6]. It is well recognized that all data must be utilized to determine the mean 

vector 𝜆  and covariances Ψ. Therefore, the results of the mean vector 𝜆 and covariance Ψ will really 

be impacted by data with outliers. It might be difficult to keep away from such extremes in a 

multidimensional context. 

incorporated in Hotelling's 𝑇2 in this research. Huber [8] became the first to present the M-

estimator for estimate of a simple position variable. Maronna eventually created the M- estimation 

for multidimensional position and variable with effectiveness [9]. The M-breakdown estimator's 

point can only be greater than 
1

(𝑝  + 1)
. According to the breaking point, the M- estimation becomes 

more reactive as the dimensionality rises [10]. A strong replacement for Hotelling's 𝑇2 was already 

created utilizing this estimation in order to reduce the impact of outliers. 

This investigation's goal is to assess how well 𝑇2 by Hotelling, both as written and as changed, 

performs. There will be two distinct ways to modify the model. The first involves replace the 

covariance Ψwith the M-estimator Ψ𝑀 . the next one involves using M-estimator, 𝑃 𝑀and Ψ𝑀  in 

place of both means vectors 𝑃  and covarianceΨ. 

2. The Method 

2.1𝑻𝟐 from the Historic Hotelling 

Let P1, P2, … , Pn be just a representative sample of a community Np(μ, Σ). the following is indeed 

the traditional Hotelling's 𝑇2 [2,15] 

𝑇2 = 𝑘(𝑝  −  𝜇0)′Ψ−1(𝑝  −  𝜇0) 

 

(2.1) 

where, 

𝑝 is a mean samples matrix, Ψ−1the antithesis of covariance matrices, 𝑘is sum of samples,  

𝜇0is a reasonable approximation for vectors of mean. 
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To determine whether or not 𝐻0;  μ = 𝜇0 and 𝐻1: μ ≠ 𝜇0 are true. The essential valueof  (2.1)  

established as (2.2) 

𝐶𝑉𝐹 =
 𝑘 − 1 𝛿

 𝑘 − 𝛿 
𝐹𝛿, 𝑘 − 𝛿(𝛽) 

(2.2) 

while 𝛿 is the number of dimensions, 𝑘 is the quantity of samples, and 𝛽 is the kind I errors. If 𝑇2 

exceeds the critical value within that situation, 𝐻0 will be rejected indicating that there are 

variations in the mean vector. 

2.2 Hotelling's 𝑻𝟐 Has Been Selected Depending on M-Estimator. 

Let P1, P2, … , Pn be just a representative sample of a community Np(μ, Σ).Hence, using M-

estimator [11], both mean and covariance matrices is provided as 

PM =  𝜉𝑖

𝑘

𝑖=1

Pi ⁄ k 

 

(2.3) 

and  

Ψ𝑀 =
1

𝜁𝑘
 𝑊𝑖

2

𝑘

𝑖=1

(𝑃𝑖 − 𝑃 )(𝑃𝑖 − 𝑃 )′ 

 

(2.4) 

here 𝜉𝑖  is a functional, Ψ is indeed a fair estimation of covariances and 𝜁 is picked. Essentially a 

downweight of a part of Ε data, the M- estimator. In a chi-squared distributed having 𝛿 levels of 

freedom, consider 𝜙2 become the 1 − Ε quantile. Set 𝜉𝑖  =  1 if 𝜓𝑖 ≤ 𝜙 and 𝜉𝑖 = 𝜙 /𝜓𝑖 in any other 

cases. 

𝜓𝑖
2 = 𝑘(𝑃𝑖 − 𝑃 )Ψ−1(𝑃𝑖 − 𝑃 )′ 

 

(2.5) 

The modified mean and covariance matrices estimation that results from the squared Clustering 

relationships adjustment using revised estimations is then used to produce new revised forecasts. 

The process is repeated after equilibrium has been reached. 

In this work, the standard Hotelling's𝑇2has also been changed using the M-estimator Ψ𝑀 , in place 

of the covariance Ψ. A 𝑇2 of the upgraded Hotelling is provided via. 

𝑇𝑀
2 = 𝑘2(𝑝𝑖 − 𝑃 )Ψ𝑀

−1(𝑝𝑖 − 𝑃 )′ 

 

(2.6) 
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here 𝑃  denotes the sampling distribution vector, while Ψ𝑀
−1 denotes the reverse covariance of M-

estimator. While (2.6) examination is really the main objective, and examine additional adjusted 

Hotelling's 𝑇2(2.7), where M-estimator was utilized to replace the sampling mean vector and 

covariance matrices. 

𝑇𝑀𝐸
2 = 𝑘2(𝑝𝑖 − 𝑃 𝑀)Ψ𝑀

−1(𝑝𝑖 − 𝑃 𝑀)′ (2.7) 

while 𝑘 represents isnumber of samples, 𝑃 𝑀 is just the M-mean estimator's vectors, and Ψ𝑀
−1 is 

covariance of M-inverse estimator. 

