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Abstract 

In a cloud context, task scheduling (TS) is an NP-hard combinational 

optimization issue since the number of tasks rises, and their durations vary 

rapidly. The mappings between resources and tasks are challenging to 

develop. As a result, we essential a capable task scheduling strategy that 

can better handle the work and address the NP-hard problem. Several 

researchers have concentrated on heuristic, meta-heuristic, and hybrid 

scheduling algorithms to address this problem. This work provides a 

unique load balancing strategy based on two optimization algorithms to 

address the problem of uneven load distribution at virtual machines (VMs) 

via proper task scheduling. This approach consists of music inspired 

harmony search algorithm (HSA) and simulated annealing (SA) algorithm, 

named HISA-LB (load balancing) approach. This approach works on 

HMCR and PAR values in which probability is checked. Based on the 

probability threshold, it calculates the best objective function by choosing 

either Harmony search or simulated annealing to distribute tasks across 

available cloud resources. This is accomplished by maintaining accurate 

information among the data center's tasks and resources. The CloudSim 

simulator is applied to implement the proposed algorithm for load 

balancing. The simulations have been done by considering two scenarios 

1) 3 VMs and 10 to 50 cloudlets, 2) 5 VMs and 10 to 50 cloudlets. Both 

scenarios have been experimented with and considered only the five best 

performance results. The simulation outcomes indicate that the proposed 

HISA-LB strategy outperforms other existing LBMPSO approaches in 

decreasing Makespan and increasing resource usage. In addition, 

throughput is another parameter for comparison and achieved the highest 

throughput than the LBMPSO approach. 

 

Index Terms— Cloud computing, Load balancing, Task scheduling, 

VM process, Harmony search, Simulated annealing.  

 

 

I. INTRODUCTION 

Cloud computing (CC) is a potential paradigm in contrast to conventional information technology 

techniques. Businesses and organizations employ elastic cloud services on a pay-per-use basis to 

cut expenses. Virtualization is a widely used technology in modern data centers (DCs) to increase 

resource usage, minimize greenhouse gas emissions, and cut costs. VM migration is frequently used 

inside or between DCs to suit a broad range of virtualized cloud environment demands. [1]. 
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The distribution and management of resources is a hard problem for cloud service providers, even 

though cloud computing has several advantages. The demand for cloud resources is growing by the 

day. Because of the increased demand for cloud resources, cloud service providers have difficulties 

allocating resources [2]. Similarly, the work of cloud resource management develops much more 

challenging when there is a rapid increase in on-demand resources due to a lack of natural physical 

resources at cloud premises. Inappropriate cloud resource allocation may result in either on-time 

resource unavailability to service customers or poor usage of cloud resources, resulting in Service 

Level Agreement (SLAs) breaches [3].  

SLA infractions can occasionally lead to a reduction in return on investment or even the 

termination of the contract. Overall, the "consistent availability" of the high-performance network 

has been an essential criterion of clients from cloud service providers (CSPs) since the creation of 

CC. This has been one of the greatest foundational demands of consumers from CSPs ever since the 

discovery of CC [4]. Applications running on a set of interconnected instances of VMs in 

fundamental CC systems may leave a few instances loaded down. At the same time, other VM 

occurrences may be idle or lightly packed, causing efficiency loss and expenditure of CC resources 

and power.  

The problem of inefficient resource usage in CC settings may be solved by distributing the 

workload across networked VMs using an LB approach. This will allow for more effective use of 

the available resources. In cloud computing, control of efficiency and performance has continued to 

be a pressing issue. In addition, unbalanced workload allocation can potentially lower the efficiency 

of cloud virtual machines [5]. In contrast to the method of migrating a whole virtual machine, the 

method proposed in this study consists of moving just the needed tasks from one virtual machine to 

another inside a cloud environment. The technique contributes to the resolution of the issue of load 

balancing that affects virtual machines. The load balancing approach offers a potential solution to 

the issue of inefficient resource allocation and usage in CC. An innovative method for LB in CC 

environments is proposed in this work for effective usage of available computer resources.  

