
Vol. 71 No. 4 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

9018

Enhancing the Learning Capability in SOAR Cognitive Architecture

Shalini

Research Scholar, Department of Computer Science & Engineering,

PDM University, Bahadurgarh, Haryana, India.

shalinisingroha@gmail.com

Dr. S. Srinivasan

Professor, Head of Department, Department of Computer Science & Applications,

PDM University, Bahadurgarh, Haryana, India.

sunderrajan_engg@pdm.ac.in

Dr. Nitin Bansal

Associate Professor, Department of Computer Science & Applications,

PDM University, Bahadurgarh, Haryana, India.

bansal.nitin12@gmail.com

Article Info

Page Number: 9018-9028

 Publication Issue:

Vol. 71 No. 4 (2022)

Article History

Article Received:

12 September 2022

Revised: 16 October 2022

Accepted: 20 November 2022

Publication: 25 December 2022

Abstract

Intelligent agents enable the implementation of artificial intelligence by

making decisions. The supporting structure for an intelligent system is

defined by a cognitive architecture. In this paper, with the help of Soar

cognitive architecture, we are trying to empower the advanced agent system

by enhancing their intelligence using knowledge representation,

environment, and capabilities. Soar’s Semantic memory stores the content

of agents’ information and knowledge in the form of facts and its Episodic

memory supports a collection of cognitive capabilities that help an agent

observe its environment, think critically, be more capable, and therefore

learn.

In our work, we are enhancing the two-digit arithmetic addition agent by

increasing its number of digits i.e. from two to three, thereby making it more

capable and using rote learning to make it intelligent.

Keywords Cognitive Architecture, Intelligent Agent, Learning, Episodic

memory, Semantic Memory

INTRODUCTION

The idea behind cognitive architecture is how the components of the human brain interact to

provide intelligent conduct under challenging circumstances [1]. It serves as a manual for

intelligent agents. The main goal of Soar Cognitive Architecture is to offer a general

mechanism of experience that can hold the full spectrum of an intelligent agent's capabilities

[2]. Any intelligent system is made to carry out a number of tasks that, when combined, make

up its functional capabilities. In our paper, we talk about the capabilities that our agent support.

http://philstat.org.ph/
mailto:underrajan_engg@pdm.ac.in
mailto:bansal.nitin12@gmail.com

Vol. 71 No. 4 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

9019

To make any intelligent agent perform with all its capabilities, just a small number of skills,

such as recognition and decision-making, are strictly necessary [2] [3].

The soar agent has a rote learning method to increase its intelligence. Rote learning

concentrates on memorization so that the learner can recall the information exactly as it was

read or heard [4]. It is a method of memorizing that relies on repetition. Rote learning saves

computed values and recalls them when needed, which results in significant computation time

savings. An architecture can access more information sources to guide its behaviour the more

such capabilities (learning) it offers [2] [5].

WORK FLOW OF SOAR AGENT

Fig 1 Workflow of Soar Agent

1. Recognize and Categorize

Our agent provides a means to represent facts and situations in memory to aid with recognizing

and categorizing [2]. It incorporates a recognition process that let it determine whether a

specific situation matches a set of stored facts and, if possible, measures the degree to which it

matches. This mechanism determines when each production rule's prerequisites are met and

how it will be implemented in various situations [6]. Agents employ rote learning to acquire

facts from experience and, when necessary, to improve on already-existing patterns.

2. Decision-Making

To support decision-making, an agent provides a way to represent choices or acts, must offer

some facts, and considering it only if the fact is matched [7]. For example, we can specify the

conditions in which we get the carrying value (0,1) or (0,1,2) and then consider the operational

move (either 2-digit addition or 3-digit addition)) only when the conditions are met. The

choices are to choose among the allowable options. The resultant enhancements in decision-

making will be reflected in the overall behavior of the agent.

Step 1
Recognize and Categorize

Step 2
Decision Making

Step 3
Prediction and Observing

Step 4
Problem Solving and Scheduling

Step 5
Reasoning

Step 6
Execution and Accomplishment

Step 7
Memorising, Replication

and Learning

http://philstat.org.ph/

Vol. 71 No. 4 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

9020

3. Prediction and Observing

One general method entails keeping track of a mapping from a description of the current state

and its impact to a description of the outcome [8]. Our agent includes the ability to learn

predictive models from experience and refine them over time. When an agent has a method for

creating predictions, it can use those predictions to observe the environment.

4. Problem Solving and Scheduling

A cognitive architecture must be able to describe a plan as an (at least partially) ordered

sequence of acts, their anticipated effects, and how these effects facilitate subsequent actions.

