
Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

1933

Vol. 71 No. 3 (2022)

http://philstat.org.ph

 A Coherent Minimum-Process Dependable Reclamation Line

Collation Scheme for Fault-Tolerant Mobile Distributed Systems

Dr. Deepak Dagar
1
, Dr. Ajay Sharma

2
, Dr. Sanjeev Kumar

3
, Dr. Ajeet Kumar

4
, Mohit

Kumar
5

1
Assistant Professor,Maharaja Agrasen Institute of Management

Studies,Delhi;deepakdagar.faculty@maims.ac.in
2
Associate Professor, Kasturi Ram College of Higher Education, Delhi; ajay0202@gmail.com

3
Assistant Professor,Maharaja Agrasen Institute of Technology, Delhi;

drsanjeevsharma001@gmail.com
4
Assistant Professor, Department of Computer Science and Engineering, Tula‟s Institue, Dehradun;

ajeet7488@gmail.com
5
Assistant Professor, Department of Electronic Engineering, Tula‟s Institute, Dehradun;

mohitdodval@gmail.com

Article Info

Page Number: 1933 - 1943

Publication Issue:

Vol 71 No. 3 (2022)

Article History

Article Received: 12 January 2022

Revised: 25 February 2022

Accepted: 20 April 2022

Publication: 09 June 2022

Abstract

We advocate a minimal-process coordinated Dependable Reclamation Line

Collation arrangement for non-deterministic mobile distributed interconnection;

where no incompetent recuperation-points are captured. An effort has been made to

moderate the intrusion of proceedings and synchronization overhead. We capture

the partial transitive interdependencies during the normal accomplishment by

piggybacking interdependency arrays onto computation communications.Recurrent

terminations of Dependable Reclamation Line Collation arrangement may happen

in mobile interconnection due to exhausted battery, non-voluntary disengagements

of M_Nodules (Mobile Nodules), or poor mobile connectivity.Therefore, we

advocate that in the first stage, all pertinent M_Nodules will capture evanescent

recuperation-point only. Evanescent recuperation-point is stored on the memory of

M_Nodule only. In this case, if some proceeding miscarries to capture

recuperation-point in the first stage, then M_Nodules need to abandon their

evanescent recuperation-points only. In this way, we try to moderate the loss of

Dependable Reclamation Line Collation (DRL-collation) work when any

proceeding miscarries to capture its recuperation-point in coordination with others

Keywords:- Fault tolerance, consistent global state, coordinated Dependable

Reclamation Line Collation and mobile interconnection.

1. Introduction

In the mobile distributed interconnection, some of the proceedings are running on mobile

nodules(M_Nodules). AM_Nodule communicates with other nodes of the interconnection via a

special node calledmobile support station (Mobl_Suppt_stn) [1]. A cubicle is a geographical area

around a Mobl_Suppt_stn in which it can support an M_Nodule. A M_Nodule can change its

geographical position freely from one cubicle to another or even to an area covered by no cubicle.

A Mobl_Suppt_stn can have both wired and wireless links and acts as an interface between the

static network and a part of the mobile network. Static network connects all Mobl_Suppt_stn.

Recuperation-point is defined as a designated place in a program at which normal processing is

interrupted specifically to preserve the status information necessary to allow resumption of

mailto:ajay0202@gmail.com

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

1934

Vol. 71 No. 3 (2022)

http://philstat.org.ph

processing at a later time. DRL-collation (Dependable Reclamation Line Collation) is the act of

saving the status information. By periodically invoking the DRL-collation protocol,

one can save the status of a program at regular intervals. If there is a letdown one may restart

computation from the last DRL thereby avoiding repeating computation from the beginning.

The process of resuming computation by rolling back to a saved state is called rollback-

reclamation. The recuperation-point-restart is one of the well-known methods to realize dependable

distributed interconnection. Each proceeding arrests a recuperation-point where the local state

information is stored in the stable storage. Rolling back a proceeding and again recommencing its

execution from a prior state involves overhead and delays the overall completion of the

computation, it is needed to make a proceeding rollback to a most recent possible state. So it is at

the desire of the user for arresting many recuperation-points over the whole life of the execution of

the proceeding [6, 29, 30].

