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Abstract 

This paper investigates the dynamical system of Susceptible, Infected, 

Recovered (SIR) cases of Nipha Virus transmission disease. The system of 

equation incorporates the compartment SIR model with distributed delay 

from the range [0,h]. The qualitative analysis such as the expected 

existence and unique equilibrium points were performed. Uniform 

boundedness of the solved equilibrium points was examined by using 

appropriate conditions. To track the local stability of the virus free 

equilibrium and persist of the endemic equilibrium using basic 

reproduction number 𝑅0 . If 𝑅0 less than unity there exist a disease free 

equilibrium point which is locally asymptotically stable whereas if 𝑅0 

greater than unity the given endemic equilibrium point is locally 

asymptotically stable. The linear matrix inequality (LMI) approach is used 

to find the uniform asymptotic stability for the constructed model. The 

support of LMI Matlab toolbox, the feasibility of the solution was 

obtained. Finally the Graphical numerical simulations are investigate the 

spread of the influence of the parameter through MATLAB. 

Key words: Nipha Virus, SIR model, Lyapunov function, Delay, 

Boundeness, and Stability analysis. 

 

1. Introduction 

Mathematical Modeling is an emerging trend in science and engineering fields. Mathematical 

model help us to investigate the dynamics of the communication of infectious disease and 

give the appropriate strategies to control the disease. Also it is great concern of human kind 

since it has enormous impact of infectious disease on human and animal. The last two 

decades, various mathematical model have been analyzed and to study the dynamics, stability 

and controllability of infectious disease such as Malaria, Dengu, Chikenkunia, Ebola and  

Zoonotic infectious disease such as Covid 19,Nipha,  brucellosis and Rabies etc. In particular 

the diseases were studied in both deterministic and stochastic models. Kermack and 

Mckendrik constructed basic and simplest model of SIR which states the theoretical total 

number of population infected by the disease over the time of closed population. Some basic 

epidemic models are SI, SIR, SEIR, which developed many mathematician and biologist 

[1,2]. Recently, many authors attention focus on to study the dynamical model of SI, SIR and  
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SEIR with time varying delay in various range. Hethcote et el. have discussed an SIS 

compartment model including constant delay [8]. Beretta has investigated the stability 

(global) of the epidemic model of SIR type for the necessary conditions with distributed 

delay [3]. The effect of dynamical system of the stability of the endemic point with time 

delay has been examined by Song and cheng [7]. The main aim in this paper is to predict and 

analysis the SIR infectious disease by using dynamic mathematical model. Stability of 

prescribed equilibrium point studied by constructing suitable Lyapunov Krovski function and 

through linear matrix inequality approach [6]. This work prepared as follows, section 1, gives 

the mathematical model of an SIR epidemic model with delay in distributed type [8]. Section 

2, devoted steady states, Basic reproduction number and equilibrium point. In section 3, 

establishes the positivity and boundedness for the model. Section 4 analyzes the stability of 

the solved equilibrium point. Section 5, examined a case study of the numerical simulation 

via MATLAB. 

2. Dynamical System with Delay 

This section carried out the general form of the traditional SIR model with distributed delay. 

Based on the compartmental of epidemiological situations, total number of  population is 

divided into 3 compartments “Susceptible (S(t)), Infected (I(t)), Recovered (R(t))” [10].  

                                     �̇�(𝑡) = 𝑎 − 𝑑1𝑆(𝑡) − 𝑏𝑆(𝑡) ∫ 𝐼(𝑡 − 𝑠)𝑑𝑘(𝑠)
ℎ

0
  

                                      𝐼(̇𝑡) =  𝑏𝑆(𝑡) ∫ 𝐼(𝑡 − 𝑠)𝑑𝑘(𝑠)
ℎ

0
− (𝑑2 + 𝑐)𝐼(𝑡)                                  

(1.1) 

                                     �̇�(𝑡) = 𝑐𝐼(𝑡) − 𝑑3𝑅(𝑡)  

The parameters are: 

a- natural birth ratio of the total population 

b- transition rate, the No. of people  infected  from each  infected person with the infectious 

period of time delay. 

c- recovered rate, the infected  may recovered and get full immunity. 