In addition to M-estimator, there are numerous additional reliable estimators. Applications are S-

Estimators, the Minimal Volumes Ellipse,Constricted M-Estimators, andMinimal Covariance 

Predictor [11]. 

2.3 Designing a Model. 

Because the dispersion of adjusted Hotelling's 𝑇2 is unknown, the prevalence of both standard and 

adjusted Hotelling's 𝑇2 has also been determined by modeling. From 𝑁𝑝(0, ∆) at the magnitude of 

type 1 error, 𝛽 = 0.05, we created 10000 sets of data. For every measurement, 𝛿, and, the value is 

changed to 0, with 0 serving as the standard. Furthermore, 𝛿 the degree of deviation, and are all set 

to one for every dimension. We compute 𝑇2 for traditional and adjusted Hotelling's 𝑇2as provided 

by (2.1), (2.6), and utilizing these sets of data (2.7). The data types for 𝜉𝑖  and are given. The 

equation determines how 𝜉𝑖  functions; in this case, Ε has been set at 0.3. In order to make sure if Ψ 

is just a good estimate, a quantity of 𝜁 is selected. The findings' 95
th

 settings with different will be 

utilized create the CVs. Additionally, we compare the CVs using Formula (2.4) with the Chi-

Squared distributions. For every one of the values of k =  40, 70, 120, and 300 and δ =  6, and 7, 

the predicted CVs were determined. Table 1 summarizes the findings.Pollution levels were 

Φ =  0, 0.1, 𝑎𝑛𝑑 0.2. 10000 sets of data were produced and calculated for every given criterion. 

This simulation's structure was tainted by employing a combination of conventional simulations. 

 1 − 2Φ 𝑁𝑝 𝜇0,∆0 + 2Φ𝑁𝑝 𝜇1,∆1  (2.8) 

if Φ is the percentage of extremes, ∆0 and 𝜇0 represents the covariance matrix and mean vector that 

are unsoiled, also𝜇0and 𝜇1equals zero we obtain (2.9). 

 1 − 2Φ 𝑁𝑝 0, ∆0 + 2Φ𝑁𝑝 0, ∆1  (2.9) 
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Standard deviation of∆0to every parameter 𝛿, 𝜎0is used to create a value of 0, with 𝜎0specified by 

being 1. In contrast way, ∆1 to every parameter 𝛿, 𝜎1is used to determine the value of 1. The values 

for 𝜎1 in this research are 6 and 7. 

10000 simulations were used to evaluate the model using multiple sample quantities, quantity of 

parameters, and pollution levels. This model employs a kind 1 error of 0.05. The procedures in the 

model are as follows: 

A collection was already produced. 

Calculations (2.1), (2.6), and (2.2) were used to determine the values for 𝑇2, 𝑇𝑀
2 , and 𝑇𝑀𝐸

2  (2.7). 

3) Using Table 1, the quantities of 𝑇2, 𝑇𝑀
2 , and 𝑇𝑀𝐸

2  larger than significance threshold were 

calculated. 

4) The frequency of kind 1 error was employed to measure the effectiveness of 𝑇2, 𝑇𝑀𝐸
2 , and 𝑇𝑀𝐸

2 . 

3. The Discussions 

Table 1 displays the parameter estimates for the modeled and typical distributions. Table 2 –3 

displays the results of the original and adjusted Hotelling's 𝑇2,  for several examples. 

Table 1shows typical and calculated parameter estimates 

 

𝛿 k𝑇𝑁
2  

 

 

𝑇𝑀
2

 

 

  

𝑇𝑀𝐸
2  𝐶𝑉𝐹 𝜒𝛿

2
 

6 40 6.7436 6.7520 6.7921 6.5297 6.23 

 70 7.1525 7.5603 7.6281 7.5328 6.23 

 120 7.6926 7.7642 7.8704 7.6391 6.23 

 
300 7.7182 7.8265 7.8739 7.5799 6.23 

7 40 8.8072 8.7634 8.7765 8.6072 8.47 

 70 9.0223 9.2965 9.3107 9.2866 8.47 

 120 9.5926 9.4651 9.6290 9.4824 8.47 

 300 9.7267 9.6026 9.2716 9.3691 8.47 

8 40 12.3852 11.8105 11.9214 11.7368 12.69 
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 70 12.7754 12.4626 12.7429 12.4022 12.69 

 120 13.8628 12.8921 12.9210 12.7819 12.69 

 300 13.2865 13.0178 13.4821 13.2782 12.69 

 

Table 2 False detection rate for the original and adjusted versions of Hotelling's 𝑇2 for 𝛿 =  6 and 

𝛽 =  0.05. 

