On Maximum Independent *χ* **- Energy of Graphs**

S. Sreeja¹, U. Mary²

¹Assistant Professor, Department of Mathematics UG-SF, PSGR Krishnammal College For Women, Coimbatore, Tamilnadu, India 641004
²Associate Professor And Head, PG And Research Department of Mathematics, Nirmala College For Women, Coimbatore, Tamilnadu 641018 Email Address: sreejatips@gmail.com

Article Info	Abstract
Page Number: 8507-8513	Maximum independent χ - energy (Color Energy) $E_{l\chi}$ of a simple graph Ω
Publication Issue:	is obtained by calculating the absolute sum of its independent $\boldsymbol{\chi}$ -
Vol. 71 No. 4 (2022)	eigen/latent values. Few standard results regarding Maximum independent
	χ - energy $E_{I\chi}$ and the Maximum $$ independent χ - energy value $$ for certain
Article History	standard graphs has also been shown here. As an application of this
Article Received: 15 September 2022	energy, drug Cisplatin has been taken into consideration and its $E_{I\chi}$ value
Revised: 25 October 2022	has been computed here.
Accepted: 14 November 2022	Key words: Color energy, Color latent values, Color matrix, Maximum
Publication: 21 December 2022	independent colored set.

1. PRELUDE

Let $\Omega = (V, E)$ be a connected but undirected graph. A Subset $I \subseteq V$ becomes independent if its vertices doesn't form any edges. The highest cardinality of such a set is called independence number which is usually denoted as $\beta(\Omega)$.

The ideologies pertaining to the concepts namely The Energy of a Graph [3], Coloring a Graph [2], Color Energy of a Graph [2] and the Maximum independent vertex energy [6] are the main motivation to conceptualize Maximum independent χ - energy 'El χ ' of a graph Ω and to determine the χ – energy El χ of certain standard graphs. Mathematical aspects concerning Energy of a Graph can be seen in [1], [4] and [5].

It has been discovered that Energy of a Graph has exceptional applications in the study of chemical molecules and in other fields.

Similar studies are also found in [7] and [8].

The standard results regarding EI χ of any graph Ω are obtained by studying characteristic polynomial of its maximum independent colored matrix.

Inorder to connect with chemical applications, We have computed the mathematical value of El_χ for the chemical cancer drug Cisplatin.

2. MAXIMUM INDEPENDENT χ - ENERGY – EIχ

Let Ω be a graph with r edges and s vertices. Let I χ be its maximum independent colored set of vertices.

The maximum independent colored matrix of Ω is a s × s adjacency square matrix AI χ (Ω) = (bij), where

Then the characteristic polynomial obtained from its adjacency matrix AI χ (Ω) denoted by $h_s(\Omega, \lambda_c)$ is elucidated as $h_s(\Omega, \lambda_c) = det(\lambda_c I - AI\chi(\Omega))$.

As it is evident that the adjacency matrix AI χ (Ω) consists of real symmetric numbers, its independent χ - eigenvalues are also real and we specify them as λ_{c1} , λ_{c2} , λ_{c3} , ..., λ_{cs} . The maximum independent χ - energy of Ω is defined as : EI χ (Ω) = $\sum_{i=1}^{s} |\lambda_{ci}|$

In the later section of this paper, we have computed the numerical values of EI χ for certain standard graphs namely Star K_{1,s-1}, Complete Bipartite K_{s,s} and Friendship F_s Graphs after studying the basic properties of EI χ .

3. BASIC THEOREMS ON EIX

Theorem 1. Let Ω be a simple connected graph with independence number $\beta(\Omega)$. If the order and size of Ω is s and r respectively with $h_s(\Omega, \lambda_c) = b_0 \lambda^s c + b_1 \lambda^{s-1} c + \dots + b_s$ being the characteristic polynomial obtained from I χ of Ω , then

1)
$$b_0=1$$

2) $b_1 = -\beta(\Omega)$
3) $b_2 = \begin{pmatrix} \beta(\Omega) \\ 2 \end{pmatrix} - [r'\chi + r], r'\chi$ being number of vertices that doesn't form edges but identical in color

Proof. (1) It is obvious that $h_{S}(\Omega, \lambda c) := det(\lambda_{c}I - AI\chi(\Omega))$ which yields $b_{0}=1$.