This paper provides the following contributions to this research work: 

1) To solve the load balancing issue at VMs because of uneven distribution of resources. 

2) To design an approach to HISA load balancing based on two optimization algorithms for 

improvising the harmony memory. 

3) It has been statistically validated using different performance parameters for assessing 

execution and makespan time. It will improve the resource utilization of resources with proper 

task allocations. 

4) The HISA-LB technique effectively locates high-performance regions of optimal solution 

promptly. 

5) It provides better load balancing at VMs by efficient allocation of tasks. 

The remainder of the paper is organized as shown below. Section II section II will provide research 

on several existing cloud load balancing approaches. Section III presents a novel load balancing 

technique. The findings of the experiments are described in section IV. Section V includes a 

discussion of concluding thoughts and ideas for further study. 
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II. RELATED WORK 

Among the many components of cloud task scheduling, task-LB on VMs is highly recognized as 

important. The present study of [6] created a dynamic LB solution based on the hybrid optimization 

methodologies used in this investigation. This study used a Mantaray-modified version of the multi-

objective Harris hawk optimization (MMHHO). The hybridization procedure, which considers cost, 

reaction time, and resource consumption, updates the search space of HHO by employing the 

MRFO (Manta Ray Forging Optimization) algorithm. The hybrid strategy presented in this work 

increases system efficiency by increasing VM throughput, balancing load across VMs, and 

maintaining task priority balance by modifying the waiting time of the associated processes. 

CloudSim is a tool that implements the suggested MMHHO-based LB algorithm. The efficacy of 

the proposed method was evaluated using different parameters and associated with other previous 

algorithms. According to the simulation findings, the proposed MMHHO load balancing technique 

beats alternative algorithms. 

In the research article [7], FIMPSO is a suggested new load balancing algorithm that combines the 

firefly algorithm with the IMPSO (Improved Multi-Objective Particle Swarm Optimization) 

method. While the IMPSO method is used to locate the improved response, the Firefly (FF) 

algorithm is applied to compress the search area. IMPSO algorithm chooses the particle with the 

smallest point-to-line distance as the global best (gbest). The best particle candidates were selected 

using a mini distance from a point to a line. The suggested FIMPSO algorithm improved key 

indicators, including appropriate resource utilization and task response time and attained effective 

average load for making. According to the simulation results, the suggested FIMPSO model 

outperformed the competing approaches. The simulation results demonstrate that the FIMPSO 

method is the most successful of the ones tested, with a makespan of 148, a dependability rate of 

67%, a throughput rate of 72%, a reaction time of 13.58ms on average, as well as a CPU utilization 

rate of 98%. 

Every DC negatively impacts the environment because of its excessive energy consumption. 

Therefore, making cloud computing more successful necessitates addressing challenges related to 

using computer resources effectively and reducing energy use. One of the most important tools for 

addressing these issues is load balancing. The authors of [8] created an adaptive cat swarm 

optimization (ACSO) algorithm-based LB software to address optimization issues. Several value 

indicators and performance comparisons are used to assess the effectiveness of the suggested 

solution. 

Security, as well as LB, are two major concerns in the CC environment. A node's request time and 

response time are crucial characteristics of loading balancing. LB in the cloud may be optimized 

using meta-heuristics algorithms[9]. EMAMBO is a technique to ensure equitable distribution of 

public clouds across all nodes. Several metrics suggest that the proposed system performs better 

than several existing benchmarks. 

Massive data centers have an impact on the environment as well as the economy due to their high 

power consumption. Micro-Genetic (MG) Algorithms provide a stable combined processes 

workload allocation approach using CSO (MG-CSO) by fixing pre-convergence issues and finding 

the best available resources. The resources are constantly clustered and condensed for maximum 

computational efficiency. Comparing the results of the MG-CSO Algorithm against those of other 

popular algorithms like the GA and the BA reveals good results for the earlier. The goal of the 
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study [10]was to decrease cost, time, SLA, and energy, as well as provide a high QoS. Our final 

tally for the scientific findings was 91%. 