Additionally, the structure could have branches and conditional actions that depend on the

results of earlier events as documented by the agent [8]. Our agent constructs a plan from

components available in memory.

This means that they do actions based on a collection of facts (states), taking into account any

available operators, choosing one or more, and then using those operators to create a new issue

state. The system keeps searching until it either finds a workable strategy or decides to give up

[9].

5. Reasoning

Reasoning, another essential cognitive function that enables an agent to expand its knowledge

state, is closely tied to problem resolution. While reasoning draws conclusions from previous

beliefs or assumptions that the agent already has, planning is largely concerned with achieving

goals in the real world by taking action [2]. Our agent concludes that whether three columns

are generated or that it can the call process-column operator to calculate the sum.

6. Execution and Accomplishment

The ability to perform tasks and activities in the environment is another requirement for

cognitive architecture [2]. In certain systems, this occurs entirely reactively, with the agent

picking one or more primitive actions on each decision cycle, carrying them out, and then

repeating the procedure on the next cycle [8]. Since the agent can detect the environment at

every time step, this method is related to closed-loop execution strategies. Open-loop

execution, in which an agent invokes a stored process again without referencing the

environment, is supported by the use of increasingly sophisticated skills [13].

Our agent performs the addition 20 times. It means the whole procedure of 3-digit addition

runs in the form of a loop, every time after the completion of one loop, it repeats the procedure

on the next cycle. The process is repeated in the cycle.

http://philstat.org.ph/

Vol. 71 No. 4 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

9021

7. Memorising, Replication, and Learning

One other capability that our agent enables is Memorising. It describes the capability of

encoding and storing agent results in memory for retrieval or access at a later time [10]. Any

cognitive action that needs to be remembered must have an architecture that can store the

cognitive structures created during it, index them in memory, and retrieve them as needed [11].

Oftentimes, episodic memories are used to describe the resulting content [13].

Replication is a different skill that needs access to cognitive activity traces. One sort of

replication activity is the justification of an agent's judgments, plans, decisions, or acts in terms

of the cognitive processes that lead to them [2].

Learning is the last crucial trait that our agent possesses. An agent's own problem-solving

behavior or the application of previously learned skills may provide the data on which learning

functions [9] [12]. But regardless of the source of experience, processing memory structures is

always done to enhance the agent's capabilities [13].

Our three-digit Arithmetic agent supports all the above three capabilities.

3-DIGIT ARITHMETIC AGENT IN SOAR

In comparison to the 2-digit Arithmetic agent, the 3-digit Arithmetic agent has a carry of up to

two (0, 1 & 2), up from one (0, 1). This agent doesn't employ any math operations. It presents

the problem in a three-column format that is meant to be generated.

Three-Digit Arithmetic Agent, we employ several important data structures. The same data

structure as a 2-digit arithmetic agent is used by this one, along with some new ones. The

following are the additional ones:

• Addn10-facts: This is used for all facts for adding 10 to 0-9 digits.

• Digit3: It includes 0-9 digits.

• Facts: It includes all of the facts about single digit arithmetic (Digit1 and Digit2) and

(Digit3 and result).

• C1 & C2: It carries 0/1.

• Result3: It holds the value from 0-2.

• Digit3: It holds the value from 0-9.

• Carry: It carries the value either 0, 1, or 2. Its value is calculated using the results from the

previous column.

• Result1: It denotes the result of the digits (Digit3 & result).

The order in which the operators were used during the calculation is depicted in the following

figure.

OPERATORS USED FOR PROCESSING

http://philstat.org.ph/

Vol. 71 No. 4 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

9022

Fig 2 Sequence of Operators

Initialize-arithmetic: It generates the digits 0-9 that are used in producing problems and

includes the name of the problem, i.e. ^name arithmetic. Initiate the count for the number of

problems to be resolved as well. It can also specify a specific problem to be solved; if a single

problem is specified, it will be solved 20 times.

 INPUT

OUTPUT

Digit 1

Digit 2

Digit 3

Initialize-arithmetic

Generate-facts

Generate-problem

Generate-operation

 Process-column

Finish-Problem

Stop-Arithmetic

Using write-

result1 operator,

3-digit addition

output Generate-digit1

Generate-digit2

Generate-digit3

 Get-digit1

 Get_digit2

 Get_digit3

Compute-Result

Compute-result1

Compute-result2

 Carry (o, 1 & 2)

Write-result

Write-result1

If no task is selected
Then propose the initialize –arithmetic operator.

