On Maximum Independent χ - Energy of Graphs

S. Sreeja ${ }^{1}$, U. Mary ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics UG-SF, PSGR Krishnammal College For Women, Coimbatore, Tamilnadu, India 641004
${ }^{2}$ Associate Professor And Head, PG And Research Department of Mathematics, Nirmala
College For Women, Coimbatore, Tamilnadu 641018
Email Address: sreejatips@ gmail.com

Article Info
Page Number: 8507-8513
Publication Issue:
Vol. 71 No. 4 (2022)

Article History
Article Received: 15 September 2022
Revised: 25 October 2022
Accepted: 14 November 2022
Publication: 21 December 2022

Abstract

Maximum independent χ - energy (Color Energy) $\mathrm{E}_{\mathrm{I} \chi}$ of a simple graph Ω is obtained by calculating the absolute sum of its independent χ eigen/latent values. Few standard results regarding Maximum independent χ-energy $\mathrm{E}_{\mathrm{l} \chi}$ and the Maximum independent χ-energy value for certain standard graphs has also been shown here. As an application of this energy, drug Cisplatin has been taken into consideration and its $\mathrm{E}_{\mathrm{I} \chi}$ value has been computed here. Key words: Color energy, Color latent values, Color matrix, Maximum independent colored set.

1. PRELUDE

Let $\Omega=(\mathrm{V}, \mathrm{E})$ be a connected but undirected graph. A Subset $\mathrm{I} \subseteq \mathrm{V}$ becomes independent if its vertices doesn't form any edges. The highest cardinality of such a set is called independence number which is usually denoted as $\beta(\Omega)$.

The ideologies pertaining to the concepts namely The Energy of a Graph [3], Coloring a Graph [2], Color Energy of a Graph [2] and the Maximum independent vertex energy [6] are the main motivation to conceptualize Maximum independent χ - energy 'EI χ ' of a graph Ω and to determine the χ - energy EI χ of certain standard graphs. Mathematical aspects concerning Energy of a Graph can be seen in [1], [4] and [5].

It has been discovered that Energy of a Graph has exceptional applications in the study of chemical molecules and in other fields.

Similar studies are also found in [7] and [8].
The standard results regarding EI χ of any graph Ω are obtained by studying characteristic polynomial of its maximum independent colored matrix.

Inorder to connect with chemical applications, We have computed the mathematical value of EI χ for the chemical cancer drug Cisplatin.

2. MAXIMUM INDEPENDENT χ - ENERGY - EI χ

Let Ω be a graph with r edges and s vertices. Let $\mathrm{I} \chi$ be its maximum independent colored set of vertices.

The maximum independent colored matrix of Ω is as $\times \mathrm{s}$ adjacency square matrix $\operatorname{AI} \chi(\Omega)=$ (bij), where
(vj) \quad bij $=\left\{\begin{array}{l}1 \text { if } i=j \text { if } v_{i} \in I \chi \text { or the vertices } v_{i} \text { and vj constitutes an edge and } c\left(v_{i}\right) \neq c \\ -1 \text { if vertices } v_{i} \text { and } v_{j} \text { doesn't constitute an edge but } c\left(v_{i}\right)=c(v j)\end{array}\right.$ 0 elsewhere

Then the characteristic polynomial obtained from its adjacency matrix $\operatorname{AI} \chi(\Omega)$ denoted by $\mathrm{h}_{\mathrm{s}}\left(\Omega, \lambda_{\mathrm{c}}\right)$ is elucidated as $\mathrm{h}_{\mathrm{s}}\left(\Omega, \lambda_{\mathrm{c}}\right)=\operatorname{det}\left(\lambda_{\mathrm{c}} \mathrm{I}-\operatorname{AI\chi }(\Omega)\right)$.

As it is evident that the adjacency matrix $\operatorname{AI} \chi(\Omega)$ consists of real symmetric numbers, its independent $\quad \chi$-eigenvalues are also real and we specify them as $\lambda_{c 1}, \lambda_{c 2}, \lambda_{c 3}, \ldots$, λ_{cs}. The maximum independent χ - energy of Ω is defined as : $\mathrm{EI} \chi(\Omega)=\sum_{i=1}^{S}|\lambda \mathrm{ci}|$

In the later section of this paper, we have computed the numerical values of EI χ for certain standard graphs namely Star $\mathrm{K}_{1, \mathrm{~s}-1}$, Complete Bipartite $\mathrm{K}_{\mathrm{s}, \mathrm{s}}$ and Friendship F_{s} Graphs after studying the basic properties of EI χ.