𝑑1-  the natural death rate of susceptible,  

𝑑2 – the natural death rate of infected and  

𝑑3 – the death ratio of recovered population . 

h- maximum period of time taken for the infectious transmission, 

s- delay parameter. 

The initial condition for the system 𝜑 ∈ [−ℎ, 0], by 𝑆(𝜑) = 𝜃1(𝜑), 𝐼(𝜑) = 𝜃2(𝜑), 𝑅(𝜑) =

𝜃3(𝜑) with 𝜃 = (𝜃1, 𝜃2, 𝜃3) ∈ 𝐶([−ℎ, 0], 𝑅+) is the nonnegative Banach space from [-h,0] to 

𝑅+ and is defined based on standard theory of functional differential equation. The death 
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rates 𝑑1, 𝑑2, 𝑑3 are positive constant and assume that 𝑑1 ≤ min {𝑑1, 𝑑2}. Without loss of 

generality, let us considered that, 

                                                  ∫ 𝑑𝑘(𝑠) = 1.
ℎ

0
              

                                                              (1.2) 

Steady States and Equilibrium points 

Let us take the total population as 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡). Assume the following 

condition, 

                                    lim
𝑡→∞

𝐼(𝑡) = lim
𝑡→∞

𝐼(𝑡 − 𝑠) = 𝐼∗(𝑡)                                               (2.1)                            

Equation (1.1) has a virus free equilibrium point at the steady state (2.1) we have  

𝐶0 = (
𝑎

𝑑1
, 0,0) 

Equation (1.1) has a endemic equilibrium point,  

𝑆∗ =
𝑑2 + 𝑐

𝑏
,                𝐼∗ =

𝑎 − 𝑑1𝑆
∗

𝑏𝑆∗
,                       𝑅∗ =

𝑐(𝑎 − 𝑑1𝑆
∗)

𝑑2𝑏𝑆∗
 

                                                                                                                                                  

(2.2) 

Basic Reproduction Number (BRN): 

The BRN rate is a expected number of secondary infection directly caused by the completely 

infected population to susceptible population. The use of Next Generating Matrix (NGM) the 

necessary BRN is obtain[4].  The dynamic equation in the form state is as follwos, 

                                              𝑋′ =
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋) − 𝑉(𝑋)                                                             

(2.3) 

where 𝐹(𝑋) = (
𝑏𝑆∗𝐼∗

0
), 𝑉(𝑋) = (

−(𝑑2 + 𝑐)𝐼∗

−𝑑1𝑆
∗ ), The spectral radius is known as basic 

reproduction number, Therefore 

𝑅0 = 𝜌(𝐹𝑉−1) =
𝑎𝑏

(𝑑2 + 𝑐)𝑑1
2 

3. Positivity and Boundeness 

 

In this section we study the positivity and uniform boundeness of equation (1.1) 
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Lemma  3.1: If the existence of the initial conditions for the solution of the equation (1.1) 

and is positive for 𝑠 ≥ 0, then (S(t), I(t), R(t)) are bounded uniformly on [0,h] if 

lim
𝑛→∞

sup𝑁(𝑡) ≤
𝑎

𝑑1
. 

Proof: 

Consider the R.H.S of equation (1.1) is locally Lipschitzian and completely continuous on the 

domain C [12]. Hence, from the existence and uniqueness theorem, we observed that the 

solution of equation (1.1), there exist (S(t), I(t), R(t)) and its unique on [0,h) in some h>0. 