In a distributed interconnection, since the proceedings in the interconnection do not share memory,

a global state of the interconnection is defined as a set of local states, one from each proceeding.

The state of channels corresponding to a global state is the set of computation-communications

dispatched but not yet received. A global state is said to be “consistent” if it contains no orphan

computation-communication; i.e., a computation-communication whose receive event is recorded,

but its send event is lost. To recover from a letdown, the interconnection restarts its execution from

a previous consistent global state saved on the stable storage during fault-free execution. This saves

all the computation done up to the last DRL and only the computation done thereafter needs to be

redone. In distributed interconnection, DRL-collation arrangements can be independent,

coordinated [6, 11, 13] or quasi-synchronous [2]. Message Logging is also used for fault tolerance

in distributed interconnection [22, 29, 30].

In coordinated or synchronous DRL-collation, proceedings arrest recuperation-points in such a

manner that the resulting global state is consistent. Mostly it follows two-stage commit structure [6,

11, 23]. In the first stage, proceedings arrest partially-persistent recuperation-points and in the

second stage, these are made persistent. The main advantage is that only one persistent

recuperation-point and at most one partially-persistent recuperation-point is necessitated to be

stored. In the case of a fault, all proceedings rollback to the last DRL.

The coordinated DRL-collation protocols can be classified into two types: intrusion and non-

intrusion. In intrusion arrangements, some intrusion of proceedings takes place during DRL-

collation [4, 11, 24, 25]. In non-intrusive arrangements, no intrusion of proceedings is necessitated

for DRL-collation [5, 12, 15, 21]. The coordinated DRL-collation arrangements can also be

classified into following two categories: minimum-proceeding and all proceeding arrangements. In

all-proceeding coordinated DRL-collation arrangements, every proceeding is necessitated to arrest

its recuperation-point in a commencement [6], [8]. In minimum-proceeding arrangements,

minimum interacting proceedings are necessitated to arrest their recuperation-points in a

commencement [11].

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

1935

Vol. 71 No. 3 (2022)

http://philstat.org.ph

In minimum-proceeding coordinated DRL-collation arrangements, a proceeding Pi arrests its

recuperation-point only if it a member of the minimum set (a subset of interacting proceeding). A

proceeding Pi is in the minimum set only if the recuperation-point initiator proceeding is transitively

dependent upon it. Pjis directly dependent upon Pkonly if there exists m such that Pjreceivesm from

Pkin the current DRL-collation interval [CI] and Pk00000000000 not arrested its persistent

recuperation-point after sending m. The i
th

 CI of a proceeding denotes all the computation

performed between its i
th

and (i+1)
th

 recuperation-point , including the i
th

 recuperation-point but not

the (i+1)
th

 recuperation-point .

In minimum-proceeding DRL-collation protocols, some unserviceable recuperation-points are

arrested or intrusion of proceedings takes place. In this paper, we advocate a minimum-proceeding

coordinated DRL-collation arrangement for non-deterministic mobile distributed interconnection,

where no unworkable recuperation-points are arrested. An effort has been made to minimize the

intrusion of proceedings and the loss of DRL-collation effort when any proceeding miscarries to

arrest its recuperation-point in coordination with others.

Rao and Naidu [26] advocated a new coordinated DRL-collation protocol combined with selective

sender-based computation-communication logging. The protocol is free from the problem of lost

computation-communications. The term „selective‟ implies that computation-communications are

logged only within a specified interval known as active interval, thereby reducing computation-

communication logging overhead. All proceedings arrest recuperation-points at the end of their

respective active intervals forming a consistent global recuperation-point.Biswas&Neogy [27]

advocated a DRL-collationand letdown reclamation arrangement where mobile hosts save

recuperation-points based on mobility and movement patterns. Mobile hosts save recuperation-

points when number of hand-offs exceed a predefined handoff threshold value. Neves& Fuchs [18]

designed a time based loosely synchronized coordinated DRL-collationprotocol that removes the

overhead of synchronization and piggybacks integer csn (recuperation-point sequence number).