3. BASIC THEOREMS ON EI χ

Theorem 1. Let Ω be a simple connected graph with independence number $\beta(\Omega)$. If the order and size of Ω is s and r respectively with $h_{s}\left(\Omega, \lambda_{c}\right)=b_{0} \lambda^{s} c+b_{1} \lambda^{s-1}{ }_{c}+\ldots .+b_{s}$ being the characteristic polynomial obtained from I χ of Ω, then

1) $b_{0}=1$
2) $b_{1}=-\beta(\Omega)$
3) $\mathrm{b}_{2}=\binom{\beta(\Omega)}{2} \quad-\quad\left[\mathrm{r}^{\prime} \chi \quad+\quad \mathrm{r}\right]$, $\quad \mathrm{r}^{\prime} \chi \quad$ being number of vertices that doesn' t form edges but identical in color

Proof. (1) It is obvious that $\mathrm{h}_{\mathrm{S}}(\Omega, \lambda \mathrm{c}):=\operatorname{det}\left(\lambda_{\mathrm{c}} \mathrm{I}-\operatorname{AI} \chi(\Omega)\right)$ which yields $\mathrm{b}_{0}=1$.
(2)As the total of the diagonal elements in $\operatorname{AI} \chi(\Omega)$ is evidently equal to independence number $\beta(\Omega)$ of its corresponding graph Ω, thus we get $b_{1}=-\beta(\Omega)$.
(3) Since $(-1)^{2} b_{2}$ equals total of determinants of all principal submatrices of AIX (Ω) of order 2×2, it leads to

$$
b_{2}=\sum_{1 \leq i<j \leq s}\left|\begin{array}{ll}
b_{i i} & b_{i j} \\
b_{j i} & b_{j j}
\end{array}\right|
$$

$$
\begin{aligned}
=\sum_{1 \leq i<j \leq s} & \left(b_{i i} b_{j j}-b_{i j} b_{j i}\right) \\
& =\sum_{1 \leq i<j \leq s}\left(b_{i i} b_{j j}\right)-\sum_{1 \leq i<j \leq s}\left(b_{i j}^{2}\right) \\
& =\binom{\beta(\Omega)}{2}-\left[\mathrm{r}^{\prime} \chi+\mathrm{r}\right]
\end{aligned}
$$

where $\mathrm{r}^{\prime} \chi$ being $\frac{\text { number of vertices that doesn' } \mathrm{t} \text { form edges but identical in color }}{2}$
Theorem 2. Let Ω be a graph. Let $\lambda_{c} 1, \lambda_{c} 2, \lambda_{c} 3, \ldots ., \lambda_{c}$ s be the latent values of maximum independent colored adjacency matrix $\operatorname{AI} \chi(\Omega)$. Then
(1). $\sum_{i=1}^{S} \lambda c i=\beta(\Omega)$,
(2). $\sum_{i=1}^{S} \lambda^{2} \mathrm{ci}=2\left[\mathrm{r}^{\prime} \chi+\mathrm{r}\right] \quad+\quad \beta \quad(\Omega)$ where $\mathrm{r}^{\prime} \chi$ being number of vertices that doesn't form edges but identical in color

Proof. (1) Since the total of the latent values of $\operatorname{AI} \chi(\Omega)$ equals the trace of $\operatorname{AI} \chi(\Omega)$, we get $\sum_{i=1}^{S} \lambda \mathrm{ci}=\sum_{i=1}^{S} b_{i i}=|\mathrm{I} \chi|=\beta(\Omega)$ where $\beta(\Omega)$ denotes the cardinality of maximum independent colored vertex set.
(2) Also likewise the Sum of the squares of latent values of the $\mathrm{AI} \chi(\Omega)$ matches the trace of the ($\mathrm{A}^{2} \mathrm{I} \chi(\Omega)$).

