C_{4} Free Detour Distance

G. Priscilla Pacifica ${ }^{1}$ and S.Lourdu Elqueen ${ }^{2}$
${ }^{1}$ Department of Mathematics, St. Mary's College (Autonomous), Thoothukudi, India, Mail Id:priscillamelwyn@gmail.com
${ }^{2}$ Reg No: 19212212092009 , Ph. D Research Scholar (Full Time) of Mathematics,St. Mary's College (Autonomous) Thoothukudi affiliated under Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu,South India . Mail Id:sahayamelqueen@gmail.com

Article Info

Page Number: 8609-8614
Publication Issue:
Vol. 71 No. 4 (2022)

Article History

Article Received: 15 September 2022
Revised: 25 October 2022
Accepted: 14 November 2022
Publication: 21 December 2022

Abstract

For every connected graph G, the square free detour distance $\operatorname{SFD}(u, v)$ is the length of a longest u - v square free path in G, where u, v are the vertices of G. A u-v square free path of length $\operatorname{SFD}(u, v)$ is called the $u-v$ square free detour. It is found that the square free detour distance differs from the distance , monophonic distance and detour distance. The square free detour distance is found for some standard graphs. Their bounds are determined and their sharpness is checked. Certain general properties satisfied by them are studied.

1. Introduction

For basic graph theoretic terminologies the research refers to [2, 7]. For terminology related to distance and detour distance in graphs Chartrand et.al. [2, 5, 7] are referred to. For any two vertices u and v in a connected graph G, the distance $d(u, v)$ is the length of a shortest $u-v$ path in G . A $\mathrm{u}-\mathrm{v}$ path of length $\mathrm{d}(\mathrm{u}, \mathrm{v})$ is called a $\mathrm{u}-\mathrm{v}$ geodesic in G .

For any two vertices u and v in a connected graph G, a $u-v$ path P is a $u-v$ monophonic path if P contains no chords. The monophonic distance $d_{m}(\mathrm{u}, \mathrm{v})$ from u to v is defined as the length of a longest $\mathrm{u}-\mathrm{v}$ monophonic path in G. A $\mathrm{u}-\mathrm{v}$ monophonic path of length $d_{m}(\mathrm{u}, \mathrm{v})$ is called a u-v monophonic.

For any two vertices u and v in a connected graph G, the detour distance $D(u, v)$ is the length of a longest $u-v$ path in G. A $u-v$ path of length $D(u, v)$ is called a $u-v$ detour in G. The following theorem is used in the article

Theorem:1.1[3]An edge e of a graph G is a bridge iff e lies on no cycle of G .

2. C4 Free Detour Distance

Definition:2.1

Let u and v represent any two of the connected graph G 's vertices. A $u v$ path P is referred to be a $u v$ square free path if none of its four vertices cause a cycle C_{4} to occur in G. The sfd distance, abbreviated $\operatorname{SDF}(u, v)$, is the length of the longest $u v$ sqaure free path in G. The term "uv $s f d$ " refers to a $u v$ square free path with length $\operatorname{SDF}(u, v)$.

Example:2.1
Take a look at the graph in figure:2.1.1. The u_{1}, u_{5} paths $P_{1}: u_{1}, u_{5}$ and $P_{2}: u_{1}, u_{2}, u_{5}$ are the u_{1}, u_{5} square free paths, however the u_{1}, u_{5} paths $P_{3}: u_{1}, u_{2}, u_{3}, u_{5}$ and $P_{3}: u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$ are not. Here, $d\left(u_{1}, u_{5}\right)=1, d_{m}\left(u_{1}, u_{5}\right)=1, D_{\Delta}\left(u_{1}, u_{5}\right)=1, D\left(u_{1}, u_{5}\right)=4$ and $\operatorname{SFD}\left(u_{1}, u_{5}\right)=2$. As a result, the sfd distance is distinct form distance, monophonic distance, triangle free detour distance and detour distance.

Figure:2.1.1

Result:2.1

Suppose that any two vertices in a connected graph G are u and v. Then
(i) $\quad S F D(u, v)=0$ iff $u=v$.
(ii) $\operatorname{SFD}(u, v)=1$, then $u v$ is an edge.

Remark:2.1

$S F D(u, v)=1$, doesn't need to be true if $u v$ is an edge. Take a look at Figure: 2.1.2, where $u v$ is an edge but $S F D(u, v)$ equals 2 .

Figure:2.1.2

Note:2.1

On the vertex set of a connected graph, the monophonic distance is not a metric, although the shortest distance d and the detour distance D are. On the vertex set of a connected graph, the triangule free detour distance is not a metric.

Result:2.2

On the vertex set of a connected graph, the sfd distance is not a metric. Take a look at the graph in the figure: 2.1.3, $\operatorname{SFD}\left(u_{4}, u_{3}\right)=4, \quad \operatorname{SFD}\left(u_{4}, u_{9}\right)=2 \operatorname{SFD}\left(u_{9}, u_{3}\right)=1$. Consequently, $\operatorname{SFD}\left(u_{4}, u_{3}\right)>\operatorname{SFD}\left(u_{4}, u_{9}\right)+\operatorname{SFD}\left(u_{9}, u_{3}\right)$. In light of this, the sfd distance is not a metric.

Figure:2.1.3
In a square free connected graph, $D(u, v)=\operatorname{SFD}(u, v)$ applies to any two vertices, regardless of which one they are, u and v. Thus, on the vertex set of a square free connected graph, the sfd distance is a metric.

Theorem:2.1

Let G be a graph of order n. If there is any pair of v and w vertices in G, then $O \leq$ $d(v, w) \leq d_{m}(v, w) \leq \operatorname{SFD}(v, w) \leq D(v, w) \leq n-1$.

