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Abstract 

In this work, we extend the idea of the potential algebra approach (also 

known as group theoretic approach) to the exactly solvable rationally 

extended (RE) potentials and obtain their scattering state solutions. As an 

example we consider the RE Scarf-II potential, which is complex and PT 

symmetric and obtain its transmission and reflection amplitudes by 

considering the asymptotic behavior of the generators corresponding to the 

above algebra. 

 

 

1 Introduction 

Recently, after the discovery of two new families of orthogonal polynomials namely the X l 

Laguerre and Xm Jacobi exceptional orthogonal polynomials (EOPs) [1, 2], a list of exactly solvable 

(ES) potentials is extended corresponding to the known usual potentials [3]. The bound state 

solutions of these extended potentials are already obtained by different authors using different 

approaches [4-15]  and shown that the energy eigenvalues of these extended potentials are same as 

that of the corresponding usual potentials but the wavefuctions are completely different and 

obtained in terms of EOPs. These extended potentials also satisfy the usual supersymmetric shape 

invariant (SI) property [3]. Later on the scattering state solutions to these potentials are obtained 

using the conventional approach (i.e., by assuming asymptotic behaviors of the wavefunctions) [16, 

17, 18] and shown that in particular case of  l = 0 these corresponds to the conventional one  and for 

l = 1 the obtained potentials are the rationally extended translationally SI potentials whose solutions 

are in terms of X1 Laguerre or X1 Jacobi polynomials [19, 20]. 
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      Since the last few decades the idea of the combined parity (P) and time reversal (T) symmetry in 

complex systems yields a large family of ES potentials [21] which have ample of  applications in 

theoretical as well as experimental physics. After the discovery of EOPs, the conventional PT 

symmetric complex potentials have also been extended rationally [20] and obtained their solutions 

in the form of Xl EOPs. 

Thereafter, following the ideas of Alhassid and others i.e., the idea of potential algebra [22, 23, 24, 

25], some of the extended real as well as PT symmetric potentials are obtained by modifying the 

generators of the associated so(2;1) or sl(2;C) algebras through the introduction of a new operator 

[26, 27]. Hence the bound states corresponding to the extended potentials are also obtained in an 

elegant fashion. But it is not clear about the generators while finding the scattering sate solutions 

through this potential algebra approach. So, it will be interesting to find the scattering amplitudes of 

the extended potentials using the potential algebra approach, which shows that this approach is not 

only limited to obtain bound states only, it is also suitable to obtain the scattering states of the 

rationally extended potentials. 

         In the present work, first we discuss in brief the sl(2;C) algebra suitable to the extended 

potentials. Then, we consider an example of a rationally extended PT symmetric complex Scarf II 

potential and obtain the scattering amplitudes (reflection and transmission amplitudes) using the 

asymptotic behavior of the generators associated with the algebra.  

        The plan of the paper is as follows: In section 2, we briefly review the works of Yadav et al 

[26] and discuss the sl(2;C) algebra. The expression for the RE complex Scarf II potential and the 

corresponding bound states are also written in a closed form. In section 3, we obtain the scattering 

amplitudes of this potential in a completely algebraic way. Finally we summarize the results in 

section 4. 

 

2 The sl(2;C) algebra 

In this section, to make this manuscript self consistent, we follow the works of Yadav et al [26] and 

discuss the sl(2;C) algebra and its unitary representations. For an illustration, we use this algebra to 

the RE PT symmetric complex Scarf II potential associated with X1 EOPs and discuss its bound 

states. 