To efficiently use a VM's resources, load balancing must be performed to distribute the workload 

evenly across all VMs. [11] developed an innovative approach to dynamically distributing work 

across VMs by combining a PSO (MPSO) variant with an enhanced version of the Q-learning 

algorithm, which they called QMPSO. Hybridization is applied to fine-tune MPSO's velocity using 

gbest and pbest according to the best action given by refined Q-learning. Hybridization aims to 

enhance the machine's efficiency by distributing workload evenly across VMs, increasing VMs' 

throughput to their fullest extent, and keeping workload priorities in check by minimizing the 

waiting time for each operation. The method's reliability was confirmed by comparing the simulated 

QMPSO outcomes with the current load balancing and scheduling technique. When our suggested 

algorithm's performance is measured against that of a leading rival, it performs much better on both 

simulations and a real platform. 

The cloud simulator is a set of Java classes that may simulate various aspects of cloud computing. 

For improved resource distribution through load balancing, researchers suggest and implement an 

algorithm based on the work of honey bees, with certain modifications. [12] the empirical study of a 

suggested effective approach for LBof tasks utilizing honey bee-inspired resource allocation in a 

cloud scenario. 

III. RESEARCH METHODOLOGY 

Within this section, we will suggest a technique that, as illustrated in Figure 3, aims to optimize 

resource allocation while minimizing the impact on execution time. This method illustrates the 

importance of framework structure, tasks, and resources. The primary objective of the suggested 

HISA-LB technique is to properly schedule all incoming tasks to accessible VMs, hence reducing 

Makespan and increasing machine utilization in CC. Every task must be assigned to one VM. It 

firstly discusses problems in existing literature work. Then provide a detailed proposed 

methodology based on two nature-inspired optimization techniques in this section. In this model, 

the mapping is done with a music-inspired harmony search and a simulated annealing load 

balancing (HISA-LB) approach to concentrate on a resource allocation method in that resources are 

maintained such that no task is overlooked or overall execution time is minimized. As a result, the 

overall approach, which incorporates multiple types of task and resource data, may be optimized in 

terms of time or resource allocation techniques. 

A. Problem Statement 

Currently, LB in the CC environment is a significant challenge. A distributed solution has always 

been necessary. Because it is not always practicable or cost-effective to keep one or more idle 

services to meet demand, it is not always possible to do so [13]. As the cloud's structure is very 

complicated and its components are dispersed over a large region, it is impossible to allocate tasks 

to specific servers and clients for effective load balancing. Assigning specific tasks is accompanied 

by a degree of uncertainty. In a cloud computing environment, mapping all tasks to available VMs 

and determining the appropriate solution is difficult. In this instance, a productive TS method is 

required to balance VM load and assign each user's task to an appropriate resource. The existing 

work used a PSO-based load balancing technique for task scheduling. However, this technique 

maximizes resource allocation using different buffers to numerous task or resource information 
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types. But it faced some convergence issues and did not efficiently utilize the task allocation in 

minimized execution time. This technique was not able to utilize proper resources. This study 

illustrates the direct relevance of framework structure, tasks, and resources.  

B. Proposed Methodology: HISA-LB Model 

This paper proposes a new LB approach based on harmony inspired and simulated annealing 

algorithm named HISA-LB to overcome the abovementioned problems and issues of LB and TS. 

HISA-LB task scheduling technique is founded on the HISA algorithm, which uses fitness function 

to determine the optimal arrangement of each harmony. The fitness function computes the 

execution times of each VM or returns the execution time with the highest score as the fitness value 

(F) of every harmony.  