Thus

$$
\begin{gather*}
\begin{array}{c}
\sum_{i=1}^{S} \lambda^{2} \mathrm{ci}=\sum_{\mathrm{i}=1}^{\mathrm{S}} \sum_{\mathrm{j}=1}^{\mathrm{s}} b_{i j} b_{j i} \\
=2 \sum_{i \neq j}^{S} b_{i j} b_{j i}+\sum_{i=1}^{S}\left(b_{i i}^{2}\right) \\
=2 \sum_{i<j}^{s}\left(b_{i j}^{2}\right)+\sum_{i=1}^{s}\left(b_{i i}^{2}\right)
\end{array} \\
\text { So } \sum_{i=1}^{S} \lambda^{2} \mathrm{ci}=2\left[\mathrm{r}^{\prime} \chi+\mathrm{r}\right]+\beta(\Omega)
\end{gather*}
$$

Theorem 3. Consider Ω to be a simple connected graph containing a maximum independent colored set $\mathrm{I} \chi$. If the EI χ is a rational number, Then $\mathrm{EI} \chi(\Omega) \equiv|\mathrm{I} \chi|(\bmod 2)$.

Proof. Let $\lambda_{c 1}, \lambda_{c 2}, \lambda_{c 3}, \ldots ., \lambda_{c s}$ be the maximum independent χ - latent values of a graph Ω. Let $\lambda_{c 1}, \lambda_{c 2}, \lambda_{c 3}, \ldots ., \lambda_{c s}$ (for $t<s$) be the non negative latent values and the balance being negative values, we get

$$
\begin{align*}
\sum_{i=1}^{S}|\lambda c \mathrm{ci}| & =\left(\lambda_{\mathrm{c} 1}+\lambda_{\mathrm{c} 2}+\lambda_{\mathrm{c} 3}+\ldots+\lambda_{\mathrm{ct}}\right)-\left(\lambda_{\mathrm{ct}+1}+\lambda_{\mathrm{ct}+2}+\lambda_{\mathrm{ct}+3}+. .+\lambda_{\mathrm{cs}}\right) \\
& =2\left(\lambda_{\mathrm{c} 1}+\lambda_{\mathrm{c} 2}+\lambda_{\mathrm{c} 3}+\ldots .+\lambda_{\mathrm{ct}}\right)-\left(\lambda_{\mathrm{c} 1}+\lambda_{\mathrm{c} 2}+\lambda_{\mathrm{c} 3}+\ldots .+\lambda_{\mathrm{cs}}\right) \tag{3.1}\\
& =2\left(\lambda_{\mathrm{c} 1}+\lambda_{\mathrm{c} 2}+\lambda_{\mathrm{c} 3}+\ldots .+\lambda_{\mathrm{ct}}\right)-\beta(\Omega)
\end{align*}
$$

Therefore, $\operatorname{EI} \chi(\Omega)=2 \mathrm{k}-\beta(\Omega)$ where $\mathrm{k}=\left(\lambda_{\mathrm{c} 1}+\lambda_{\mathrm{c} 2}+\lambda_{\mathrm{c} 3}+\ldots .+\lambda_{\mathrm{ct}}\right)$
Here the latent values $\lambda_{c 1}, \lambda_{c 2}, \lambda_{c 3}, \ldots ., \lambda_{c s}$ are integers,so their total will also be an integer value. Then, the value of ' k ' is also integer as the value of $\operatorname{EI} \chi(\Omega)$ is a rational.

4. EI χ OF CERTAIN COMMON FAMILIES OF GRAPHS

Theorem 4. For $s \geq 2$, $\operatorname{EI} \chi\left(\mathrm{K}_{1, s-1}\right)=(2 s-4)+\sqrt{s^{2}-2 s+5}$
Proof. For a Star graph $K_{1, s-1}$ with s vertices $V=\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}$, its highest independent set $\mathrm{I} \chi=\left\{\mathrm{v}_{\mathrm{s}}\right\}$

Since its chromatic number $\chi=2$ and $\beta\left(\mathrm{K}_{1, \mathrm{~s}-1}\right)=\mathrm{s}-1$, we obtain $\operatorname{AI} \chi\left(\mathrm{K}_{1, s-1}\right)=\left[\begin{array}{ccccc}0 & 1 & \ldots & 1 & 1 \\ 1 & 1 & \cdots & -1 & -1 \\ & \vdots & \ddots & \vdots & -1 \\ 1 & -1 & \ldots & 1 & -1 \\ 1 & -1 & & -1 & 1\end{array}\right]_{(s \times s)}$