 

    It is well known that that the sl(2;C) algebra consists of three generators K± and Kz and satisfying 

the commutation relations 
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 𝐾+, 𝐾𝑦  = −2𝐾𝑧 ;    𝐾𝑧 , 𝐾± = ±2𝐾𝑧                                                      (1) 

 

The differential realization of these generators corresponding to the RE potentials [26] are defined 

as 

 

K±  = 𝑒±𝑖𝜑  ±
𝜕

𝜕𝑥
−   −𝑖

𝜕

𝜕𝜑
±

1

2
 𝑃 𝑥 − 𝑄(𝑥) − 𝑇(𝑥, −𝑖

𝜕

𝜕𝜑
±

1

2
)  

and 

 

𝐾𝑧 = −𝑖
𝜕

𝜕𝜑
.                                                                                                         (2) 

 

Here P(x) and Q(x) are two functions and 𝑇(𝑥, −𝑖
𝜕

𝜕𝜑
±

1

2
)  is a functional operator. This functional 

operator 𝑇(𝑥, −𝑖
𝜕

𝜕𝜑
±

1

2
)act on a basis   𝑘 , 𝑚1

   to give a function (𝑥, 𝑚1 ±
1

2
 ). These three functions 

will be different for the different potentials. Here at least one (or all) of the function(s) must be 

complex and hence 𝐾+ ≠ 𝐾−
† . 

          In order to satisfy the sl(2;C) algebra by these new generators 𝐾±, 𝐾−and  𝐾𝑧  the commutation 

relations (1) have to be satisfied, which provides following restrictions on the functions P(x), Q(x) 

and 𝑇(𝑥, 𝑚1 ±
1

2
) 

 

𝑑

𝑑𝑥
𝑃 𝑥 + 𝑃 𝑥 2 = 1;                   

𝑑

𝑑𝑥
𝑄 𝑥 + 𝑃 𝑥 𝑄(𝑥) = 0                                  (3) 

and 

[𝑇2  𝑥, 𝑚1 −
1

2
 −

𝑑

𝑑𝑥
𝑇(𝑥, 𝑚1 −

1

2
)+ 2𝑇  𝑥, 𝑚1 −

1

2
  𝑃 𝑥  𝑚1 −

1

2
 − 𝑄(𝑥) ]-[𝑇2  𝑥, 𝑚1 +

1

2
 −

𝑑

𝑑𝑥
𝑇(𝑥, 𝑚1 +

1

2
)+ 2𝑇  𝑥, 𝑚1 +

1

2
  𝑃 𝑥  𝑚1 +

1

2
 − 𝑄(𝑥) ]=0.                                         (4) 

 

The Casimir, for the sl(2;C) algebra in terms of the above generators is given by 

𝐾2 = 𝐾𝑧
2 −

1

2
 𝐾±𝐾− + 𝐾−𝐾+ = 𝐾𝑧

2 ∓ 𝐾𝑧 − 𝐾±𝐾∓ .                                (5) 
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For the bound states, the basis for an irreducible representation of extended algebra is characterized 

by 

𝐾2   𝑘 , 𝑚1
  =𝑘 (𝑘 + 1)  𝑘 , 𝑚1

  ;    𝐾𝑧
  𝑘 , 𝑚1

  =𝑘   𝑘 , 𝑚1
                          (6) 

 

𝐾±
  𝑘 , 𝑚1

  =  − 𝑘 ∓ 𝑚1 (𝑘 ± 𝑚1 + 1) 
1/2   𝑘 ,𝑚1 ± 1  .                          (7) 

 

Using (2), the differential realization of the Casimir operator in terms of  P(x),  Q(x)  and  

T(x, Kz-1/2)  is given by 

 

𝐾2 =
𝑑2

𝑑𝑥 2 +  1 − 𝑃2 𝑥   𝐾𝑧
2 −

1

4
 − 2

𝑑𝑄(𝑥)

𝑑𝑥
𝐾𝑧 − 𝑄2 𝑥 −

1

4
−  𝑇2  𝑥, 𝐾𝑧 −

1

2
 +   𝐾𝑧 −

12𝑃𝑥−𝑄(𝑥)𝑇𝑥,𝐾𝑧−12+𝑇𝑥,𝐾𝑧−12𝐾𝑧−12𝑃𝑥−𝑄(𝑥)−𝑑𝑑𝑥𝑇𝑥,𝐾𝑧−12, (8) 

 

and the basis   𝑘 , 𝑚1
   in the form of function is given as 

  𝑘 , 𝑚1
  =𝜓𝑘 𝑚1

 𝑥, 𝜑 = 𝜓𝑘 𝑚1
 𝑥 = 𝑒𝑖𝑚1𝜑 .                                                                 (9) 

