Some Finite Value Problem Applications of Wronskian Characteristics

Mrs U. Sujatha, Mrs Y. Aparna , Mrs B.Sridevi,
AssistantProfessor, Ashoka Women's Engineering College, Kurnool

Article Info
Page Number: 415-417
Publication Issue:
Vol. 71 No. 2 (2022)

Article History

Article Received: 24 January 2022
Revised: 26 February 2022
Accepted: 18 March 2022
Publication: 20 April 2022

Introduction

Engineering, physics, chemistry, economics, and other fields all benefit greatly from the application of differential equations. The boundary value problem, which consists of a classical differential equation and a further set of restrictions known as the parameter, plays a significant role in many areas.

Properties of Wronskian

Definition 2.1. Let φ_{1}, φ_{2} be any two differential functions of x

$$
\text { Then, } \mathrm{W}\left[\varphi_{1}, \varphi_{2}\right]=\left|\begin{array}{ll}
\varphi_{1} & \varphi_{2} \\
\varphi_{1} & \varphi_{2}
\end{array}\right|
$$

which is called the Wronskian of φ_{1}, φ_{2}. It is a function, and its value at x isdenoted by
$\mathrm{W}\left[\varphi_{1}, \varphi_{2}\right](\mathrm{x})$.
Lemma 2.2. The Wronskian defined in (2.1) satisfies the following prop-erties:
(a) $\mathrm{W}\left[\varphi_{1}, \varphi_{2}\right]=-\mathrm{W}\left[\varphi_{2}, \varphi_{1}\right]$.
(b) $\mathrm{W}\left[\alpha \varphi_{1}, \beta \varphi_{2}\right]=\alpha \beta \mathrm{W}\left[\varphi_{1}, \varphi_{2}\right]$.Here α and β are constants.

Proof. (a) From the definition of Wronskian, we get
$\mathrm{W}\left[\varphi_{2}, \varphi_{1}\right]=\varphi_{2} \varphi^{\prime}-\varphi^{\prime} \varphi_{1}=-\mathrm{W}\left[\varphi_{1}, \varphi_{2}\right]$.
(b) By the definition of Wronskian with simple steps, our result is trivial.

Lemma 2.3. Let φ_{1}, φ_{2} be any two differential functions of x, then
$\mathrm{W}\left[\varphi_{1}+\alpha, \varphi_{2}+\alpha\right]=\mathrm{W}\left[\varphi_{1}, \varphi_{2}\right]+\alpha d / d x\left[\varphi_{2}-\varphi_{1}\right]$
where α is a constant.

Proof. From definition of Wronskian, we obtain

$$
\begin{aligned}
\mathrm{W}\left[\varphi_{1}+\alpha, \varphi_{2}+\alpha\right]= & \left(\varphi_{1}+\alpha\right) \varphi_{1}^{*}-\varphi_{2}^{*} \quad\left(\varphi_{2}+\alpha\right) \\
& =\mathrm{W}\left[\varphi_{1}, \varphi_{2}\right]+\alpha d / d x\left[\varphi_{2}-\varphi_{1}\right]
\end{aligned}
$$

Hence the lemma is proved
Example: Let $\Phi_{1}=\operatorname{Sin} 3 x, \quad \Phi_{2}=\operatorname{Cos} 5 x$, and d_{x} let $=7$,

$$
\left.\begin{array}{rl}
\mathrm{W}[\operatorname{Sin} 3 \mathrm{x}+7, \operatorname{Cos} 5 \mathrm{x}+7 & =\left|\begin{array}{cc}
\operatorname{Sin} 3 \mathrm{x}+7 & \operatorname{Cos} 5 \mathrm{x}+7 \\
3 \operatorname{Cos} 3 x & -5 \operatorname{Sin} 5 x
\end{array}\right| \\
& =(\operatorname{Sin} 3 \mathrm{x}+7)(-5 \operatorname{Sin} 5 x)-(3 \operatorname{Cos} 3 x)(\\
\operatorname{Sin} 3 \mathrm{x})-(3 \operatorname{Cos} 3 x)(\operatorname{Cos} 5 \mathrm{x}
\end{array}\right] .
$$