If the initialize-arithmetic operator is selected
Then generate and rectify arithmetic problem 20 times.

http://philstat.org.ph/

Vol. 71 No. 4 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

9023

Generate-facts: This operation preloads whole arithmetic facts into working memory. This

fact should not be essentially associated with semantic memory. It generates facts according to

the addition of three digits i.e. digit1, digit2 and digit3, where first adding digit1 with digit2

storing their addition in result variable and then again adding the result with digit3 to find the

final addition. Hence, performing the addition operation two times where c1 is the carry for

first addition and c2 is carry for second addition.

Generate-problem: The arithmetic problem " <s> ^arithmetic-problem" is generated by this

operator. Individual digits i.e. digit1, digit2, and digit3, the operation (finish-problem-

generation and generate-operation), and column by column operator (next-column) are all

created. It solves the addition problem.

Process-column: This operator determines a column's outcome.

If the operator generate-facts selected
 Then it generate-facts for add operator in which it keep all combinations of
(digit 1, digit 2), sum and their corresponding carrying value.

If the operator generate-facts*add1 selected
 Then it generate-facts for add1 operator in which it keeping track of all
possible sums of (digit 3, result), sum and their related carrying values.

If the operator generate-facts*carryf selected
 Then it generate-facts for carryf-facts operator in which it stores the value
of carries (c1 &c2) and result3.

 If the operator generate-problem selected
 Then generate digit 1, digit 2 & digit 3

If the operator generate-operation selected

Then generate operation addition, operation-symbol and column c1, c2 and

c3

If the next-column operator is chosen
Then it switches from the current column to the following column.

If the operator selected finish-problem generation
Then it completes the generate-problem operation.

If the operator process-column is chosen
 Then result for a column is calculated.

http://philstat.org.ph/

Vol. 71 No. 4 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

9024

get-digit1 & write-digit1: This operator gets the first digit from the column and passes it to

the state. If there is a carry, the final digit1 is calculated by recursively adding it to column

digit1. The write-digit1 operator returns the newly calculated digit1 and possible carry. When

compared to the two-digit arithmetic agent, which only has 0 and 1 carry, the values of carries

in this case can be 0, 1, or 2.

get-digit2: It obtains the value of digit 2 and sends it to the state.

 get-digit3 & write-digit3: It obtains and communicates the value of digit 3 to the state.

compute-result: It uses facts to calculate the outcome and carry it from digit1 to digit2 as well

as digit3 to result. This will be exchanged with a lookup of semantic memory. Unlike the two-

digit arithmetic agent, which only uses compute-result once, we are utilising it three times as

compute-result, compute-result1 and compute-result2 in this case.

If the operator get-digit1 is chosen
 Then take a digit from the column and send it to state.

If the operator write-digit1 is chosen
 Then carrying 0, 1, and 2 repeatedly adds it to column digit1 to determine the
final digit1.

If the get-digit2 operation is chosen
 Then get a digit from the column and send it to state.

If the get-digit3 operation is selected
 Then get a digit from the column and transmit it to state.

If the operator write-digit1 operator is chosen
 Then the final digit3 is calculated by constantly adding it to column digit3 while
carrying the numbers 0, 1 and 2.

If the operator compute-result is choose
 Then we get a value of digit1, digit2 & operation (op) through query.
If the operator compute-result1 is select
 Then we get a value of digit3, result & operation (op) through query.
If the operator compute-result2 is use
 Then we get a value of c1, c2 & operation (op) through query.

http://philstat.org.ph/

Vol. 71 No. 4 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

9025

Carry: It transfer the carry to next-column. The Carry value either be 0, 1, or 2.

new-column: If there is a carry in the leftmost column, it creates a new column for an additional

problem.

write-result: Our ultimate outcome is kept in the result1 operator in this case, whereas the two-

digit arithmetic operator stores the final result in the result operator. The final outcome is sent

to the current-column by this operation.

Next-column: When a result has been calculated for a column, this operator is used to move

to the next column.

If the Semantic Memory Retrieval (compute-result) operator is chosen, use arithmetic
facts to obtain a value of digit1, digit2, sum and carry
 Then we get a value of carry and sum in query.

If the Semantic Memory Retrieval (compute-result1) operator is chosen, use add1-
facts to get a value of digit3, result, sum and carry
 Then we obtain a value of carry and sum in query.

If the Semantic Memory Retrieval (compute-result2) operator is chosen, use carryf-
facts to retrieve a value of c1, c2, result3
 Then we get a value of result3 and carry in query.

 If the operator use with compute-result is selected
 Then it will get the value of result, carry and c1.