Proof:
It is sufficient to prove, $d_{m}(v, w) \leq \operatorname{SFD}(v, w) \leq D(v, w)$
Assume that P is the longest $v-w$ path in G. Consider the case where P lacks a chord in G, then $d_{m}(v, w)=\operatorname{SFD}(v, w)=D(v, w)$. Consider the case where P has a chord in G,

Subcase (i): If P fails to induce a cycle C_{4} in G, then $d_{m}(v, w)<\operatorname{SFD}(v, w)=D(v, w)$
Subcase (ii):If P induce a C_{4} in G, then $d_{m}(v, w) \leq \operatorname{SFD}(v, w)<D(v, w)$

Remark:2.2

The theorem 2.1's bounds are sharp. Assuming $v=w, \quad d(v, w)=d_{m}(v, w)=$ $\operatorname{SFD}(v, w)=D(v, w)=0$. Further, if G is a path and v and w are its end vertices, $d(v, w)=d_{m}(v, w)=\operatorname{SFD}(v, w)=D(v, w)=n-1$. For the graph $\$ G \$$ depicted in the figure: 2.1.4, $d\left(v_{1}, v_{4}\right)=2, d_{m}\left(v_{1}, v_{4}\right)=3, \operatorname{SFD}\left(v_{1}, v_{4}\right)=4, D\left(v_{1}, v_{4}\right)=5$ and $n-1=$ 6. Thus $d\left(v_{1}, v_{4}\right)<d_{m}\left(v_{1}, v_{4}\right)<\operatorname{SFD}\left(v_{1}, v_{4}\right)<D\left(v_{1}, v_{4}\right)<n-1$.

Figure: 2.1.4

Theorem 2.2. Let G be a graph of order n and u and v be any two vertices of G. If $u v$ is a bridge, then $\operatorname{SFD}(u, v)=1$.

Proof. Assume that $u v$ is a bridge. We have to show that $S F D=1$.
Suppose $\operatorname{SFD}(u, v)>1$. Let $\operatorname{SFD}(u, v)=m$ where $n>m>1$.
Then \exists a square free path $P=u u_{1} u_{2} u_{3} \ldots . u_{m-1} v$. Combining the edge $u v$ along with P, we obtain a cycle with m vertices. Therefore $u v$ lies on a cycle. This contradicts the theorem 1.1. Thus $\operatorname{SFD}(u, v)=1$.

Remark 2.3:

It's not necessary for the converse of theorem 2.2 to be true. Take a look at the graph in figure 2.1.5, $\operatorname{SFD}\left(u_{1}, u_{2}\right)=1$, however, $u_{1} u_{2}$ is not a bridge.

Figure:2.1.5

Remark 2.4:
In a connected graph G, Gary Chartrand et al.[3] demonstrated that $|d(u, x)-d(v, x)| \leq 1$ for every vertex x of G holds true for two neighbouring vertices u and v.The sfd distance is an exception to this inequality. Regarding the graph in figure 2.1.6, $\operatorname{SFD}\left(v_{2}, v_{1}\right)=$ $1, \operatorname{SFD}\left(v_{6}, v_{1}\right)=3$. But $\left|\operatorname{SFD}\left(v_{2}, v_{1}\right)-\operatorname{SFD}\left(v_{6}, v_{1}\right)\right|=2>1$.

Figure:2.1.6

Remark 2.5

As demonstrated by Gary Chartrand et al. [3], if $d(u, x)=k$ for some $u, x \in V(G)$ and if v is a neighbour of u . As a result, $\mathrm{d}(\mathrm{v}, \mathrm{x})$ is $\mathrm{k}-1, \mathrm{k}$ or $\mathrm{k}+1$. The sfd distance does not support this. Regarding the graph in figure 2.1.6, $\left.\operatorname{SFD}\left(v_{2}, v_{1}\right)\right)=1, \operatorname{But} \operatorname{SFD}\left(v_{6}, v_{1}\right)=3$.

Theorem 2.3. Let G be a graph of order n . $\operatorname{If} \operatorname{SFD}(u, v)=n-1$, then G contains a Hamiltonian $\mathrm{u}-\mathrm{v}$ path.

Remark 2.6. The theorem: 2.3 's converse doesn't need to be true. Take a look at the graph in the figure: 2.1 .7 shows that G has
a Hamiltonian path $u_{1}-u_{5}$, yet $\operatorname{SFD}\left(u_{1}, u_{5}\right)=2 \neq \mathrm{n}-1$, where
$\mathrm{n}=5$.

Figure :2.1.7 G

REFERENCES

[1] H. Bielk and M. M. Syslo, Peripheral vertices in graphs, Sludia Sci. Math. Hungar, 18 (1983), 269-275.
[2] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.
[3] F. Buckley and M. Lewinter, Minimal graph embeddings, Eccentric vertices and Peripherian, Proceedings of the Fifth Caribbean Conference on Combinatorics and computing, Universities of the West indies, (1988), 72-84.
[4] F. Buckley, Z. Miller, and P. J. Slater, On graphs containing a given graph as center, J. Graph Theory, 5 (1981), 427-434.
[5] G. Chartrand and H. Escuadro and P. Zhang, Detour Distance in Graphs J.Combin.Math.Combin.Comput., 53 (2005), 75-94.
[6] G. Chartrand and P. Zhang, Distance in Graphs - Taking the Long View, AKCE J. Graphs. Combin., 1 (2004), 1-13.
[7] G. Chartrand and P. Zhang, Introduction to Graph Theory, Tata McGraw-Hill, New Delhi, 2006.
[8] L.C. Freeman, A set of measures of centrality based on betweenness, Sociometry,40 (1977), 35-41.