K Φ 𝜎 𝑇𝑁
2 𝑇𝑀

2  𝑇𝑀𝐸
2  

40 0 (4,4,4,4,4,4

) 

0.066 0.041 0.065 

 0.3 (6,6,6,6,6,6

) 

0.042 0.076 0.055 

  (8,8,8,8,8,8) 0.051 0.139 0.063 

 0.5 (6,6,6,6,6,6) 0.037 0.152 0.046 

   

(8,8,8,8,8,8) 

0.048 0.287 0.055 

70 0 (4,4,4,4,4,4) 0.061 0.088 0.069 

 0.3 (6,6,6,6,6,6) 0.058 0.176 0.066 

   

(8,8,8,8,8,8) 

0.034 0.292 0.044 

 0.5 (6,6,6,6,6,6) 0.053 0.217 0.064 

   

(8,8,8,8,8,8) 

0.036 0.283 0.047 

120 0 (4,4,4,4,4,4) 0.061 0.068 0.066 

 0.3 (6,6,6,6,6,6) 0.058 0.127 0.068 

   

(8,8,8,8,8,8) 

0.046 0.185 0.057 

 0.5 (6,6,6,6,6,6) 0.055 0.199 0.063 

   

(8,8,8,8,8,8) 

0.038 0.218 0.046 

300 0 (4,4,4,4,4,4) 0.044 0.077 0.054 

 0.3 (6,6,6,6,6,6) 0.061 0.158 0.070 



Mathematical Statistician and Engineering Applications 
ISSN: 2094-0343 

2326-9865 
 

 
8258 

 
Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

 

 

   

(8,8,8,8,8,8) 

0.057 0.168 0.063 

 0.5 (6,6,6,6,6,6) 0.044 0.171 0.051 

   

(8,8,8,8,8,8) 

0.045 0.219 0.058 

 

Table 3 False detection rate for the original and adjusted versions of Hotelling's 𝑇2 for 𝛿 =  7 and 

𝛽 =  0.05. 

K Φ 𝜎 𝑇𝑁
2 𝑇𝑀

2  𝑇𝑀𝐸
2  

40 0 (4,4,4,4,4,4,4) 0.052 0.048 0.050 

 0.3 (6,6,6,6,6,6,6) 0.047 0.128 0.057 

  (8,8,8,8,8,8,8) 0.063 0.179 0.070 

 0.5 (6,6,6,6,6,6,6) 0.041 0.183 0.054 

  (8,8,8,8,8,8,8) 0.038 0.215 0.051 

70 0 (4,4,4,4,4,4,4) 0.049 0.046 0.048 

 0.3 (6,6,6,6,6,6,6) 0.062 0.169 0.074 

  (8,8,8,8,8,8,8) 0.051 0.211 0.069 

 0.5 (6,6,6,6,6,6,6) 0.046 0.236 0.054 

  (8,8,8,8,8,8,8) 0.039 0.247 0.045 

120 0 (4,4,4,4,4,4,4) 0.057 0.053 0.055 

 0.3 (6,6,6,6,6,6,6) 0.064 0.158 0.081 

  (8,8,8,8,8,8,8) 0.047 0.179 0.058 

 0.5 (6,6,6,6,6,6,6) 0.041 0.226 0.056 

  (8,8,8,8,8,8,8) 0.049 0.267 0.051 

300 0 (4,4,4,4,4,4,4) 0.051 0.050 0.049 

 0.3 (6,6,6,6,6,6,6) 0.060 0.174 0.074 

  (8,8,8,8,8,8,8) 0.054 0.205 0.068 

 0.5 (6,6,6,6,6,6,6) 0.048 0.228 0.061 

  (8,8,8,8,8,8,8) 0.051 0.231 0.066 
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The most crucial details is that, as table 1-3 illustrates, the percentage of false alarms of  

𝑇𝑁
2 tends to fall even as value of outliers rises. In contrast side, as the quantity of outliers rises, the 

percentage of false alarms of 𝑇𝑀𝐸
2  tends to rise, as demonstrated in Tables 1-3. The outcome is 

acceptable if 𝑇𝑁
2 and 𝑇𝑀𝐸

2  produce same findings, which are 𝐻0 rejection or failure. Initially, it is due 

to consistency of results, and secondly, due to the achievements' pattern, which shows that 𝑇𝑁
2tends 

to underperform and 𝑇𝑀𝐸
2  tends to overstate. Therefore, the numerical simulations can be utilized as 

a guide by looking at the population dimension and size if the results vary between one another.It is 

advised to employ yet a reliable estimator. 

4. The Conclusion 

According to those results, 𝑇𝑀𝐸
2  often performs better than 𝑇𝑁

2 if n is tiny. 𝑇𝑁
2, therefore, performs 

better than 𝑇𝑀𝐸
2  as 𝑘 grows. The efficiency of 𝑇𝑀𝐸

2  degrades in comparison to 𝑇𝑁
2 as p rises. As a 

result, 𝑇𝑀𝐸
2  performed best for 𝑘 and 𝛿 are modest, the quantity of samples. 𝑇𝑁

2 is a preferable 

option if the dimensions𝛿 or the quantity of samples 𝑘 are bigger. To improve 𝑇𝑀
2 performancea 

tweak is required. It is advised to just assess 𝑇𝑀
2  effectiveness when Ψ  is somewhat near to Ψ 𝑀. 
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