Here, for all 𝑡 ∈ [0, ℎ), the given 𝑆(𝑡) > 0 when 𝑆(𝑡) = 0, �̇�(𝑡) = 𝑏 > 0 for any 𝑡 ∈

[0, ℎ), which contradiction, therefore S(t) is positive. Now show that 𝐼(𝑡) > 0 for all 𝑡 ∈

[0, ℎ). Let us assume that there exist another time 𝑡1 ∈ [0, ℎ) such that 𝐼(𝑡1) = 0 and 𝐼(𝑡) >

0 for all 𝑡 𝑖𝑛 [0, 𝑡1). but 𝐼(𝑡1) 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 0 for all 𝑡1 ∈ [0, ℎ). Which is contradicts 𝐼(𝑡1) 

equal to 0. Therefore 𝐼(𝑡) > 0 for all 𝑡 ∈ [0, ℎ). Similarly R(t)>0 for all 𝑡 ∈ [0, ℎ). 

This implies that, �̇�(𝑡) = �̇�(𝑡) + 𝐼(̇𝑡) + �̇�(𝑡) ≤ −𝑑1𝑁(𝑡) + 𝑎 

lim
𝑡→∞

sup𝑁(𝑡) ≤
𝑎

𝑑1
 

Therefore (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) is uniformly bonded on [0,h). 

4. Stability analysis of delay system 

 

Lemma 4.1: 

If BRN is less than unity (𝑅0 < 1) then the Virus (disease) free equilibrium 𝐶0 (
𝑎

𝑑1
, 0,0) is 

local asymptotically stable. 

Proof: 

Consider equation (1.1) at the steady states, 

                                     �̇�(𝑡) = 𝑎 − 𝑑1𝑆
∗(𝑡) − 𝑏𝑆∗(𝑡)𝐼∗(𝑡)  

                                      𝐼(̇𝑡) =  𝑏𝑆∗(𝑡)𝐼∗(𝑡) − (𝑑2 + 𝑐)𝐼∗(𝑡)                                   

                                    𝑅 ̇ (𝑡) = 𝑐𝐼∗(𝑡) − 𝑑3𝑅
∗(𝑡) 

 The Jacobian  matrix is given for the given equilibrium point is follows, 

𝐽[𝑥(𝑡)]𝐶0
=

[
 
 
 
 
 −𝑑1 −

𝑏𝑎

−𝑑1
0

0
𝑏𝑎

𝑑1 − 𝑑2 + 𝑐
0

0 𝑐 −𝑑3]
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 The eigen values of the Jacobian  matrix, 𝜆1 = −𝑑1, 𝜆2 = −𝑑3, 𝜆3 =
𝑎𝑏

𝑑1
− 𝑑2 + 𝑐. As per 

Ruth Hurwitz criteria for the  stability all eigen values must be negative real values , here 

𝜆1 𝑎𝑛𝑑 𝜆2 are negative. So it is necessary to prove 𝜆3 should be negative. The eigen value is 

negative only if 
𝑎𝑏

𝑑1
− 𝑑2 + 𝑐 < 0, that is 𝑅0 < 1. Therefore, the condition is true and hence it 

is locally asymptotically stable for the given system (1.1). Also if 𝑆0 < 𝑆∗ the system is 

locally asymptotically stable. 

Lemma 4.2 

If the BRN is greater than unity (𝑅0 > 1) then the endemic equilibrium (2.2) is locally 

asymptotically stable, if not the solved equilibrium is unstable. 

Proof: 

The Jacobian matrix at the given endemic point,  

𝐽[𝑥(𝑡)]𝐶0
=

[
 
 
 
 −𝑑1 − (

𝑏 − 𝑑1𝑆
∗

𝑆∗
) 𝑑2 + 𝑐 0

𝑏 − 𝑑1𝑆
∗

𝑆∗
0 0

0 𝑐 −𝑑3]
 
 
 
 

 

The characteristic equation for the given system is , 

(−𝜆 − 𝑑3) (−𝑑 − (
𝑎 − 𝑑1𝑆

∗

𝑠∗
) − 𝜆) (−𝜆) − (𝑑2 + 𝑐) (

𝑏 − 𝑑1

𝑆∗
) = 0 

Solving this, we get 𝜆2 + 𝑎1𝜆 + 𝑎2 = 0. Where 𝑎1 =
𝑎𝑏

𝑑2+𝐶
 and 𝑎2 = 𝑎𝑏 − 𝑑1(𝑑2 + 𝜆). For 

locally asymptotically stable it is necessary 𝑎1 > 0 and 𝑎2 > 0.Here 𝑎2 > 0 only if 𝑅0 > 1. 