The functions (9) satisfy the Schrodinger equation 

 

 
𝑑2

𝑑𝑥 2 + 𝑉𝑚1
 𝑥  𝜓𝑘 𝑚1

 𝑥 = 𝐸𝜓𝑘 𝑚1
 𝑥 ,                                              (10) 

where 𝑉𝑚1
 𝑥  is one parameter family of m1-dependent potential given by 

𝑉𝑚1
 𝑥 =  𝑃2 𝑥 − 1  𝑚1

2 −
1

4
 + 2𝑘 

𝑑

𝑑𝑥
 𝑄 𝑥 + 𝑄2 𝑥 +  𝑚1 −

1

2
 

2

+  𝑇2  𝑥, 𝑚1 −
1

2
 +

2𝑘−12𝑃𝑥−𝑄𝑥𝑇𝑥,𝑚1−12−𝑑𝑑𝑥𝑇𝑥,𝑚1−12,                                                   (11) 

and the corresponding energy eigenvalues are given by 

 

         𝐸𝑘 = − 𝑘 +
1

2
 

2

  .                                                                      (12) 

 

Thus the Hamiltonian in terms of the Casimir operator is given by 

 

𝐻 = − 𝐾2 +
1

4
  .                                                                        (13) 
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Unitary representation of sl(2;C) algebra: Here we discuss two classes of unitary representation 

of sl(2;C) algebra: 

(a) In the case of discrete spectrum for which 𝑘 < 0 i.e., 

𝑚1 = 𝑘 + 𝑛;   𝑛 = 0,1,2 … .,                                                        (14) 

Thus the energy eigenvalues (12) corresponding to this series will be 

 

𝐸𝑛 = − 𝑛 −  𝑚1 −
1

2
  

2

.                                                             (15) 

(b) In the case of continuous spectra for which 𝑘  is complex i.e., 

 

𝑘 = −
1

2
+ 𝑖𝜅;    0 < 𝜅 < ∞ ;   𝑚1 = 0, ±1, ±2, … . , 𝑜𝑟 𝑚1 = ±

1

2
, ±

3

2
,……,                        (16) 

which describes the scattering state of (10) with energy  

                                                                En = 𝜅2> 0.                                                                  (17) 

2.1 Example of PT symmetric complex Scarf II potential 

 

The bound states of the conventional PT symmetric complex Scarf II potential are obtained 

by defining [25] 

 

𝑃 𝑥 = tanh 𝑥 ;        𝑄 𝑥 = 𝑖𝑏𝑠𝑒𝑐ℎ(𝑥)                                             (18) 

In addition to these functions for the rationally extended complex Scarf II potential the 

function 𝑇(𝑥, 𝑚1 ± 1/2) [26] is defined as 

𝑇  𝑥, 𝑚1 ±
1

2
 = [

2𝑖𝑏𝑐𝑜𝑠 ℎ 𝑥 

 −2𝑖𝑏𝑠𝑖𝑛 ℎ 𝑥  +2 𝑚1±
1

2
 −1 

−
2𝑖𝑏𝑐𝑜𝑠 ℎ 𝑥 

(−2𝑖𝑏𝑠𝑖𝑛 ℎ 𝑥  +2 𝑚1±
1

2
 +1)

]                                   (19) 

such that Eqs. (3) and (4) are satisfied. 

Substituting these functions P(x), Q(x) and 𝑇  𝑥, 𝑚1 ±
1

2
  in (11), we get the rationally extended PT 

symmetric Scarf II potential which is defined on the full-line −∞ < 𝑥 < ∞ i.e., 

𝑉 𝑥, 𝑚1 = 𝑉𝑆𝑐𝑎𝑟𝑓  𝑥, 𝑚1 + 𝑉𝑟𝑎𝑡  𝑥, 𝑚1 ,                                                            (20) 

where 

𝑉𝑆𝑐𝑎𝑟𝑓  𝑥, 𝑚1 =   𝑖𝑏 2 −  𝑚1 −
1

2
  𝑘 +

1

2
  sech2(𝑥) + 𝑖𝑏  2  𝑚1 −

1

2
 + 1 𝑠𝑒𝑐ℎ(𝑥)tanh⁡(𝑥) 