Example: A boundary value problem is given by,
$y^{\underline{\omega}}+8 \mathrm{y}=0$, subject to the condition, $\mathrm{y}(0)=3$ and $\mathrm{y}\left(\frac{\pi}{2}\right)=0$.
Auxiliary equation is, $\mathrm{m}^{2}+8=0$
$\Rightarrow \mathrm{m}=0+\mathrm{i} 2 \sqrt{2}$
Hence general solution, $\mathrm{y}=\mathrm{k}_{1} \operatorname{Cos}(2 \sqrt{2}) x+\mathrm{k}_{2} \operatorname{Sin}(2 \sqrt{2}) x$
using the boundary condition, $\mathrm{y}(0)=3$ and $\mathrm{y}\left(\frac{\pi}{2}\right)=0$.

$$
3=\mathrm{k}_{1} \cdot 1+\mathrm{k}_{2} \cdot 0
$$

$$
\mathrm{k}_{1}=3
$$

Given condition is y $\left(\frac{\pi}{2}\right)=0$
$0=3 . \operatorname{Cos}(2 \sqrt{2})+\mathrm{k}_{2} \operatorname{Sin}(2 \sqrt{2})$
$k_{2}=-\frac{3 \cdot \operatorname{Cos}(\sqrt{2} \pi)}{\operatorname{Sin}(\sqrt{2 \pi})}$

$$
=-3 \operatorname{Cot}(\sqrt{2} \pi)
$$

Hence, Particular solution is given by

$$
\mathrm{y}=3 \operatorname{Cos}(2 \sqrt{2} t)-3 \operatorname{Cot}(\sqrt{2} \pi) \operatorname{Sin}(2 \sqrt{2} t)
$$

Wronskian:

Jozef Hoene-Wronski coined the term "Wronkian" in the field of mathematics to describe a determinant (1776). It is necessary in the study of differential equations since it aids in determining the linear independence of the solutions [1] and [2] set. In [3] and [4], the characteristics and solution of the Wronskian diff erential equation were explored.

Let a linear homogeneous equation of the form, $y^{\prime \prime}+\mathrm{p}(\mathrm{t}) y^{\prime}+\mathrm{q}(\mathrm{t}) \mathrm{y}=0$,
Let two solution of this equation are u and v, So Wronskian of this equation can be written as $\mathrm{W}[\mathrm{u}, \mathrm{v}$] $=\mathrm{u} v^{\prime}-\mathrm{v} u^{\prime}$.

If u is a constant multiple of v then $W[u, v]$ is identically zero. Then u and v are linearly dependent.
(b) If u and v agree at some point t_{o} and their derivative also exist at t_{o}, then $\mathrm{W}[\mathrm{u}, \mathrm{v}]$ vanishes $a t_{o}$, thais if u and v are two solution of same initial value problem then their Wronskian vanishes

If there are non-zero constants, two differential functions, $f(t)$ and $g(t)$, are linearly dependent. and c_{2} with, $C_{1} \mathrm{f}(\mathrm{t})+C_{2} \mathrm{~g}(\mathrm{t})=0$, for all t , otherwise they are called linearly independent.
Example: The functions, $\mathrm{f}(\mathrm{t})=10 t^{2}+t^{3}$ and $\mathrm{g}\left(\mathrm{t} \mathrm{t}^{\underline{4}}-t^{4} \quad\right.$ are linearly independent.
There would be a nonzero constant and such that if the function $f(t)$ and $g(t)$ are directly dependant.

$$
C_{1} f(t)+C_{2} g(t)=0
$$

$$
C_{1}\left(10 t^{2}+t^{3}\right)+C_{2}\left(-t^{4}\right)=0
$$

When $\mathrm{t}=-1$, then,
$9 c_{1}-c_{2}=0$
When $\mathrm{t}=-2$, then,
$2 c_{1}-c_{2}=0$
The linear solution system is represented by equations (1) and (2). The relevant coefficient matrix's current determinant is
$\left|\begin{array}{ll}9 & -1 \\ 2 & -1\end{array}\right|=-9+2=-7 \neq 0$.
As a result of the determinant being nonnegative, only the trivial solution can be found.
That is, $c_{1}=c_{2}$.
The two functions supplied are therefore linearly independent.

