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Abstract 

A hybridizedeleven precision quadrature rule using Lobatto 6-point rule 

and modified form of Lobatto 4-point rule through kronrod extension is 

formed. This rule is capable of evaluating line integral of analytic 

functions. The hybridized rule has been tested both theoretically through 

error analysis and numerically using some test integrals. It is found that 

the constructed rule is more effective than that of theconstituent rules. It is 

alsoverified that the hybridized rulewhen appliedin adaptive environment 

gives significantly better results than its constituents. 

Key words: Lobatto six point transformedrule,Hybridised rule,Kronrod 

extension ofLobatto four-point rule, SML6KEL(f). 

 

1. Introduction 

Several mixed quadrature rules developed in the papers [2],[4]for numerical evaluation of real 

definite integrals.  

Some authors in their papers [8],[10] modified the mixed quadrature rules of earlier others to 

form transformed rules [6] for numerical evaluation of line integral of analytic functions. 

The authors S.K. Mohanty, D. Das and R.B. Dash [8], S.K. Mohanty, R.B. Dash 

[9],[10],[11],[12] used the mixed rules as base rules to evaluate real definite integrals as well as 

line integrals of analytic functions in adaptive quadrature schemes, very few mixed quadrature 

rules of precision higher than 9 [8],[12] are available so far. 

We used hybridized quadrature as a synonym of mixed quadrature in this paper. Usually, two 

quadraturesof identical precision are mixed are mixed suitably to get a quadrature rule of higher 

precision. The resulting quadrature rule is known as mixed quadrature rule. By doing this we 

increasing the precision of the quadrature rules in a very simplified manner unlike Richardson 

extrapolation and Kronrod extension. 
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In this paper, we designed a Hybridized rule of precision eleven out of two quadrature rules each 

of precision nine. The analytical error estimate of this rule and its constituent rules are studied. 

The theoretical predictions are verified evaluating test integrals. The highlights of the Hybridized 

rule have been shown in tables and figures. Using suitable adaptive scheme for the Hybridized 

rule it is seen that the number of steps required to achieve some pre-assign accuracy is drastically 

reduced. 

2. Lobatto6-pointtransformed rule. 

The(n+1) point Gauss-Legendrerule [1],[12],[13] is given by   

∫ f(z)dz = ∑ ωkf(zk)n
k=0

1

−1
(2.1) 

Where ωk′s are (n + 1) weights and zk′s are(n + 1)nodes. The (2n + 2) unknowns can be 

obtained by assuming the rule to be exact for all polynomials of degree (2n + 1).The Lobatto 

integration method [1], [13] are of Gauss types(2.1) with two end points pre-assigned as -1 and 

1. For n=5, we get the weights
 1

15
, 

14+√7

30
, 

14−√7

30
and the nodes ±1, ±√7−2√7

21
, ±√7+2√7

21
respectively. 

Using the nodes and weights, the Lobatto 6-point transformed rule is given by  

L6(f) = ∫ f(z)dz =
h

15
{f(z0 − h) + f(z0 + h)} +

14 + √7

30

z0+h

z0−h

h{f(z0 − αh) + f(z0 + αh)} 

+
14−√7

30
h{f(z0 − βh) + f(z0 + βh)}(2.2) 

where α = √7−2√7

21
  and β = √7+2√7

21
 

Lemma1 

If f(z) is analytic in the domain𝛀 ⊃ [z0 − h, z0 + h], then the rule L6(f) is of precision nine and 

the truncation error due to L6(f)is EL6(f) ≅
−256

6615

h11

11!
f x(z0)andO(h11). 

ProofLet us denote truncation error of L6(f) is by EL6(f). 