Gao et al [28] developed an index-based arrangement which uses time-coordination for consistently

DRL-collation in mobile computing environments. In time-based DRL-collation protocols, there is

no need to send extra coordination computation-communications. However, they have to deal with

the synchronization of timers. This class of protocols suits to the applications where proceedings

have high computation-communication sending rate.

2. Basic Idea

All Communications to and from M_Nodule pass through its resident Mobl_Supp_St. The

Mobl_Supp_St maintains the interdependency information of the M_Nodules which are in its

cubicle. The interdependency information is kept in Boolean array Ri for proceeding Pi. The array

has n bits for n proceedings. When Ri[j] is set to 1, it repredispatcheds Pi depends upon Pj. For

every Pi, Ri is initialized to 0 except Ri[i], which is initialized to l. When a proceeding Pi running on

a M_Nodule , say M_Nodulep, acquires a communication from a proceeding Pj, M_Nodulep's

resident Mobl_Supp_St should set Ri[j] to 1.If Pj has captured its persistent recuperation-point after

forwarding m, Ri[j] is not updated.

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

1936

Vol. 71 No. 3 (2022)

http://philstat.org.ph

Suppose there are proceedings Pi and Pj running on M_Nodules, M_Nodulei and M_Nodulej with

interdependency arrays Ri and Rj. The interdependency arrays of M_Nodules, M_Nodulei and

M_Nodulej are maintained by their resident Mobl_Supp_Sts, Mobl_Supp_Sti and Mobl_Supp_Stj.

Process Pi running on M_Nodulei forwards communication m to proceeding Pj running on

M_Nodulej. The communication is first dispatched to Mobl_Supp_Sti (resident Mobl_Supp_St of

M_Nodulei). Mobl_Supp_Sti maintains the interdependency array Ri of M_Nodulei. Mobl_Supp_Sti

appends Ri with communication m and forwards it to Mobl_Supp_Stj(resident Mobl_Supp_St of

M_Nodulej). Mobl_Supp_Stj maintains the interdependency array Rj of M_Nodulej. Mobl_Supp_Stj

replaces Rj with bitwise logical OR of interdependency arrays Ri and Rjand forwards m to Pj.

In Figure 1, there are five proceedings P1, P2, P3, P4, P5 with interdependency arrays R1, R2, R3, R4,

R5 initialized to 00001, 00010, 00100, 01000, and 10000 respectively. Initially, every proceeding

depends upon itself. Now proceeding P1 forwards m to P2. P1 appends R1 with m. P2 replaces R2

with the bitwise logical OR of R1(00001) and R2(00010), which comes out to be (00011). Now P2

forwards m2 to P3 and appends R2 (00011) with m2. Before acquiring m2, the value of R3 at P3 was

00100. After acquiring m2, P3 replaces R3 with the bitwise logical OR of R2 (00011) and R3 (00100)

and R3 becomes (00111). Now P4 forwards m3 along with R4 (01000) to P5. After acquiring m3, R5

becomes (11000).In this case, if P3 starts DRL-collation at t1, it will compute the tentative

minimal set equivalent to R3(00111), which comes out to be {P1, P2, P3}. In this way, partial

transitive interdependencies are captured during normal computations.

In coordinated DRL-collation, if a single proceeding miscarries to capture its recuperation-point; all

the DRL-collation work goes waste, because, each proceeding has to abandon its partially-

persistent recuperation-point. Furthermore, in order to capture the partially-persistent recuperation-

point, a M_Nodule prerequisites to transfer large recuperation-point data to its resident

Mobl_Supp_St over mobile channels. Hence, the loss of DRL-collation work may be exceedingly

high due to frequent terminations of DRL-collation strategies especially in mobile interconnection.