If the operator use with compute-result1 is selected
 Then it will retrieve the value of result1, carry and c2.

If the operator use with compute-result2 is selected
 Then it will obtain the value of result3, and carry.

If the operator carry is selected
 Then whatever the carry value either 1 or 2 it send the carry value to next-
column.

If the operator new-column is used, it will create a new column if the leftmost
column has a carry for a supplemental problem.

If the operator write-result is chosen
 Then result is sent to the currently selected column.

If write-result1 is selected as the operator
 Then result1 is delivered to the column that is currently chosen.

http://philstat.org.ph/

Vol. 71 No. 4 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

9026

Finish-problem: When there is a result for a column with no next-column, it executes.

Stop-arithmetic: When the count value reaches zero, the agent will come to a complete stop

EXPERIMENTAL RESULTS

We use Soar Debugger to run the agent. A total of 109 productions are sourced from the agent.

The entire agent runs 20 times. The figure below shows the output of the agent in Soar

Debugger.

Fig 3 Output of 3-digit Arithmetic Adiition agent

If the operator next-column is chosen, the result of a column has been established
 Then The following column is then calculated after that.

If the operator finish-problem is chosen and there is no next-column in the result of a column
 Then it executes.

 Then it executes.

If the operator stop is chosen and the count value reaches zero
 Then the calculation stops.

http://philstat.org.ph/

Vol. 71 No. 4 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

9027

When the final carry value is 1, our agent will perform the 2-digit addition. And if it is 2, then

it will perform the 3-digit addition according to the facts. Figure 4 illustrates the long run trace

of 3-digit arithmetic addition agent.

Fig 4 Long run Trace (109 productions) of 3-digit addition

CONCLUSION

The main objective of Soar is to serve as the framework for the imitation of human cognitive

ability.

In our work, we extend a two-digit arithmetic agent, making it more capable and intelligent by

increasing the number of digits i.e. by increasing the numbers (rows) from two to three. We

express our agent according to the workflow of the soar cognitive architecture. Because we

want to give our agent more control, it provides a set of cognitive capabilities that enable an

agent to notice its environment, think critically, be more competent, and subsequently learn.

REFERENCES

1. Laird, J. and Rosenbloom, P., “The Evolution of the Soar Cognitive Architecture”, Mind

Matters, T. Mitchell (Ed.), (1996), 1-50.

2. Pat Langley, John E.Laird, Seth Rogers, “Cognitive Architectures: Research Issues and

Challenges”, Volume 10, Issue 2, June (2009), Pages 141-160

3. Laird, J. E., Newell, A., & Rosenbloom, P. S. Soar: An architecture for general

intelligence. Artificial Intelligence, 33, (1987),1–64.

4. Laird, J. E.. “Extending the Soar cognitive architecture”, Proceedings of the Artificial

General Intelligence Conference. Memphis, TN: IOS Press (2008).

http://philstat.org.ph/
https://www.sciencedirect.com/journal/cognitive-systems-research/vol/10/issue/2

Vol. 71 No. 4 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

9028

5. Laird, J. E., “Introduction to Soar”. https://arxiv.org/abs/2205.03854,(2022).

6. Lindes, P. “Intelligence and Agency”, Journal of Artificial General Intelligence 11(2), 47-

49. doi:10.2478/jagi-2020-0003 (2020).

7. Laird, J. E., “Intelligence, Knowledge & Human-like Intelligence”, Journal of Artificial

General Intelligence 11(2), 41-44. doi:10.2478/jagi-2020-0003 (2020).

8. James R. Kirk, John E. Laird, “Interactive Task Learning for Simple Games”, Advances

in Cognitive Systems 3 (2014) 13-30.

9. Gorski, N. A., Laird, J. E. Learning to use episodic memory Cognitive Systems Research,

12,(2013) 144-153.

10. Neha Rajan and Sunderrajan Srinivasan, “Exploring learning Capability of an agent in

SOAR: Using 8-Queens Problem”, Journal of Computer Science, volume 16, issue 5,

pages 642-650, (2020).

11. Nitin Bansal, S. Srinivasan, “How Soar Agent Learns: Episodic Memory International

Journal of Computer Applications (0975 – 8887) Volume 181 – No. 36, January(2019)

12. . Derbinsky. N., “ Efficiently Implementing Episodic Memory in Soar”,September 8,

(2008).

13. Andrew M. Nuxoll , John E. Laird, “Enhancing Intelligent agent with Episodic Memory”,

Cognitive Systems Research 17-18 (2012), 34-48.

http://philstat.org.ph/
https://arxiv.org/abs/2205.03854,(2022