Hence the proof is complete. 

Uniform asymptotically Stable: 

Definition: 4.1 [9]  Shur Complements: It is used to transforming nonlinear inequalities to 

convex type into LMI [
𝐴(𝑥) 𝐵(𝑥)

∗ 𝐶(𝑥)
] < 0, where 𝐴(𝑥) = 𝐴(𝑥)𝑇 , 𝐶(𝑥) = 𝐶(𝑥)𝑇 and B(x) 

depends on x, equivalent to 𝐶(𝑥) < 0, 𝐴(𝑥) − 𝐵(𝑥)𝐶(𝑥)−1𝐵(𝑥)𝑇 < 0. 

Definition: 4.2: [9] If there exists a continuous differentiable function for the system of 

equation is uniformly stable that is, V(x(t)), V(0)=0 such that, 𝑎(‖𝑥(𝑡)‖) ≤ 𝑉(𝑥(𝑡)) ≤

𝑏(‖𝑥(𝑡)‖) and �̇�(𝑥(𝑡)) ≤ −𝑐(‖𝑥(𝑡)‖), with the initial 𝑎(0) = 𝑏(0) = 𝑐(0) where a, b and c 

are continuous non decreasing function (scalar). If 𝑐(𝑟) > 0 for 𝑟 > 0 then it is uniform 

asymptotically stable. 

Substitute the variables  𝑥1(𝑡) = 𝑆(𝑡) − 𝑆∗, 𝑥2(𝑡) = 𝐼(𝑡) − 𝐼∗, 𝑥1(𝑡) = 𝑅(𝑡) − 𝑅∗in equation 

(1.1) then the transformed equations are, 
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                                  �̇�1(𝑡) = (−𝑎(𝑆∗)−1)𝑥1(𝑡) − 𝑏𝑆∗𝐽(𝑥2𝑡) − 𝑏𝑥1(𝑡)𝐽(𝑥2𝑡) 

                                  �̇�2(𝑡) = 𝑏𝐼∗𝑥1(𝑡) − (𝑑2 + 𝑐)𝑥2(𝑡) + 𝑏𝑆∗𝐽(𝑥2𝑡) + 𝑏𝑥1(𝑡)𝐽(𝑥2𝑡) 

                                  �̇�3(𝑡) = 𝑐𝑥2(𝑡) − 𝑑3𝑥3(𝑡) 

For proving the zero solution for nonlinear system, it is enough to prove uniform asymptotic 

stability of zero solution of linear system [8]. 

 The transformed system in matrix form is, 

                                        �̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵 ∫ 𝑦(𝑡 − 𝑠)𝑑𝑘(𝑠)
ℎ

0
                                              

(5.1) 

Where 𝐴 = [

−𝑑1 0 0
𝑏𝐼∗ −(𝑑2 + 𝑐) 0
0 𝑐 −𝑑3

] , 𝐵 = [
0 −𝑏𝑆∗ 0
0 𝑏𝑆∗ 0
0 0 0

] 

Lemma: 4.3 

The (𝑆∗, 𝐼∗, 𝑅∗) uniformly asymptotical stablility for any delay satisfying ℎ ≥ 0 if the 

existence of a matrix P > 0 and R > 0 such that the following inequalities hold,   

𝜙0 = [𝑃𝐴 + 𝐴𝑇𝑃 𝑃𝐵
∗ −𝑅

] < 0. 