(2)As the total of the diagonal elements in AI χ (Ω) is evidently equal to independence number $\beta(\Omega)$ of its corresponding graph Ω , thus we get $b_1 = -\beta(\Omega)$.

(3) Since $(-1)^2$ b₂ equals total of determinants of all principal submatrices of AI χ (Ω) of order 2 × 2, it leads to

$$b_2 = \sum_{1 \le i < j \le s} \begin{vmatrix} b_{ii} & b_{ij} \\ b_{ji} & b_{jj} \end{vmatrix}$$

Vol. 71 No. 4 (2022) http://philstat.org.ph Mathematical Statistician and Engineering Applications ISSN: 2094-0343 2326-9865

$$= \sum_{1 \le i < j \le s} (b_{ii}b_{jj} - b_{ij}b_{ji})$$
$$= \sum_{1 \le i < j \le s} (b_{ii}b_{jj}) - \sum_{1 \le i < j \le s} (b_{ij}^{2})$$
$$= {\binom{\beta(\Omega)}{2}} - [r'\chi + r],$$

where $\dot{r_{\chi}}$ being <u>number of vertices that doesn't form edges but identical in color</u> 2

Theorem 2. Let Ω be a graph. Let $\lambda_c 1$, $\lambda_c 2$, $\lambda_c 3$, ..., $\lambda_c s$ be the latent values of maximum independent colored adjacency matrix AI $\chi(\Omega)$. Then

(1). $\sum_{i=1}^{s} \lambda ci = \beta(\Omega)$, (2). $\sum_{i=1}^{s} \lambda^2 ci = 2[r'\chi + r] + \beta$ (Ω) where r' χ being number of vertices that doesn't form edges but identical in color

Proof. (1) Since the total of the latent values of AI χ (Ω) equals the trace of AI χ (Ω), we get $\sum_{i=1}^{s} \lambda c_i = \sum_{i=1}^{s} b_{ii} = |I\chi| = \beta$ (Ω) where β (Ω) denotes the cardinality of maximum independent colored vertex set.

(2) Also likewise the Sum of the squares of latent values of the AI χ (Ω) matches the trace of the (A² I χ (Ω)).

Thus

$$\sum_{i=1}^{s} \lambda^2 \operatorname{ci} = \sum_{i=1}^{s} \sum_{j=1}^{s} b_{ij} b_{ji}$$
$$= 2 \sum_{i \neq j}^{s} b_{ij} b_{ji} + \sum_{i=1}^{s} (b_{ii}^{2})$$
$$= 2 \sum_{i < j}^{s} (b_{ij}^{2}) + \sum_{i=1}^{s} (b_{ii}^{2})$$
So $\sum_{i=1}^{s} \lambda^2 \operatorname{ci} = 2[r'\chi + r] + \beta (\Omega)$

Theorem 3. Consider Ω to be a simple connected graph containing a maximum independent colored set I χ . If the EI χ is a rational number, Then EI $\chi(\Omega) \equiv |I\chi| \pmod{2}$.

Proof. Let λ_{c1} , λ_{c2} , λ_{c3} , ..., λ_{cs} be the maximum independent χ - latent values of a graph Ω . Let λ_{c1} , λ_{c2} , λ_{c3} , ..., λ_{cs} (for t < s) be the non negative latent values and the balance being negative values, we get

Vol. 71 No. 4 (2022) http://philstat.org.ph 8509

Therefore, EI $\chi(\Omega) = 2k - \beta(\Omega)$ where $k = (\lambda_{c1} + \lambda_{c2} + \lambda_{c3} + + \lambda_{ct})$

Here the latent values λ_{c1} , λ_{c2} , λ_{c3} , ..., λ_{cs} are integers, so their total will also be an integer value. Then, the value of 'k' is also integer as the value of EI χ (Ω) is a rational.