1) Harmony Inspired Search Algorithm 

HS is a search heuristic built on jazz improvisation [14]. When playing jazz music, musicians 

strive to alter their pitches so that the resulting harmonies are the most beautiful possible version of 

themselves. They start with specific harmonies and then use improvisation to attempt to improve 

upon those harmonies. This comparison might be used to build search heuristics, strategies that may 

be utilized to maximize a particular objective function. Harmonies are not the only application for 

this analogy. In this scenario, musicians are considered decision variables, and harmony is regarded 

as a solution. HS algorithm, much like jazz musicians, creates new harmonies by improvisation. 

Therefore it consistently comes up with unique solutions that depend on the outcomes of recent 

iterations and random changes. Whereas this framework allows for many interpretations, the 

fundamental HS method is usually explained in the literature as a diagram, as seen in fig. 1. 

 

Fig. 1. Flowchart of HSA 
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HM is initialized with randomly generated solutions using the HS method. HM Size determines no. 

of explanations saved in HM. Following is how novel solution is developed iteratively. Each 

decision variable is produced either by considering memory and possibly undergoing further 

modification or by randomly selecting one of many possible values. Harmony Memory Considering 

Rate (HMCR) and Pitch Adjusting Rate (PAR) are both terms that refer to factors applied in the 

procedure of developing novel solutions. Every decision variable is given the value of a particular 

variable of opportunities in HM with a probability of HMCR, or an additional variation of this 

value is carried out with a probability of PAR. In addition, this value is subjected to an additional 

modification with a probability of PAR. Instead, the value of a choice variable is made to be 

completely arbitrary (with a chance of 1 HMCR). Once a new response has been developed, it is 

compared against the worst option in HM. If the objective value of this solution is higher than the 

value of the worst option, then it will replace the worst solution in the HM. This cycle will continue 

until the conditions for completion have been fulfilled. This algorithm's extensive explanations may 

be found in [15][16].  

The HS algorithm optimization technique is given below in five phases [17].  

Step 1: Parameters Initialization  

Optimization issue is specifically distinct:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) 

subject to  

𝑥𝑗𝑋𝑗 =  1,2,… ,𝑁,                                (1) 

here f(x) is an objective function; x set of every decision variable 𝑥𝑗 ; N no. of decision variables, 𝑋𝑗  

Set a possible range of values for every decision variable, which is 𝑥𝑗
𝑚𝑖𝑛  or 𝑥𝑗

𝑚𝑎𝑥  Are lower or 

upper boundaries of the jth decision parameter correspondingly. HMS, or no. of solution vectors 

stored in HM, HMCR, PAR, bandwidth distance (BW), no. of improvisations (NI), or halting 

criteria, are all HS technique parameters specified at this stage. 

Step 2: HM Initialization and Evaluation  

Random initial population, consisting of elements like, for example: 

𝑥𝑖 ,𝑗
0 = 𝑥𝑗

𝑚𝑖𝑛 + 𝑟𝑗 (𝑥𝑗
𝑚𝑎𝑥 − 𝑥𝑗

𝑚𝑖𝑛 )                       (2) 

In which i= 1,2,…,HMS; j= 1,2,…,N OR 𝑟𝑗 ∈  [0,1] is uniformly distributed random no. produced 

from scratch for every value of j. In HM, solution vectors are studied, and objective function values 

are determined. 

Step 3: Improvisation  

This stage generates a novel harmony vector built on three rules: memory consideration, pitch 

correction, and random selection. A design variable's value can be chosen with the probability 
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HMCR from values recorded in HM. It is possible to further adjust it by shifting to a neighbor value 

of a selected value from HM with a probability of PAR, or it is possible to choose it at random from 

the set of entirely candidate values without taking into account values that are kept in HM, by the 

probability of PAR. Either way, adjusting it further (1 - HMCR) is possible. 

Step 4: HM Update  

An updated harmony vector will replace a previous one if it has a higher goal value and a smaller 

constraint violation. 