We know thatI(f) = L6(f) + EL6(f) 

EL6(f) = I(f) − L6(f)(2.3)   

Applying Taylor’s theorem [1],[7] in (2.2) and the exact value of the integral I(f) we get 

L6(f) = 2h [f(z0) +
h2

3!
f ii(z0) +

h4

5!
f iv(z0) +

h6

7!
f vi(z0) +

h8

9!
f viii(z0)] +

1226h11

6615×10!
f x(z0) +

                                
650 h13

3969×12!
f xii(z0) + ⋯(2.4)                                                                                                             

http://philstat.org.ph/


Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

8538 

I(f) = 2h [f(z0) +
h2

3!
f ii(z0) +

h4

5!
f iv(z0) +

h6

7!
f vi(z0) +

h8

9!
f viii(z0) +

h10

11!
f x(z0) +

h12

13!
f xii(z0) +

                                                                            … ](2.5) 

By using (2.4) and (2.5) in (2.3), we get   

EL6(f) = −
256

6615

h11

11!
f x(z0) −

512

3969

h13

13!
f xii(z0) + ⋯   (2.6)                                                                                                                                                   

The truncation error establishes that the degree of precision of the rule L6(f) is nine, 

 EL6(f) ≅ −
256

6615

h11

11!
f x(z0)andO(h11).□ 

3. Kronrod extension of Lobatto 4-point rule 

The Kronrod extension of the Lobatto 4-point rule [3],[5], [11] is denoted byKEL4(f), isgiven by 

∫ f(x)dx ≈ KEL4(f)
z0+h

z0−h

 

where 

KEL4(f) =
h

1470
[77{f(z0 − h) + f(z0 + h)} + 432 {f (z0 −

√2

√3
h) + f (z0 +

√2

√3
h)} +

                                  625 {f (z0 −
h

√5
) + f (z0 +

h

√5
)} + 672f(z0)](3.1) 

Applying Taylor’s theorem [1],[7],[12] after simplification we obtain 

KEL4(f) = 2h [f(z0) +
h2

3!
f ii(z0) +

h4

5!
f iv(z0) +

h6

7!
f vi(z0) +

h8

9!
f viii(z0) +

4741

4725

h10

11!
f x(z0) +

72059

70875

h12

13!
f xii(z0) + ⋯ ] (3.2) 

 

Lemma2 

Let us denote, the truncation error due to Kronrod extension of Lobatto 4-point rule by 

EKEL4(f), then EKEL4(f) ≅ −
32

4725

h11

11!
f x(z0) and O(h11). 

Proof       We have          I(f) = KEL4(f) + EKEL4(f) 

⇒ EKEL4(f) = I(f) − KEL4(f) (3.3) 

Using (2.5) and (3.2) on (3.3), we obtain 

EKEL4(f) = 2h [−
16

4725

h10

11!
f x(z0) −

1184

70875

h12

13!
f xii(z0) − ⋯ ] 

     or                  EKEL4(f) = −
32

4725

h11

11!
f x(z0) −

2368

70875

h13

13!
f xii(z0) − ⋯(3.4) 
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The expression (3.4) the truncation error of the rule KEL4(f).From (3.4) we also concluded that 

the degree of precision of the Kronrod extension of Lobatto 4-point rule is 9 and ofO(h11).    □ 

4. Formulation of the Hybridizedquadrature rule of precision eleven 

The construction of the proposedHybridized quadrature rule is given in the following theorem. 

Theorem1(FormulationofSML6KEL(f)) 

If f(z) is analytic in the given domain𝛀 ⊃ [z0 − h, z0 + h], then the Hybridize rule SML6KEL(f) 

and truncation error due to the Hybridize rule ESML6KEL(f) are given by  

SML6KEL(f) =
1

33
[40 KEL4(f) − 7 L6(f)]  and ESML6KEL(f) =

1

33
[40 EKEL4(f) − 7 EL6(f)]. 