In mobile distributed interconnection, there remain certain concerns like: abrupt cessation,

exhausted battery power, or letdown in mobile bandwidth. So there remains a good probability that

some M_Nodule may fail to capture its recuperation-point in harmonization with others. Therefore,

we advocate that in the first stage, all proceedings in the minimal set, capture evanescent

P1

P2

P3

P4

1

P5

1

m.00001

m2.00011

m3.01000

t1

t2

Figure 1 Upkeep of Interdependency Vectors

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

1937

Vol. 71 No. 3 (2022)

http://philstat.org.ph

recuperation-point only. Evanescent recuperation-point is stored on the memory of M_Nodule only.

If some proceeding miscarries to capture its recuperation-point in the first stage, then other

M_Nodules need to abandon their evanescent recuperation-points only.

The work of arresting an evanescent recuperation-point is negligible as compared to the partially-

persistent one. In other strategies, all pertinent proceedings need to abandon their partially-

persistent recuperation-points in this situation. Hence the loss of DRL-collation work in case of an

abandon of the DRL-collation arrangement is dramatically low in the advocated scheme as

compared to other coordinated DRL-collation schemes for mobile distributed interconnection.

In this second stage, a proceeding renovates its evanescent recuperation-point into partially-

persistent one. By using this scheme, we try to moderate the loss of DRL-collation work in case of

abandon of DRL-collation arrangement in the first stage.

A non-intrusion DRL-collation arrangement does not require any proceeding to interrupt its

underlying computation. When proceedings do not suspend their computation, it is possible for a

proceeding to acquire a computation communication from another proceeding, which is already

running in a new DRL-collation interval. If this situation is not properly dealt with, it may result in

an inconsistency. During the DRL-collation arrangement, a proceeding Pi may acquire m from Pj

such that Pj has captured its recuperation-point for the current instigation whereas Pi has not.

Suppose, Pi proceedings m, and it acquires recuperation-point request later on, and then it captures

its recuperation-point. In that case, m will become orphan in the captured comprehensive status. We

advocate that only those communications, which can become orphan, should be buffered at the

forwarder‟s end. When a proceeding captures its evanescent recuperation-point, it is not allowed to

forward any communication till it acquires the partially-persistent recuperation-point request.

However, in this interval, the proceeding is allowed to perform its normal computations and acquire

the communications. When a proceeding acquires the partially-persistent recuperation-point

request, it is confirmed that every pertinent proceeding has captured its evanescent recuperation-

point. Hence, a communication generated for forwarding by a proceeding after getting partially-

persistent recuperation-point request cannot become orphan. Hence, a proceeding can forward the

buffered communications after getting the partially-persistent recuperation-point request from the

inaugurator.

3. The Proposed Coordinated DRL-collation Arrangement

 First stage of the arrangement:When a proceeding, say Pi, running on a M_Nodule, say

M_Nodulei, triggers a DRL-collation, it forwards a recuperation-point instigation request to its

resident Mobl_Supp_St, which will be the proxy Mobl_Supp_St (if the inaugurator runs on an

Mobl_Supp_St, then the Mobl_Supp_St is the proxy Mobl_Supp_St). The proxy Mobl_Supp_St

maintains the interdependency array of Pi say Ri. On the basis of Ri, the set of dependent

proceedings of Pi is formed, say Smin. The proxy Mobl_Supp_St broadcasts ckpt (Smin) to all

Mobl_Supp_Sts. When an Mobl_Supp_St acquire ckpt (Smin) communication, it checks, if any

proceedings in Smin are in its cubicle. If so, the Mobl_Supp_St forwards evanescent recuperation-

point request communication to them. Any proceeding acquiring an evanescent recuperation-point

request captures an evanescent recuperation-point and forwards a response to its resident

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

1938

Vol. 71 No. 3 (2022)

http://philstat.org.ph

Mobl_Supp_St. After an Mobl_Supp_St received all response communications from the

proceedings to which it dispatched evanescent recuperation-point request communications, it

forwards a response to the proxy Mobl_Supp_St. It should be noted that in the first stage, all

proceedings capture the evanescent recuperation-points. For a proceeding running on a static host,

evanescent recuperation-point is equivalent to partially-persistent recuperation-point. But, for a

M_Nodule, evanescent recuperation-point is divergent from partially-persistent recuperation-point.