Proof: Consider the following Lyapunov krasovskii function (LKF) for the system (5.1), 

𝑉(𝑡) = 𝑥𝑇(𝑡)𝑃𝑥(𝑡) + ∫ ∫ 𝑥𝑇(𝜏)𝑅𝑥(𝜏)𝑑𝑘(𝑠)

𝑡

𝑡−𝑠

ℎ

0

 

Take a derivative, 

             �̇�(𝑡) = 2𝑥𝑇(𝑡)𝑃(𝐴𝑥(𝑡) + 𝐵𝐽(𝑥𝑡))𝑥(𝑡) + 𝑥𝑇(𝑡)𝑅𝑥(𝑡) − ∫ 𝑥𝑇(𝑡 − 𝑠)𝑅𝑥(𝑡 −
ℎ

0

𝑠) 𝑑𝑘(𝑠) 

                      ≤ 𝑥𝑇(𝑡)(𝑃𝐴 + 𝐴𝑇𝑃)𝑥(𝑡) + 2𝑥′(𝑡)𝑃𝐵𝐽(𝑥𝑡) + 𝑥𝑇(𝑡)𝑅(𝑡)𝑥(𝑡) − 𝐽′(𝑥𝑡)𝑅𝐽′(𝑥𝑡) 

Since 𝐽′(𝑥𝑡)𝑅𝐽(𝑥𝑡) ≤ ∫ 𝑥′(𝑡 − 𝑠)𝑅𝑥(𝑡 − 𝑠)𝑑𝑘(𝑠)
∞

0
         

                      ≤ 𝑥𝑇(𝑡)(𝑃𝐴 + 𝐴𝑇𝑃 + 𝑅)𝑥(𝑡) + 2𝑥𝑇(𝑡)𝑃𝐵𝐽(𝑥𝑡) − 𝐽𝑇(𝑥𝑡)𝑅𝐽(𝑥𝑡) 

From the schur complements and uniform stability condition we obtain, 

�̇�(𝑡) ≤ 𝑍𝑇(𝑡) [
𝑃𝐴 + 𝐴′𝑃 𝑃𝐵

∗ −𝑅
]𝑍(𝑡) 

where, 𝑍(𝑡) = (𝑥(𝑡), 𝐽𝑇(𝑥𝑡))
𝑇
, and the matrix is less than zero. So the constructed LK 

function satisfies the condition of uniform asymptotic condition. Therefore the system of zero 

solution is uniformly asymptotically stable. Hence the proof. 
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Numerical Simulation: 

This section studies the numerical simulation for the case study of Nipha virus using real time 

data, so that our model will be more realistic. Nipha virus is a new class and member of 

Henipavirus. It is an emerging Zoonotic type of virus, that is spread from animal to human 

and then remains spread from human to human. Now we take the following data is plotted in 

the graph using MATLAB. 

Case 1: For a = 0.1, b = 0.75, c = 0.002, h = 10 𝑑1= 0.02, 𝑑2= 0.01, 𝑑3=0.03 in (1.1), we get 

the figure 1 which shows that at this transition rate the disease start from 12th week onwards 

and peak at 27th week and recovered will increase. 

Case 2: For a = 0.1, b = 0.5, c = 0.002, h = 10 𝑑1=0.02, 𝑑2=0.01, 𝑑3=0.03 in (1.1), we get 

figure 2 which show that at this transition rate the recovered start form 15th week onwards. So 

avoiding conduct between person to person, the disease will reduced. 

 

Figure (a) 

 

Figure (b) 
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5. Conclusion 

In this paper, the system of equation of SIR model with distributed delay from the range [0,h] 

were carried out. The persistence of uniqueness and existence of the equilibrium points for 

the proposed model has been proved. The local and uniform asymptotic stability for the virus 

free equilibrium and uniqueness of the endemic equilibrium was proved. If the BRN is less 

than unity then the virus free equilibrium point is locally asymptotically stable, greater than 1 

then the endemic equilibrium is locally asymptotically stable were studied. By using the 

Lyapunov Krosovskii function approach, the uniform asymptotic stability was found for the 

proposed model. The Matlab LMI Toolbox helps us to get the feasibility of the matrix. 

Finally the numerical simulation is illustrated through MATLAB.  
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