Proof 

RecallingI(f) = L6(f) + EL6(f)(4.1) 

I(f) = KEL4(f) + EKEL4(f)(4.2) 

Subtracting 7 times of (4.1) from40 times of (4.2), we get 

33 I(f) = [40 KEL4(f) − 7 L6(f)] + [40 EKEL4(f) − 7 EL6(f)] 

⇒ I(f) =
1

33
[40 KEL4(f) − 7 L6(f)] +

1

33
[40 EKEL4(f) − 7 EL6(f)] 

⇒ I(f) = SML6KEL(f) + ESML6KEL(f) 

Where      SML6KEL(f) =
1

33
[40 KEL4(f) − 7 L6(f)](4.3) 

and      ESML6KEL(f) =
1

33
[40 EKEL4(f) − 7 EL6(f)](4.4) 

The expression (4.3) is the proposed Hybridized rule and (4.4) is the truncation error associated 

due to the rule.   □ 
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Figure-1: Construction of the Hybridize rule of precision-11. 

5. Error Analysis 

An error analysis of the constructed rule has been obtained by the following Theorems. 

Theorem2 

 If f(z) is analytic in the given domain 𝛀 ⊃ [z0 − h, z0 + h], then the truncation error associated 

due to the rule SML6KEL(f)is given byESML6KEL(f) ≅ −
2048

4725

h13

13!
f xii(z0). 

Proof            Using (2.6) and (3.4) on (4.4), we get 

ESML6KEL(f) = −
2048

4725

h13

13!
f xii(z0)-.. 

⇒ ESML6KEL(f)(f) ≅ −
2048

4725

h13

13!
f xii(z0)  [Since truncation error= O(h13)] 

Theorem3 

The Error bound of the constructed Hybridizequadrature rule is 

|ESML6KEL(f)| ≤
256 M

31185

h11

11!
|ξ2 − ξ1|,      ξ1, ξ2ϵ[z0 − h, z0 + h], where M = max

z0−h≤z≤z0−h
|f xi(z)|. 

ProofFrom (2.6), we getEL6(f) ≅ −
256

6615

h11

11!

h11

11!
f x(ξ1),      ξ1ϵ[z0 − h, z0 + h],  

and from (3.4), we get         EKEL4(f) ≅ −
32

4725

h11

11!
f x(ξ2),        ξ2ϵ[z0 − h, z0 + h],  

using above two values on (4.4), we can write 

Lobatto 4-point rule 

𝑳𝟒(𝒇)(Precision-7) 

 

The Hybridize quadrature 

rule𝑺𝑴𝑳𝟔𝑲𝑬𝑳(𝒇) 

(Precision-11) 

z 

(Precision 11) 

Lobatto 6-point rule 

𝑳𝟔(𝒇)(Precision-9) 

 

Kronrod Extension of 𝐿4(𝑓) is 

𝑲𝑬𝑳𝟒(𝒇) 
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ESML6KEL(f) =
1

33
[40 EKEL4(f) − 7 EL6(f)] 

ESML6KEL(f) ≅
1

33
[40 { −

32

4725

h11

11!
f x(ξ2)} − 7 {−

256

6615

h11

11!
f x(ξ1)}] 

=
256

31185

h11

11!
{f x(ξ1) − f x(ξ2)} 

=
−256

31185

h11

11!
{f x(ξ2) − f x(ξ1)} 

=
−256

31185

h11

11!
∫ f xi(z)dz

ξ2

ξ1

 

⇒ |ESML6KEL(f)| ≅
256

31185

h11

11!
|∫ f xi(z)dz

ξ2

ξ1

| 

≤
256

31185

h11

11!
∫ |f xi(z)|dz

ξ2

ξ1

 

≤
256

31185

h11

11!
∫ Mdz

ξ2

ξ1
,   where M = max

z0−h≤z≤z0−h
f(z) 

⇒ |ESML6KEL(f)| ≤
256 M

31185

h11

11!
|ξ2 − ξ1|(5.1) 

Since ξ1 and ξ2 are arbitrarily chosen points in the interval [z0 − h, z0 + h], (5.1) shows that the 

absolute value of the truncation error will be less if the points ξ1 and ξ2 are close to each other.                                

Corollary.  