In order to capture a partially-persistent recuperation-point, a M_Nodulehas to record its resident

status and has to transfer it to its resident Mobl_Supp_St. But, the evanescent recuperation-point is

stored on the resident disk of the M_Nodule. It should be noted that the work of arresting an

evanescent recuperation-point is very small as compared to the partially-persistent one. For a

disconnected M_Nodule that is a member of minimal set, the Mobl_Supp_St that has its

disconnected recuperation-point, considers its disconnected recuperation-point as the necessitated

come.

Second Stage of the arrangement:After the proxy Mobl_Supp_St has received the response from

every Mobl_Supp_St, the arrangement enters the second stage. If the proxy Mobl_Supp_St learns

that all applicable proceedings have captured their evanescent recuperation-points successfully, it

directs them to convert their evanescent recuperation-points into partially-persistent ones and also

forwards the exact minimal set along with this request. Alternatively, if inaugurator Mobl_Supp_St

comes to know that some proceeding has failed to capture its recuperation-point in the first stage, it

sends abandon request to all Mobl_Supp_St. In this way the M_Nodules need to abandon only the

evanescent recuperation-points, and not the partially-persistent ones. In this way we try to reduce

the loss of DRL-collation work in case of abandon of DRL-collation arrangement in first stage.

When an Mobl_Supp_St acquires the partially-persistent recuperation-point request, it directs all

the proceeding in the minimal set, which are also running in itself, to convert their evanescent

recuperation-points into partially-persistent ones. When an Mobl_Supp_St learns that all applicable

proceeding in its cubicle have captured their partially-persistent recuperation-points successfully, it

forwards response to proxy Mobl_Supp_St. If any M_Nodule miscarries to transfer its

recuperation-point data to its resident Mobl_Supp_St, then the letdown response is dispatched to the

proxy Mobl_Supp_St; which in turn, issues the abandon communication.

Third Stage of the arrangement :Finally, when the proxy Mobl_Supp_St learns that all

proceedings in the minimal set have captured their partially-persistent recuperation-points

successfully, it sends commit request to all Mobl_Supp_Sts. When a proceeding in the minimal set

gets the commit request, it renovates its partially-persistent recuperation-point into persistent one

and discards its earlier persistent recuperation-point, if any.

4. Communication Handling During DRL-collation:

When a proceeding captures its evanescent recuperation-point, it does not forward any

communication till it acquires the partially-persistent recuperation-point request. This time interval

of a proceeding is called its improbability period. Suppose, Pi forwards m to Pj after arresting its

evanescent recuperation-point and Pj has not captured its evanescent recuperation-point at the time

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

1939

Vol. 71 No. 3 (2022)

http://philstat.org.ph

of acquiring m. In this case, if Pj captures its evanescent recuperation-point after working m, then m

will become orphan. Therefore, we do not allow Pi to forward any communication unless and until

every proceeding in the minimal set have captured its evanescent recuperation-point in the first

stage. Pi can forward communications when it acquires the partially-persistent recuperation-point

request; because, at this moment every pertinent proceeding has captured its evanescent

recuperation-point and m cannot become orphan. The communications to be dispatched are

buffered at forwarders end. In this interval, a proceeding is allowed to continue its normal

computations and acquire communications.

Suppose, Pj gets the evanescent recuperation-point request at Mobl_Supp_Stn. Now, we find any

proceeding Pk such that Pk does not belong to Smin and Pk belongs to Rj[]. In this case, Pk is also

encompassed in the minimal set; and Pj forwards evanescent recuperation-point request to Pk. It

should be noted that the Smin, computed on the basis of interdependency array of inaugurator

proceeding is only a subset of the minimal set. Due to zigzag interdependencies, inaugurator

proceeding may be transitively dependent upon some more proceedings which are not

encompassed in the Smin computed initially.