                                                                                                                                                  (21) 

is the conventional PT symmetric Scarf-II potential [24] and 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 
8345 

 
Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

 

 

 

𝑉𝑟𝑎𝑡  𝑥, 𝑚1 =
−4𝑚1

(−2𝑖𝑏𝑠𝑖𝑛 ℎ 𝑥 +2𝑚1)
+

2[4 𝑖𝑏 2+ 2𝑚1 2]

 −2𝑖𝑏𝑠𝑖𝑛 ℎ 𝑥 +2𝑚1 
2                                                                 (22) 

 

is the rational part of the extended potential. The energy eigenvalues for this extended complex 

potential are real and isospectral to the conventional one given by 

𝐸𝑛 = − 𝑛 −  𝑚1 −
1

2
 

2
 ; 𝑛 = 0,1, … . 𝑛 𝑚𝑎𝑥  ;  𝑛 𝑚𝑎𝑥  <  𝑚1 +

1

2
 .                                     (23) 

3 Calculation of scattering amplitudes 

 

In this section, we follow the works of Alhassid et al [22, 23] in which the continuous series 

representation function 𝜓𝑘 𝑚1
(𝑥)  (16) satisfies the one-dimensional Schrodinger equation 

 

 −
𝑑2

𝑑𝑥 2 + 𝑉 𝑥, 𝑚1  𝜓𝑘 𝑚1
 𝑥 = 𝜅2𝜓𝑘 𝑚1

 𝑥 .                                        (24) 

 

Now we define the asymptotic scattering states by considering the 𝑙𝑖𝑚𝑖𝑡 𝑥 →  ±∞  i.e., 

   𝑘 , 𝑚1
  ±∞ = lim𝑥→±∞

  𝑘 , 𝑚1
  .The asymptotic generators 𝐾±

±∞, 𝐾𝑧
±∞ are similarly related to 

𝐾± ; 𝐾𝑧 .   

Thus from Eq. (2), we have  

 

𝐾±
∞ = 𝑒±𝑖𝜙 [±

𝜕

𝜕𝑥
−  −𝑖

𝜕

𝜕𝜙
±

1

2
 ] 

𝐾±
−∞ = 𝑒±𝑖𝜙 [±

𝜕

𝜕𝑥
+  −𝑖

𝜕

𝜕𝜙
±

1

2
 ] 

and 

𝐾𝑧
±∞ = 𝐾𝑧 = −𝑖

𝜕

𝜕𝜙
.                                                                 (25) 

 

These asymptotic generators still form an sl(2;C) algebra, 

 

[𝐾+
±∞, 𝐾−

±∞] = −2𝐾𝑧
±∞; 
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and 

 

           [𝐾𝑧
∞, 𝐾±

∞] = ±𝐾±
∞;            [𝐾𝑧

−∞, 𝐾±
−∞] = ±𝐾±

−∞                                                       (26) 

The asymptotic states   𝑘 , 𝑚1
  ±∞ have the form 

 

  𝑘 , 𝑚1
  −∞ = 𝐴𝑚1

𝑒𝑖𝜅𝑥 𝑒𝑖𝑚1𝜙 + 𝐵𝑚1
𝑒−𝑖𝜅𝑥 𝑒𝑖𝑚1𝜙  

 

  𝑘 , 𝑚1
  +∞ = 𝐶𝑚1

𝑒𝑖𝜅𝑥 𝑒𝑖𝑚1𝜙                                                           (27) 

This asymptotic states still form a standard basis for sl(2;C), i.e., 

 