The error bound for the truncation error is |ESML6KEL(f)| ≤
512 M

22869

h12

11!
, M = max

z0−h≤z≤z0−h
|f xi(z)|. 

ProofFrom the theorem-4 

|ESML6KEL(f)| ≤
256 M

31185

h11

11!
|ξ2 − ξ1|,   ξ1, ξ2ϵ[z0 − h, z0 + h], where M = max

z0−h≤z≤z0−h
|f xi(z)| 

Again |ξ2 − ξ1| ≤ 2h, ref [15]. 

 Using on the above inequation, we have 

|ESML6KEL(f)| ≤
512 M

22869

h12

11!
. 
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Theorem 4 

The error committed due to the Hybridize rule SML6KEL(f) is less than its constituent rules. 

ProofUsing (2.6) and Theorem2    |ESML6KEL(f)| ≤ |EL6(f)| 

Using (3.4) and Theorem2|ESML6KEL(f)| ≤ |EKEL4(f)| 

6. Numerical verification 

Table-1: Values of different test integrals using ConstructedHybridize rule and its constituent 

rules. 

Integrals Values obtained by different quadrature rules 

L6(f) KEL4(f) SML6KEL(f) 

I1 = ∫ cosz dz
πi

−πi

 
23.0978303270584i 23.097546272400

4683 i 

23.09748601838211915

1515151515152 

I2 = ∫ z10dz
√3i

−√3i

 
-

78.005912696795898

5i 

-

76.784286657824

8i 

-

76.52515386167941546

969696969697i 

I3

= ∫ sinh z dz
2i

0

 

-1.41614683574858 -

1.4161468364088

3306 

-

1.416146836548886739

3939393939394 

 

I4 = ∫ ln z dz
1+

i

4

1−
i

4

 

0.0051134817804912

8i 

0.0051134817196

792386i 

0.005113481706779714

66666666666667i 

 

Table-2: Absolute value of Truncation error due to Hybridize rule and its constituent rules. 

Integrals Exact value |Error| obtained by different quadrature rules 

EL6(f) EKEL4(f) ESMGLKEL(f) 

I1 23.097478714515

496i 

0.0003516125

42904 

0.000067557884

9723 

0.000007303866

6231515151515

15 

I2 -

76.525153861679

48769584i 

1.4807588351

1641080416 

0.259132796145

31230416 

0.000000000000

0722261430303

03 

I3 -

1.4161468365471

4238 

0.0000000007

9856238 

0.000000000138

30932 

0.000000000001

7443593939393

9393 

I4 0.0051134817078

3701898765i 

0.0000000000

72654261012

0.000000000011

84221961235 

0.000000000001

0573043209833
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3 33 

 

Graphical Representation of data obtain from table-1 

 

Figure-2For the integral I1(f) 

 

 
 

Figure-3For the integral I2(f) 

Analysis from the figures and tables 

(i) In Figure-2 the graph of values of SML6KEL(f)coincidewith the exact value of I1(f)upto 

seven decimal places. However, the constituent rules L6(f)and KEL4(f) coincide with 

theexact value up to three and four decimal places respectively. 

L6(f)

KEL4(f)

SML6KEL(f)

Exact value

23.097

23.0972

23.0974

23.0976

23.0978

23.098

4-decimal 7-decimal 10-decimal 15-decimal

COMPARISON OF VALUE OF I1(F) 

L6(f) KEL4(f) SML6KEL(f) Exact value

L6(f)
KEL4(f)

SML6KEL(f)
Exact value

-78.5

-78

-77.5

-77

-76.5

-76

-75.5

Comparison of value of I2(f)

L6(f)

KEL4(f)

SML6KEL(f)

Exact value
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(ii) In Figure-3 the graph of values of SML6KEL(f)  coincide with the exact value of 

I2(f)uptothirteen decimal places. However, the constituent rules L6(f)and KEL4(f) do not 

coincide with theexact value to a single decimal place. 