5. An Example of the Proposed Protocol

The advocated arrangement can be better understood by the example shown in Figure 2. There

are six proceedings (P0 to P5) denoted by straight lines. Each proceeding is assumed to have initial

persistent recuperation-points with chkpt_seq_no equal to “0”. Cix denotes the xth recuperation-

points of Pi. Initial interdependency arrays of P0, P1, P2, P3, P4, P5 are [000001], [000010]

[000100], [001000], [010000], and [100000], respectively.

P0 forwards m2 to P1 along with its interdependency array [000001]. When P1 acquires m2, it

computes its interdependency array by arresting bitwise logical OR of interdependency arrays of P0

and P1, which comes out to be [000011]. Similarly, P2 updates its interdependency array on

acquiring m3 and it comes out to be [000111]. At time t1, P2 triggers DRL-collation arrangement

with its interdependency array is [000111]. At time t1, P2 discovers that it is transitively

dependent upon P0 and P1. Therefore, P2 computes the partially-persistent minimal set [Smin=

{P0, P1, P2}]. P2 forwards the evanescent recuperation-point request to P1 and P0 and captures

its own evanescent recuperation-point C21. For a M_Nodule the evanescent recuperation-point is

stored on the disk of M_Nodule. It should be noted that Smin is only a subset of the minimal set.

When P1 captures its evanescent recuperation-point C11, it discovers that it is dependent upon P3

due to m4, but P3 is not a member of Smin; therefore, P1 forwards evanescent recuperation-point

request to P3. Consequently, P3 captures its evanescent recuperation-point C31.

After arresting its evanescent recuperation-point C21, P2 generates m8 for P3. As P2 has already

captured its evanescent recuperation-point for the current instigation and it has not received the

partially-persistent recuperation-point request from the inaugurator; therefore P2 buffers m8 on its

resident disk. We define this interval as the improbability period of a proceeding during which a

proceeding is not allowed to forward any communication. The communications generated for

forwarding are buffered at the resident disk of the forwarder‟s proceeding. P2 can forwards m8 only

after getting partially-persistent recuperation-point request or abandon communications from the

inaugurator proceeding. Similarly, after arresting its evanescent recuperation-point P0 buffers m10

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

1940

Vol. 71 No. 3 (2022)

http://philstat.org.ph

for its improbability period. It should be noted that P1 acquires m10 only after arresting its

evanescent recuperation-point. Similarly, P3 acquires m8 only after arresting its evanescent

recuperation-point C31.A proceeding is allowed to acquire all the communications during its

improbability period; for example, P3 acquires m11. A proceeding is also allowed to perform its

normal computations during its improbability period.

At time t2, P2 acquires responses to evanescent recuperation-points requests from all proceeding in

the minimal set (not shown in the Figure 2) and discovers that they have captured their evanescent

recuperation-points successfully; therefore, P2 sends partially-persistent recuperation-point request

to all proceedings. On getting partially-persistent recuperation-point request, proceedings in the

minimal set [P0, P1, P2, P3] convert their evanescent recuperation-points into partially-persistent

ones and forward the response to inaugurator proceeding P2; these proceeding also forward the

communications, buffered at their resident disks, to the destination proceedings For example, P0

forwards m10 to P1 after getting partially-persistent recuperation-point request [not shown in the

figure]. Similarly, P2 forwards m8 to P3 after getting partially-persistent recuperation-point request.

At time t3, P2 acquires responses from the proceeding in minimal set [not shown in the figure] and

discovers that they have captured their partially-persistent recuperation-points successfully,

therefore, P2 directs commit request to all proceeding. A proceeding in the minimal set renovates

its partially-persistent recuperation-point into persistent recuperation-point and abandons it old

persistent recuperation-point if any.

m2.[000001]

t2
t1

P0

P1

P2

P3

P4

Figure2

Tentative Checkpoint
Permanent Checkpoint

Checkpoint/commit request Computation communiqué

 Mutable checkpoint

P5

m7.0

m3.[000011]

m6.[100000]

C21[000111]]