𝐾±
∞   𝑘 ,𝑚1

  +∞ =   𝑚1 ∓ 𝑘   𝑚1 ± 𝑘 ± 1   
1/2   𝑘 ,𝑚1 ± 1  +∞ 

𝐾±
∞   𝑘 ,𝑚1

  −∞ =   𝑚1 ∓ 𝑘   𝑚1 ± 𝑘 ± 1   
1/2   𝑘 ,𝑚1 ± 1  −∞ 

                             𝐾𝑧
∞   𝑘 , 𝑚1

  ±∞ = 𝑚1
  𝑘 , 𝑚1

  ±∞                                                                    (28) 

We rewrite the asymptotic scattering states (27) in the form of ket vector as  

 

  𝑘 , 𝑚1
  −∞ = 𝐴𝑚1

  +𝜅, 𝑚1
  −∞ + 𝐵𝑚1

  −𝜅, 𝑚1
  −∞ 

 

  𝑘 , 𝑚1
  +∞ = 𝐶𝑚1

  −𝜅, 𝑚1
  +∞                                                              (29) 

where 

 

  𝜅, 𝑚1
  ±∞ = 𝑒±𝑖𝜅𝑥 𝑒𝑖𝑚1𝜙  .                                                              (30) 

 

Now we define the Euclidean E(2) algebra which is composed of two translational generators u1 

and u2 and of one rotational generator Kz  and satisfy the relation  

 𝑢+, 𝑢− = 0;  𝐾𝑧 , 𝑢± = ±𝑢±                                                                  (31) 

where𝑢±=  𝑢1 ± 𝑖𝑢2. In terms of coordinates 𝑥and φ the asymptotic 𝐸(2) generators have the 

form  

𝑢±
∞ 

=𝑢±
−∞ 

= 𝑒±𝑖𝛷(−𝑖
𝜕

𝜕𝑥
) 
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𝐾𝑧
±∞ = 𝐾𝑧 = −𝑖

𝜕

𝜕𝛷
 ,                                                                         (32) 

The Casimir invariant is thus given by 

 

𝑢2= 𝑢1
2+ 𝑢2

2.                                                                                  (33)  

 

The irreducible representations of 𝐸(2) are labeled by ±𝜅 and the action of 𝑢±
±∞, 𝑢−

±∞, 𝐾𝑧and 𝑢2in 

these representation is given by  

𝑢∓
∞ κ, 𝑚1 = 𝑢∓

−∞ κ, 𝑚1 = 𝜅 κ, 𝑚1 ∓ 1 ; 

𝑢∓
∞ −κ, 𝑚1 = 𝑢∓

−∞ −κ, 𝑚1 = −𝜅 κ, 𝑚1 ∓ 1  

 

𝑢2 ±κ, 𝑚1 = 𝜅2 ±κ, 𝑚1 , and      𝐾𝑧 ±κ, 𝑚1 = 𝑚1 ±κ, 𝑚1 .            (34) 

 

Using Eqs. (32) and (34) the generators 𝐾+
±∞in terms of 𝑢±

±∞(=  𝑢+) and 𝐾𝑧
∞(= 𝐾𝑧) are given by  

 

𝐾+
∞ =

1

(±𝜅)
[ 

1

2
 ± 𝑖𝜅 𝑢+ − 𝐾𝑧𝑢+],  

and 

 

𝐾−
−∞ =

1

(±𝜅)
[ 

1

2
± 𝑖𝜅 𝑢+ + 𝐾𝑧𝑢+].                                          (35) 

  

For 𝑥 → ∞, on operating 𝐾+
∞on Eq. (29), we get  

𝐾+
∞|k, 𝑚1 

∞ =  −𝑚1 + 𝑖𝑘 − 1

2
 𝐶𝑚1

 𝑘, 𝑚1 +  1                            (36) 

  
  

On the other hand, from Eqs. (28) and (29), we obtain  

𝐾+
∞|k, 𝑚1 

∞ = [(𝑚1– k)(𝑚1  +  k +  1 )]
1
2𝐶𝑚1+1 𝜅, 𝑚1 +  1        (37) 
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Comparing Eq. (36) with Eq. (37), we get  

[(𝑚1– k)(𝑚1  +  k +  1 )]
1
2𝐶𝑚1+1 =  (−𝑚1  +  𝑖𝑘 − 1

2
)𝐶𝑚1. (38) 