4. EI₂ OF CERTAIN COMMON FAMILIES OF GRAPHS

Theorem 4. For $s \ge 2$, EI $\chi(K_{1,s-1}) = (2s - 4) + \sqrt{s^2 - 2s + 5}$

Proof. For a Star graph $K_{1,s-1}$ with s vertices $V = \{v_1, v_2, ..., v_s\}$, its highest independent set $I\chi = \{v_s\}$

Since its chromatic number $\chi = 2$ and β (K_{1,s-1}) = s - 1, we obtain $AI\chi (K_{1,s-1}) = \begin{bmatrix} 0 & 1 & \dots & 1 & 1 \\ 1 & 1 & \dots & -1 & -1 \\ \vdots & \ddots & & \vdots \\ 1 & -1 & \dots & 1 & -1 \\ 1 & -1 & \dots & -1 & 1 \end{bmatrix}_{(s \times s)}$

Characteristic polynomial is obtained as $(-1)^{s} (\lambda_{c} - 2)^{s-2} (\lambda_{c}^{2} + (s - 3)\lambda_{c} - (s - 1))$

Spectrum, SpecI
$$\chi$$
 (K_{1,s-1}) = $\begin{pmatrix} 2 & \frac{-(s-3)\pm\sqrt{s^2-2s+5}}{2} \\ s-2 & 1 \end{pmatrix}$

Therefore, EI χ (K_{1,s-1}) = $\sum_{i=1}^{s} |\lambda ci|$

$$= |2|(s - 2) + \left| \frac{-(s-3) \pm \sqrt{s^2 - 2s + 5}}{2} \right| 1$$
$$= (2s - 4) + \sqrt{s^2 - 2s + 5}$$

Thus EI χ (K_{1,s-1}) is (2s - 4) + $\sqrt{s^2 - 2s + 5}$.

Theorem 5. For $s \ge 2$, EI $\chi(K_{s,s}) = (3s - 3) + \sqrt{4s^2 + 1}$.

Proof. Let $K_{s,s}$ be a Complete Bipartite graph with vertices $V = \{u_1, u_2, ..., u_s, v_1, v_2, ..., v_s\}$, then its $I\chi = \{u_1, v_1\}$.

Since its chromatic number $\chi = 2$ and the independence number $\beta(K_{s,s}) = s$, we obtain $AI\chi(K_{s,s}) = \begin{bmatrix} 0 & 1 & \dots & 1 & 1 \\ 1 & 1 & \dots & -1 & -1 \\ \vdots & \ddots & & \vdots \\ 1 & -1 & \dots & 1 & -1 \\ 1 & -1 & \dots & -1 & 1 \end{bmatrix}$ (20 × 20)

Characteristic polynomial of K_{s,s} is found to be $(\lambda_c - 1)^{s-1} (\lambda_c - 2)^{s-1} (\lambda^2_c + (2s - 3)\lambda_c + (2-3s))$

Its Spectrum, SpecI
$$\chi$$
 (K_{s,s}) = $\begin{pmatrix} 1 & 2 & \frac{-(2s-3)\pm\sqrt{4s^2+1}}{2} \\ s-1 & s-1 & 1 \end{pmatrix}$

Vol. 71 No. 4 (2022) http://philstat.org.ph Then EI χ (K_{s,s}) = $\sum_{i=1}^{s} |\lambda ci|$

$$= |1|(s - 1) + |2|(s - 1) + \left|\frac{-(2s - 3) \pm \sqrt{4s^2 + 1}}{2}\right| 1$$
$$= (s - 1) + (2s - 2) + \sqrt{4s^2 + 1}$$
$$= (3s - 3) + \sqrt{4s^2 + 1}$$

Thus EI χ (K_{s,s}) is (3s - 3) + $\sqrt{4s^2 + 1}$.

Theorem 6. For $s \ge 2$, EI χ (Fs) is $(s - 1)\sqrt{5} + s + \sqrt{s^2 + 2s + 5}$

Proof. For a Friendship graph F_s of order (2s + 1), it assumes the maximum independent set as $I\chi = \{v_0\}$.