Step 5: Termination criterion check  

If the stopping requirement (e.g., the largest amount of improvisations) is fulfilled, the HS method 

is terminated. Steps 3 and 4 are then repeated if necessary. 

The HS method is described in pseudocode in Algorithm 1, which gives a general overview of the 

algorithm. 

Algorithm 1: HSA  

Procedure: 

1. Initialize HM using HMS chosen solutions randomly. 

2. reiteration  

3. Develop novel solutions in a subsequent manner 

4. for entirely decision variables, do  

5. Most probably, HMCR takes a value from one of the possibilities in HM and changes it 

slightly with probability PAR. 

6. Instead, choose a random value for this decision variable (with a probability of 1HMCR). 

7. end for  

8. If the novel approach outperforms the worst solution in HM, it is accepted. 

9. Swap worst resolution via novel one  

10. end if  

11. until the Termination criterion is satisfied  

12. return the best solution in HM 

 

2) Simulated Annealing 

SA is recognized as an iterative improvement solution to optimization issues, as well as the 

statistical physics approach for computer simulation of annealing a solid to its energy level, that 

is, the state with the least amount of energy. In other words, SA is the state with the least amount 

of potential energy. [18]. The iterative improvement method may be defined as follows, given the 

collection of configurations, a cost function, and neighborhood architecture. At the start of each 

iteration, configuration i is provided, and a transition to configuration j ϵ P(i) is created. P (i) is a 

subset of configurations named neighborhood of I for every configuration i. If C(j) < C(i), next 

iteration's start configuration is j; or else, it is i. If transitions are produced in an exhaustive 

enumerative manner, the method will, thru description, terminate at a local minimum. However, 
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the cost of a min may differ significantly from that of a global min. SA may be considered an 

effort to identify near-optimal local minima by accepting cost-increasing transitions. More 

precisely, if i as well as j P(i) are two configurations to pick from, the method proceeds with 

configuration j with such a probability determined by:  

𝑚𝑖𝑛{1, 𝑒𝑥𝑝(−(𝐶(𝑗)  −  𝐶(𝑖))/𝑐)}                (3) 

wherein c is a positive control parameter that will be steadily lowered while the algorithm is 

executed, and the drop will occur at regular intervals. Therefore, in the process of physical 

annealing, c is equivalent to the applied temperature. Probability reduces with higher values of C(j) 

- C(i) or lower values of c, and transitions with decreasing costs are always acceptable. The basic 

SA algorithm is described in the form of a flowchart, as displayed in fig. 2. 

 
Fig. 2. Flowchart of the simulated annealing algorithm 

Simulated annealing attempts to avoid cycling through randomization and simulates an annealing 

procedure in physics. A neighbor is generated through random choices in any iteration. Whenever 

produced neighbor has a higher objective function value than the initial solution, the neighbor is 

always recognized as the new offensive way to solve. Still, a worse neighbor is only approved with 

a fixed probability. The neighborhood selected and the cooling strategy used are crucial factors in 

the quality of the outcomes produced by a simulated annealing technique. More information is 

provided following. 

Step 1: Neighborhood  

The determination of a suitable neighborhood for an efficient scheduling solution generally has a 

significant impact on the ultimate solution's quality. The following algorithm is derived from the 

generation of a neighbor in a certain neighborhood. For permutation issues, the Swap operator may 

be used to generate a neighbor. The produced neighbor with the highest objective function value 

among these is then chosen and evaluated to the actual starting solutions using the simulated 

annealing acceptance criteria. We discovered that the composite neighborhood performed better 

than each neighborhood. 
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Swap operator: In this case, two tasks are exchanged at random. Taking Ϩ0 in Example 1, as well 

as assuming two randomly chosen positions m = 3 as well as n = 5, we get the sequence. 

Swap (Ϩ0, m, n) = Swap (Ϩ0, 3, 5) = (3, 1, 5, 2, 4). 