Theorem: 1

$\mathrm{W}\left[\emptyset_{1} \emptyset_{2}\right]=-\mathrm{W}\left[\emptyset_{2} \emptyset_{1}\right]$
Example: $\Phi_{1}=\tan x$ and $\Phi_{2}=$ Cosecx, then

$$
\begin{aligned}
\mathrm{W}\left[\emptyset_{1} \emptyset_{2}\right]= & \left|\begin{array}{cc}
\tan x & \operatorname{cosec} x \\
\sec & \\
2 & -\operatorname{cosec} x \operatorname{Cot} x
\end{array}\right| \\
= & -\operatorname{tanx} \cdot \operatorname{Cosec} x \cdot \operatorname{Cot} x-\operatorname{Cosec} x \cdot \operatorname{Sec}^{2} x \\
& =-\operatorname{Cosec} x\left(1+\operatorname{Sec}^{2} x\right),
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{W}\left[\Phi_{2} \emptyset_{1}\right]=\left|\begin{array}{cc}
\operatorname{cosec} x & \tan x \\
-\operatorname{cosec} x \operatorname{Cot} x & \sec ^{2} x
\end{array}\right| \\
&=\operatorname{Cosec} x \cdot \operatorname{Sec}^{2} x+\tan \mathrm{x} \cdot \operatorname{Cosec} \mathrm{x} \cdot \operatorname{Cot} \mathrm{x} \\
&=\operatorname{Cosec}\left(1+\operatorname{Sec}^{2} x\right) \\
&=-\mathrm{W}\left[\emptyset_{1} \Phi_{2}\right]
\end{aligned}
$$

Hence, $\mathrm{W}\left[\emptyset_{1} \emptyset_{2}\right]=-\mathrm{W}\left[\emptyset_{2} \emptyset_{1}\right]$

Theorem :2

$\mathrm{W}\left[\alpha \emptyset_{1}, \beta \emptyset_{2}\right]=\alpha \beta \mathrm{W}\left[\emptyset_{1}, \emptyset_{2}\right]$, where α and β are constant,
Example: $\emptyset_{1}=a^{x}$ and $\emptyset_{2}=e^{x}$, and $\alpha=5$ and $\beta=7$, then
$\mathrm{W}\left[\alpha \emptyset_{1}, \beta \emptyset_{2}\right]=\mathrm{W}\left[5 a^{x}, 7 e^{x}\right]$

$$
\begin{aligned}
& =\left|\begin{array}{cc}
5 a^{x} & 7 e^{x} \\
5 a^{x} \log x & 7 e^{x}
\end{array}\right| \\
& =5 \times 7\left|\begin{array}{cc}
a^{x} & e^{x} \\
a^{x} \log x & e^{x}
\end{array}\right| \\
& =5 \times 7 \mathrm{~W}\left[\emptyset_{1}, \emptyset_{2}\right] .
\end{aligned}
$$

References

[1] Alan Coddington and Norman Levinson, Theory of Ordinary Differential Equations, Tata McGraw-Hill Publishing Company (1994).
[2] Ordinary Differential Equations and Stability Theory, Tata McGraw-Hill Publishing Company, S.G. Deo and V. Ragavendra (1988).
[3] Wronskian differential equation, Applied Science Periodical, IX, No. 1, K. Ravi and B. Ravikrishanan (2007).
[4] Properties of Wronkians and Partial Wronkians, Article • January 2010, International Journal of Pure and Applied Mathematics. G. Ganapathy, S. Murthy, and M. Arunkumar