Characteristic polynomial is obtained as $(-1)^{s}\left(\lambda_{c}-2\right)^{s-2}\left(\lambda^{2}{ }_{c}+(s-3) \lambda_{c}-(s-1)\right)$
Spectrum, $\operatorname{Spec} \chi \chi\left(\mathrm{K}_{1, \mathrm{~s}-1}\right)=\left(\begin{array}{cc}2 & \frac{-(s-3) \pm \sqrt{s^{2}-2 s+5}}{2} \\ s-2 & 1\end{array}\right)$
Therefore, $\operatorname{EI} \chi\left(\mathrm{K}_{1, \mathrm{~s}-1}\right)=\sum_{i=1}^{S}|\lambda \mathrm{ci}|$

$$
\begin{aligned}
& =|2|(s-2)+\left|\frac{-(s-3) \pm \sqrt{s^{2}-2 s+5}}{2}\right| 1 \\
& =(2 s-4)+\sqrt{s^{2}-2 s+5}
\end{aligned}
$$

Thus EI $\chi\left(\mathrm{K}_{1, s-1}\right)$ is $(2 s-4)+\sqrt{s^{2}-2 s+5}$.
Theorem 5. For $\mathrm{s} \geq 2$, $\mathrm{EI} \chi\left(\mathrm{K}_{\mathrm{s}, \mathrm{s}}\right)=(3 \mathrm{~s}-3)+\sqrt{4 s^{2}+1}$.
Proof. Let $\mathrm{K}_{\mathrm{s}, \mathrm{s}}$ be a Complete Bipartite graph with vertices $\mathrm{V}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{s}}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{s}}\right\}$, then its

$$
\mathrm{I} \chi=\left\{\mathrm{u}_{1}, \mathrm{v}_{1}\right\} .
$$

Since its chromatic number $\chi=2$ and the independence number $\beta\left(\mathrm{K}_{\mathrm{s}, \mathrm{s}}\right)=\mathrm{s}$, we obtain $\operatorname{AI} \chi\left(\mathrm{K}_{\mathrm{s}, \mathrm{s}}\right)=\left[\begin{array}{ccccc}0 & 1 & \ldots & 1 & 1 \\ 1 & 1 & \cdots & -1 & -1 \\ & \vdots & \ddots & & \vdots \\ 1 & -1 & \ldots & 1 & -1 \\ 1 & -1 & & -1 & 1\end{array}\right]_{(2 s \times 2 s)}$
Characteristic polynomial of $K_{s, s}$ is found to be $\left(\lambda_{\mathrm{c}}-1\right)^{\mathrm{s}-1}\left(\lambda_{\mathrm{c}}-2\right)^{\mathrm{s}-1}\left(\lambda^{2}{ }_{\mathrm{c}}+(2 \mathrm{~s}-3) \lambda_{\mathrm{c}}+(2-\right.$ 3s))

Its $\operatorname{Spectrum}, \operatorname{Spec} I \chi\left(\mathrm{~K}_{\mathrm{s}, \mathrm{s}}\right)=\left(\begin{array}{ccc}1 & 2 & \frac{-(2 s-3) \pm \sqrt{4 s^{2}+1}}{2} \\ s-1 & s-1 & 1\end{array}\right)$

Then EI $\chi\left(\mathrm{K}_{\mathrm{s}, \mathrm{s}}\right)=\sum_{i=1}^{S}|\lambda \mathrm{ci}|$
$=|1|(s-1)+|2|(s-1)+\left|\frac{-(2 s-3) \pm \sqrt{4 s^{2}+1}}{2}\right| 1$
$=(s-1)+(2 s-2)+\sqrt{4 s^{2}+1}$
$=(3 s-3)+\sqrt{4 s^{2}+1}$
Thus EI $\chi\left(\mathrm{K}_{\mathrm{s}, \mathrm{s}}\right)$ is $(3 \mathrm{~s}-3)+\sqrt{4 s^{2}+1}$.
Theorem 6. For $s \geq 2$, EI χ (Fs) is $(s-1) \sqrt{5}+s+\sqrt{s^{2}+2 s+5}$
Proof. For a Friendship graph F_{s} of order $(2 s+1)$, it assumes the maximum independent set as $I \chi=\left\{\mathrm{v}_{0}\right\}$.