Since its chromatic number $\chi=3$ and the independence number $\beta(F_s) = s$, we obtain $AI\chi(Fs) = \begin{bmatrix} 1 & 1 & \dots & 1 & 1 \\ 1 & 1 & \dots & -1 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 1 & -1 & \dots & 1 & 1 \\ 1 & 0 & \dots & 1 & 0 \end{bmatrix}_{(2s+1 \times 2s+1)}$

Characteristic polynomial of F_s is given by $(-1)(\lambda_c+s)(\lambda_c^2-3\lambda_c+1)^{s-1}(\lambda_c^2+(s-3)\lambda_c+(1-2s))$

Spectrum, Spec I
$$\chi$$
 (F_s) = $\begin{pmatrix} \frac{3\pm\sqrt{5}}{2} & -s & \frac{-(s-3)\pm\sqrt{s^2+2s+5}}{2} \\ s-1 & 1 & 1 \end{pmatrix}$

Then EI χ (F_s) = $\sum_{i=1}^{s} |\lambda ci|$

$$= \left|\frac{3\pm\sqrt{5}}{2}\right|(s-1) + |-s|1| + \left|\frac{-(s-3)\pm\sqrt{s^2+2s+5}}{2}\right| 1$$

$$= (s - 1)\sqrt{5} + s + \sqrt{s^2 + 2s + 5}$$

Thus EI χ (Fs) is $(s - 1)\sqrt{5} + s + \sqrt{s^2 + 2s + 5}$.

5. CHEMICAL APPLICATION OF EIX

Cisplatin is a strong medicinal drug which is extensively used for chemotherapy purpose against Cancer disease. Maximum independent Color energy $EI\chi$ of Cisplatin has been computed below which might be useful for further development that involves Cancer treatment.

Fig 1. Cisplatin: Structural Formula

Here, the maximum independent colored set is $I\chi = \{Cl, Cl, NH_3, NH_3\}$.

$$A I\chi = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & 0 & 0 \\ 1 & -1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & -1 \\ 1 & 0 & 0 & 1 & 1 \end{bmatrix}$$

The Characteristic polynomial is found to $(\lambda_c)(\lambda_c - 2)^3 (\lambda_c + 2)$

Spectrum of Cisplatin, Spec $I\chi = \begin{bmatrix} 0 & -2 & 2 \\ 1 & 1 & 3 \end{bmatrix}$

Thus, $EI\chi$ of Cisplatin = 8.

6. CONCLUSION

The numerical values of EI χ of certain well known standard graphs are established here. It is noticed that the selection of the maximum independent colored vertex set acts as an important criteria in calculating the χ – energy EI χ of a particular graph. It can be applied to any drug's structural formula transferred to a graph and can be analysed and compared with its corresponding Pharmaceutical properties.

REFERENCES

- 1. Bapat R B, Graphs and Matrices, Hindustan Book Agency, (2011)
- 2. Chandrashekar Adiga, Sampathkumar E , Sriraj M.A, Shrikanth A. S, Color Energy of a Graph ,Proceedings of the Jangjeon Mathematical Society, 16 (2013), 335 351.
- 3. Gutman I, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz , 103 (1978), 1-22.
- 4. Gutman I, Li X, Zhang J, Graph Energy , Streib., Anal. Comp. Net., From Biology to Linguistics, Wiley-VCH, Weinheim, (2009), 145-174
- 5. Li X, Shi Y, Gutman I, Graph Energy, Springer, New York Heid. Dord., London (2012)
- 6. Murthy K.B, Puttaswamy, Naji A.M, The Maximum Independent Vertex Energy of a Graph , International Journal of Mathematics And its Applications, 3(4)(2016), 63-71
- 7. Rajesh Kanna M.R., Pradeep Kumar R, Jagadeesh R, Minimum Covering Color Energy of a Graph, International Journal of Mathematical Analysis, 9(8)(2015), 351-364

8. Sreeja S, Mary U, Minimum hub Color energy of a graph, Malaya Journal of Mathematik, 9(1)(2021), 494 - 497.