(iii) From Table-1 & table-2, we observed thatthevalue of SML6KEL(f)coincides with the exact 

value of I3(f)uptoeleven decimal places. However, the constituent rules L6(f)and KEL4(f) 

coincide with the exact value up to nine decimal places. 

(iv) From Table-1 & table-2, we observed that the value of SML6KEL(f)coincides with the 

exact value of I4(f)uptoeleven decimal places. However, the constituent rules L6(f)and 

KEL4(f) coincide with the exact value up to ten decimal places. 

 

7. Application in Adaptive quadrature routines   

 

Considering the effective adaptive strategy [8],[12],[14]. 

Table-3: Approximation of the test integrals Hybridized rule SML6KEL(f) and the constituent 

rules usingthe adaptive quadrature routines. 

Prescribed tolerance ∈= 1.0 × 10−10. 

   Constituent   

            rules 

 

 

Integrals 

KEL4(f) L6(f) 

 

Approximat

e value(P) 

No of 

steps 

require

d 

|Error|= 

|P-I| 

Approxim

ate 

value(P) 

No of 

steps 

require

d 

|Error|= 

|P-I| 

AI1

= ∫ cos z dz
i

−i

 

2.350402387

28760309i 

03 1.854×

10−16 

2.3504023

87287603

99i 

03 10.826

8×

10−16 

AI2 = ∫ ezdz
√2i

−√2i

 
-

8.228151635

62530605 i 

15 2.6055×

10−14 

-

8.2281516

35625424

91i 

15 14.492

×

10−14 

AI3

= ∫ sinh z dz
2i

0

 

-

1.416146836

54714226 

03 1.1753×

10−16 

-

1.4161468

36547141

72 

03 6.575×

10−16 

AI4 = ∫ e−z2
dz

i

0

 
1.462651745

90721566 i 

03 3.366×

10−14 

1.4626517

45907196

48 

05 1.4478

×

10−14 
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Integral

s 

Exact value For the Hybridize rule  SML6KEL(f) 

Approximate value(P) No of 

steps 

required 

|Error|=|P-I| 

AI1 2.35040238728760

2913i 

2.35040238728760348i 01 5.7× 10−16 

AI2 -

8.22815163562528

0283937i 

-

8.22815163562528028i 

01 2.8449×

10−16 

AI3 -

1.41614683654714

238 

-1.41614683654714277 01 3.9237×

10−16 

AI4 1.46265174590718

2 i 

1.4626517459071818 i 03 1.9732×

10−16 

 

Observation from the table-3 

Using prescribed tolerance ∈= 1.0 × 10−10, we draw following conclusions. 

(i) For the integral AI1, the mixed rule  SML6KEL(f) takes only one step, whereas KEL4(f) and 

L6(f) take three steps eachto satisfythe prescribedtolerance. 

(ii) For the integral AI2, the mixed rule  SML6KEL(f) takes only one stepwhereas KEL4(f) and 

L6(f) take fifteen steps eachto satisfy the prescribed tolerance.  

(iii) For the integral AI3, the mixed rule  SML6KEL(f) takes only one stepwhereas KEL4(f) and 

L6(f) take three stepseachto satisfy prescribed tolerance. 

(iv) For the integral AI4, all the rules SML6KEL(f), KEL4(f) and L6(f) takethreesteps each to 

satisfy prescribed tolerance, whereas in the final step SML6KEL(f)gives very less error in 

comparison to the rules  KEL4(f) and L6(f). 

We finally conclude that the Hybridize rule  SML6KEL(f) gives significantly better results in 

adaptive environment. 

 

8. Conclusions 

From the tablesand figures it is evident that thenew Hybridize quadrature rule when applied, 

each of the four integrals gives better result than that of constituent rules (Lobatto 6-point 

ruleL6(f) and Kronrod extension of Lobatto 4- point rule KEL4(f)). This Hybridize quadrature 

rule SML6KEL(f) also gives better result in comparison to its constituentrules which was verified 

by evaluating test integrals in adaptive mode. 
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