Since its chromatic number $\chi=3$ and the independence number $\beta\left(\mathrm{F}_{\mathrm{s}}\right)=\mathrm{s}$, we obtain $\operatorname{AI} \chi(\mathrm{Fs})=\left[\begin{array}{ccccc}1 & 1 & \ldots & 1 & 1 \\ 1 & 1 & \cdots & -1 & 0 \\ & \vdots & \ddots & \vdots & \\ 1 & -1 & \ldots & 1 & 1 \\ 1 & 0 & & 1 & 0\end{array}\right]_{(2 s+1 \times 2 s+1)}$
Characteristic polynomial of F_{s} is given by $(-1)\left(\lambda_{\mathrm{c}}+\mathrm{s}\right)\left(\lambda^{2}{ }_{\mathrm{c}}-3 \lambda_{\mathrm{c}}+1\right)^{\mathrm{s}-1}\left(\lambda^{2}{ }_{\mathrm{c}}+(\mathrm{s}-3) \lambda_{\mathrm{c}}+(1-\right.$ 2s))

Spectrum, Spec $\mathrm{I} \chi\left(\mathrm{F}_{\mathrm{s}}\right)=\left(\begin{array}{ccc}\frac{3 \pm \sqrt{5}}{2} & -s & \frac{-(s-3) \pm \sqrt{s^{2}+2 s+5}}{2} \\ s-1 & 1 & 1\end{array}\right)$
Then EI $\chi\left(\mathrm{F}_{\mathrm{s}}\right)=\sum_{i=1}^{s}|\lambda \mathrm{ci}|$
$=\left|\frac{3 \pm \sqrt{5}}{2}\right|(s-1)+|-s| 1+\left|\frac{-(s-3) \pm \sqrt{s^{2}+2 s+5}}{2}\right| 1$
$=(\mathrm{s}-1) \sqrt{5}+\mathrm{s}+\sqrt{s^{2}+2 s+5}$
Thus EI χ (Fs) is $(s-1) \sqrt{5}+s+\sqrt{s^{2}+2 s+5}$.

5. CHEMICAL APPLICATION OF EI χ

Cisplatin is a strong medicinal drug which is extensively used for chemotherapy purpose against Cancer disease. Maximum independent Color energy EI χ of Cisplatin has been computed below which might be useful for further development that involves Cancer treatment.

Fig 1. Cisplatin: Structural Formula
Here, the maximum independent colored set is $\mathrm{I} \chi=\left\{\mathrm{Cl}, \mathrm{Cl}, \mathrm{NH}_{3}, \mathrm{NH}_{3}\right\}$.
A $\mathrm{I} \chi=\left[\begin{array}{ccccc}0 & 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & 0 & 0 \\ 1 & -1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & -1 \\ 1 & 0 & 0 & 1 & 1\end{array}\right]$
The Characteristic polynomial is found to $\left(\lambda_{c}\right)\left(\lambda_{c}-2\right)^{3}\left(\lambda_{c}+2\right)$
Spectrum of Cisplatin, Spec I $\chi=\left[\begin{array}{ccc}0 & -2 & 2 \\ 1 & 1 & 3\end{array}\right]$
Thus, EI χ of Cisplatin $=8$.

6. CONCLUSION

The numerical values of EI χ of certain well known standard graphs are established here. It is noticed that the selection of the maximum independent colored vertex set acts as an important criteria in calculating the χ - energy EI χ of a particular graph. It can be applied to any drug's structural formula transferred to a graph and can be analysed and compared with its corresponding Pharmaceutical properties.

REFERENCES

1. Bapat R B, Graphs and Matrices, Hindustan Book Agency , (2011)
2. Chandrashekar Adiga, Sampathkumar E, Sriraj M.A, Shrikanth A. S, Color Energy of a Graph ,Proceedings of the Jangjeon Mathematical Society, 16 (2013), 335-351.
3. Gutman I, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz , 103 (1978), 1-22.
4. Gutman I, Li X, Zhang J, Graph Energy, Streib., Anal. Comp. Net., From Biology to Linguistics, Wiley-VCH, Weinheim, (2009), 145-174
5. Li X, Shi Y, Gutman I, Graph Energy, Springer, New York Heid. Dord., London (2012)
6. Murthy K.B, Puttaswamy, Naji A.M, The Maximum Independent Vertex Energy of a Graph , International Journal of Mathematics And its Applications, 3(4)(2016), 63-71
7. Rajesh Kanna M.R., Pradeep Kumar R, Jagadeesh R, Minimum Covering Color Energy of a Graph, International Journal of Mathematical Analysis, 9(8)(2015), 351-364
8. Sreeja S, Mary U, Minimum hub Color energy of a graph, Malaya Journal of Mathematik, 9(1)(2021), 494-497.