Similarly for 𝑥 →  −∞, operating 𝐾+
−∞on Eq. (29) we get  

𝐾+
−∞|k, 𝑚1 

−∞ =  𝐴𝑚1
 𝑚1 + 𝑖𝑘 +

1

2
  𝑘, 𝑚1 +  1 +  𝐵𝑚1

 𝑚1 − 𝑖𝑘 +
1

2
  −𝑘, 𝑚1 +  1  

(39) 

and Eqs. (28)  and  (29)  provide  

𝐾+
−∞|k, 𝑚1 

−∞ =  [(𝑚1– k)(𝑚1  +  k +  1 )]
1
2𝐴𝑚1+1 𝜅, 𝑚1 +  1 +    𝑚1 – k  𝑚1  + k +

                                                            112𝐵𝑚1+1−𝜅, 𝑚1+ 1.                                              (40)       

 

Again comparing Eq. (39) with Eq. (40), we get 

  𝑚1– k  𝑚1  + k +  1  
1
2𝐴𝑚1+1 =  𝑚1 + 𝑖𝜅 +

1

2
 𝐴𝑚1

                                (41)     

and  

  𝑚1– k  𝑚1  + k +  1  
1
2𝐵𝑚1+1 =  𝑚1 − 𝑖𝜅 +

1

2
 𝐵𝑚1

(42)  

Thus from Eqs. (41)  and  (42)  the recursion relation for reflection amplitude  𝑟𝑚1+1,1 𝜅 =

𝐴𝑚1+1/𝐵𝑚1+1is given by  

𝑟𝑚1+1,1 𝜅 =  
 𝑚1 − 𝑖𝜅 +

1

2
 

 𝑚1 + 𝑖𝜅 +
1

2
 
𝑟𝑚1 ,1 𝜅 (43) 

 and from Eqs. (38) and (41) the recursion relation for transmission amplitude  𝑡𝑚1+1,1 𝜅 =

𝐶𝑚1+1/𝐴𝑚1+1is given by  

𝑡𝑚1+1,1 𝜅 =  
 −𝑚1−𝑖𝜅−

1

2
 

 𝑚1+𝑖𝜅+
1

2
 
𝑡𝑚1 ,1 𝜅  .                                                   (44) 

After solving these two equations, we finally obtain the transmission and reflection amplitude in the 

forms of gamma functions as  

𝑟𝑚1+1,1 𝜅 =  
𝛤 𝑚1−𝑖𝜅−

1

2
 𝛤 𝑖𝜅+

3

2
 

𝛤 𝑚1+𝑖𝜅−
1

2
 𝛤 −𝑖𝜅+

3

2
 
𝑟1,1 𝜅  ,                                      (45) 
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and          

𝑡𝑚1+1,1 𝜅 =   −1 𝑚1−1𝑅𝑚1 ,1 𝜅 × (𝑡1,1 𝜅 

𝑟1,1(𝜅)
),                                               (46) 

 

where r1,1(κ) and t1,1(κ) is independent of 𝑘 . The poles of the scattering amplitudes (45) giving the 

correct bound states (15).  In this way the same may be easily calculated for the potentials 

associated with 𝑋 𝑙 EOPs and the corresponding reflection 𝑟 𝑚1+1,𝑙  𝜅  and transmission amplitudes 

𝑡 𝑚1+1,𝑙  𝜅   can be obtained.  

4 Summary and discussion 

     In this manuscript, we have discussed  in brief the potential algebra approach suitable to the RE 

potentials. Using the asymptotic behavior of the generators associated with sl(2, C) algebra the 

transmission and reflection amplitudes for the RE PT -symmetric complex Scarf II potential whose 

bound states are associated with the X1 exceptional Jacobi polynomials have been obtained. The 

poles of the scattering amplitudes giving the correct bound states. Thus we are now able to obtain 

the complete spectrum of the conventional as well as the rationally extended potentials through this 

approach. The approach can easily be extended to the𝑋 𝑙 case of extended potentials. 
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