C11

C01

C31

m11.0

C50

C30

m4.[001000]

t3

C40

C20

C10

C00

Message buffered at sender‟s

end

m1.[010000]

m8.1

m10.1
m0.0

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

1941

Vol. 71 No. 3 (2022)

http://philstat.org.ph

6. Conclusion

We have designed a minimal-proceeding synchronous DRL-collation mechanism for mobile

distributed interconnection. We try to minimize the intrusion of proceedings during DRL-collation

. The intrusion time of a proceeding is quite minimal. During intrusion period, proceedings can do

their normal working outs, forward computation-communications and process selective

computation-communications. The number of proceedings that seize recuperation-points is

minimized to circumvent awakening of M_Nodules in doze mode of processing and thrashing of

M_Nodules with DRL-collation activity. It also saves limited battery life of M_Nodules and low

bandwidth of wireless channels. We try to reduce the loss of DRL-collation effort when any

proceeding miscarries to seize its recuperation-point in synchronization with others. We also try to

minimize the synchronization computation-communications during DRL-collation.

References:-

[1] Acharyaand B. R. Badrinath, Checkpointing Distributed Applications on Mobile Computers, In

Proceedings of the 3rd International Conference on Parallel and Distributed Information

Systems (PDIS 1994), 1994, 73-80.

[2] R. Baldoni, J-M Hélary, A. Mostefaoui and M. Raynal, A Communication-Induced

Checkpointing Protocol that Ensures Rollback-Dependency Tractability, In Proceedings of the

International Symposium on Fault-Tolerant-Computing Systems, 1997, 68-77.

[3] G. Cao and M. Singhal, On coordinated checkpointing in Distributed Systems, IEEE

Transactions on Parallel and Distributed Systems, 9 (12), 1998, 1213-1225.

[4] G. Cao and M. Singhal, “On the Impossibility of Min-process Non-blocking Checkpointing

and an Efficient Checkpointing Algorithm for Mobile Computing Systems,” In Proceedings of

International Conference on Parallel Processing, 1998, 37-44.

[5] G. Cao and M. Singhal, Mutable Checkpoints: A New Checkpointing Approach for Mobile

Computing systems, IEEE Transaction On Parallel and Distributed Systems, 12(2), 2001, 157-

172. K.M. Chandy and L. Lamport, “Distributed Snapshots: Determining Global State of

Distributed Systems,” ACM Transaction on Computing Systems, 3(1), 1985, 63-75.

[6] E. N. Elnozahy, L. Alvisi, Y. M. Wang and D. B. Johnson, “A Survey of Rollback-Recovery

Protocols in Message-Passing Systems,” ACM Computing Surveys, 34(3), 2002, 375-408.

[7] E. N. Elnozahy, L. Alvisi, Y. M. Wang and D. B. Johnson, “A Survey of Rollback-Recovery

Protocols in Message-Passing Systems,” ACM Computing Surveys, 34(3), 2002, 375-408.

[8] E.N. Elnozahy, D.B. Johnson and W. Zwaenepoel, The Performance of Consistent

Checkpointing, In Proceedings of the 11th Symposium on Reliable Distributed Systems, 1992,

39-47.

[9] J.M. Hélary, A. Mostefaoui and M. Raynal, Communication-Induced Determination of

Consistent Snapshots, In Proceedings of the 28th International Symposium on Fault-Tolerant

Computing, 1998, 208-217.

[10] H. Higaki and M. Takizawa, Checkpoint-recovery Protocol for Reliable Mobile Systems,

Transactions of Information processing Japan, 40(1), 1999, 236-244.

[11] R. Koo and S. Toueg, Checkpointing and Roll-Back Recovery for Distributed Systems, IEEE

Transactions on Software Engineering, 13(1), 1987, 23-31.

[12] P. Kumar, L. Kumar, R. K. Chauhan and V. K. Gupta, A Non-Intrusive Minimum Process

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

1942

Vol. 71 No. 3 (2022)

http://philstat.org.ph

Synchronous Checkpointing Protocol for Mobile Distributed Systems, In Proceedings of IEEE

ICPWC-2005, 2005.