Step 2: Cooling scheme  

Geometric, exponential, Lundy-Mees, and linear reduction techniques are typical cooling 

techniques employed in a simulated annealing procedure. The current temperature is lowered using 

the geometric cooling scheme to the new temperature that would be seen in the next epoch 

following:   

𝑇𝑒𝑚𝑝𝑘 = 𝛼𝑇𝑒𝑚𝑝𝑘−1,𝑘 =  1,2,…                   (4) 

where 0 < α < 1. We discovered that the initial temperature must be set such that around 25% of the 

most undesirable solutions are accepted at the start. At the last step in the algorithm, following the 

geometric cooling strategy, 𝑇𝑒𝑚𝑝𝑁 =∝𝑁 𝑇𝑒𝑚𝑝0. So, we have  

𝑁 =  log∝
𝑇𝑒𝑚𝑝 𝑁

𝑇𝑒𝑚𝑝 0
                                (5) 

The procedure of SA is given below in algorithm2:  

Algorithm2: Simulated Annealing 

Procedure: 

1. Randomly start a group of processing units and set the control parameter to an extremely big 

positive number.  

2. Repeated until the control parameter value approaches the minimal:  

a) Produce a random set of processing units as well as compute the Δcost utilizing:  

ΔCost = Cost(j) –  Cost(i)                    (6) 

b) Choose a new set of processing units based on the probability Pij found  utilizing:  

𝑃𝑖𝑗 (𝑐𝑜𝑠𝑡) = 𝑚𝑖𝑛 {1, 𝑒𝑥𝑝 (−(𝐶𝑜𝑠𝑡(𝑗) − 𝐶𝑜𝑠𝑡(𝑖))/𝑐𝑜𝑠𝑡)} (7) 

c) Repeated until the inner loop break condition is reached.  

d) Reduce temperature at a set rate. 

e) Goto steps two loops.  

3. End 

 

Algorithm 3 gives an overview of the proposed HISA load balancing algorithm using pseudocode, 

and the flowchart for this model is given in figure 3. 

Algorithm3. HISA-LB Algorithm Pseudocode 

Procedure: 

1. Start 

2. Generate the harmony memory 

3. Initialization of all parameters 

4. Initialization of Temp 
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5. Num = 0, ꝺ= 500 

6. Place BestX (the best solution in Harmony Memory (HM)) into Ϩ 

7. BstSol = BstSASol = Ϩ 

8. For p = (1 to Num) do 

9. If (random (0,1) ≤ HM_CR) Then 

10. Select 2 vectors solution symbolized as υ1 & υ2 at random from Harmony memory 

11. If (random (0,1) ≤ P_A_R) Then 

12. υ = put on a PMX crossover to υ1 and υ2                       

13. newX = the best neighbor amongst some of the neighbors created by υ 

14. If (SumCost(newX) < SumCost(worstX)) Then 

15. Swap worstX by newX              //Modifying the HM 

16. End of If 

17. End of If 

18. End of If 

19. Else                    

20. Ϩ' = the best neighbor among the generated neighbors of Ϩ 

21. ∆Cost = SumCost(Ϩ') – SumCost(Ϩ) 

22. probability = Random (0,1) 

23. If ((∆Cost ≤ 0) or (probability <𝑒−∆𝐶𝑜𝑠𝑡/𝑇𝑒𝑚𝑝 )) Then                          

24. Ϩ = Ϩ', newX = Ϩ'   

25. If (SumCost(newX ) < SumCost(worstX)) Then  

26. Swap the worstX by newX          // Modifying the HM 

27. End of If 

28. If (SumCost(Ϩ) < SumCost(BstSASol)) Then                                 

29. BstSASol = Ϩ                          

30. End of If 

31. End of If 

32. Temp = Modify (Temp)            

33. End of Else  

34. If (SumCost(BestX ) < SumCost(BstSol)) 

35. BstSol = BestX, Num = 0  

36. End of If 

37. If (SumCost(BstSASol) - SumCost(BstSol) ≥ ꝺ)                 

38. Ϩ = BstSol 

39. End of If 

40. End of For 

41. Get result BstSol together with its fitness function value 

42. Stop. 
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Fig. 3. Flowchart of proposed HISA-LB model in cloud 

 