[13] J.L. Kim and T. Park, An efficient Protocol for checkpointing Recovery in Distributed

Systems, IEEE Transactions on Parallel and Distributed Systems, 1993, 955-960.

[14] L. Kumar, M. Misra, R.C. Joshi, Checkpointing in Distributed Computing Systems, In

Concurrency in Dependable Computing, 2002, 273-92.

[15] L. Kumar, M. Misra, R.C. Joshi, Low overhead optimal checkpointing for mobile distributed

systems, In Proceedings of 19th IEEE International Conference on Data Engineering, 2003,

686 – 88.

[16] L. Kumar and P.Kumar, A Synchronous Checkpointing Protocol for Mobile Distributed

Systems: Probabilistic Approach, International Journal of Information and Computer Security,

1(3), 2007, 298-314.

[17] L. Lamport, Time, clocks and ordering of events in a distributed system, Communications of

the ACM, 21(7), 1978, 558-565.

[18] N. Neves and W.K. Fuchs, Adaptive Recovery for Mobile Environments, Communications of

the ACM, 40(1), 1997, 68-74.

[19] W. Ni, S. Vrbsky and S. Ray, Pitfalls in Distributed NonblockingCheckpointing, Journal of

Interconnection Networks, 1(5), 2004, 47-78.

[20] D.K. Pradhan, P.P. Krishana and N.H. Vaidya, Recovery in Mobile Wireless Environment:

Design and Trade-off Analysis, In Proceedings of 26th International Symposium on Fault-

Tolerant Computing, 1996, 16-25.

[21] R. Prakash and M. Singhal, Low-Cost Checkpointing and Failure Recovery in Mobile

Computing Systems, IEEE Transaction On Parallel and Distributed Systems, 7(10), 1996,

1035-1048.

[22] K.F. Ssu, B. Yao, W.K. Fuchs and N.F. Neves, Adaptive Checkpointing with Storage

Management for Mobile Environments, IEEE Transactions on Reliability, 48(4), 1999, 315-

324.

[23] L.M. Silva and J.G. Silva, Global checkpointing for distributed programs, In Proceedings of

the 11th symposium on Reliable Distributed Systems, 1992, 155-62.

[24] Sunil Kumar, R K Chauhan, Parveen Kumar, “A Minimum-process Coordinated

Checkpointing Protocol for Mobile Computing Systems”, International Journal of Foundations

of Computer science,Vol 19, No. 4, pp 1015-1038 (2008).

[25] Parveen Kumar, “A Low-Cost Hybrid Coordinated Checkpointing Protocol for mobile

distributed systems”, Mobile Information Systems. pp 13-32, Vol. 4, No. 1, 2007.

[26] Rao, S., & Naidu, M.M, “A New, Efficient Coordinated Checkpointing Protocol

Combined with Selective Sender-Based Message Logging”, IEEE/ACS International

Conference on Computer Systems and Applications, 2008.

[27] Biswas S, &Neogy S,“A Mobility-Based Checkpointing Protocol for Mobile Computing

System”, International Journal of Computer Science & Information Technology, Vol.2,

No.1,pp135-15,2010.

[28] Gao Y., Deng C., &Che, Y.,“ An Adaptive Index-Based Algorithm Using Time-Coordination

in Mobile Computing”, International Symposiums on Information Processing, pp.578-585,

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

1943

Vol. 71 No. 3 (2022)

http://philstat.org.ph

2008.

[29] Praveen Choudhary, Parveen Kumar,” Minimum-Process Global-Snapshot Accumulation

Etiquette for Mobile Distributed Systems ”, International Journal of Advanced Research in

Engineering and Technology” Vol. 11, Issue 8, Aug 20, pp.937-948

[30] Praveen Choudhary, Parveen Kumar,” Low-Overhead Minimum-Method Global-Snapshot

Compilation Protocol for Deterministic Mobile Computing Systems ”, International Journal

of Emerging Trends in Engineering Research” Vol. 9, Issue 8, Aug 2021, pp.1069-1072