IV. RESULTS AND DISCUSSION 

The suggested HISA load balancing approach is analyzed and contrasted to other already used 

strategies. The suggested HISA load balancing method is implemented using the Eclipse Java 

Programming Environment and the CloudSim toolset. We utilized a PC with the following 
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specifications: Intel (R) Core (TM) i5-Processor (2.40 GHz), NVIDIA GeForce, and 12GB of 

RAM. The operating system was Windows 10 64-bit. The parameters used for the simulation are 

shown below.  

A. Experiment Setup  

This section discusses different experimental settings with parameters and their values. As shown 

in Table 1, we examined non-preemptive activities that are free for the test. In a data center, tasks 

are assigned to several heterogeneous VMs. The HISA load balancing method has many 

characteristics. We compared the effectiveness of the HISA load balancing algorithm to that of the 

LBMPSO method in this section. It is necessary to use two separate testing scales: (1) three VMs 

with ten to fifty tasks each; (2) five VMs with ten to fifty tasks each. 

Table 1. Parameters properties. 

Parameters Value 

Cloud TaskRange 10-50 

CloudLength 1000-

6000 

Cloud FileSize 300 

VMRange 3-5 

Memory 256-512 

CPUs 1-5 

Bandwidths 1000 

VMMs XEN 

Processing speed (MIPS) 250-300 

HM Size (SIZE_HM) 20 

Number of New Harmonies 

(NUM_IMP) 

30 

HM Consideration Rate 

(HM_CR) 

0.9f 

PAR 0.1f 

Fret Width (F_W) 0.02f 

Number of iterations 500 

cooling rate (ALPHA) 0.9 

initial temperature (t) 1000 

 

B. Performance Metrics  

The computing model/layer orchestrated greatly influences performance metrics. 

Makespan: Makespan, also known as completion time, is overall time essential to procedure a 

collection of tasks from start to finish. It is described as the moment when the last task exited the 

system. Makespan may be reduced by allocating a set of Ji tasks to a set of VM 'vm'; the sequence 

of execution of the jobs in VMs is unimportant.  
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The scheduling task is to minimize the Makespan since most users want their programs to run as 

quickly as possible, as indicated in Eq (8):  

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝐶𝑇𝑛                                    (8) 

Where, 𝐶𝑇𝑛  is the completion time of the last task. 

Average Execution Time: CPU time or execution time of a supplied task is the amount spent with 

the system performing that task, such as time spent executing run-time or system functions on its 

behalf. Generally said, it is the amount of time the task needs to accomplish its execution. 

Throughput is described as the ratio of arrival tasks to processed tasks during a certain time period. 

The equation reads as follows:  

𝑇𝑟𝑜𝑢𝑔𝑝𝑢𝑡 = (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠)/(𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒)  (9) 

Average Resource Utilisation Ratio: The created algorithm's objective is to optimize the cloud's 

resources' most efficient utilization possible. The resource utilisation ratio is determined using Eq. 

10[13].  

𝐴𝑅𝑈𝑅 = (𝑚𝑒𝑎𝑛𝑡𝑖𝑚𝑒/𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛) ∗ 100          (10) 

Resource Utilization is defined as the percentage of resources consumed by the incoming workload. 

In other words, it shoes  

When average time = ∑processing time resources VMj to carry out tasks that have been allocated, 

the value of j may vary from 1 to m, and the range of ARUR can be anything from 0 to 1. The value 

1 indicates that a resource is being used to its maximum utilization (100%), whereas the value 0 

indicates that the resource is at its optimal condition. 

Response time is described as a time that elapses between making a request to the server and 

completing the task execution.  

Average response time: The total amount of time spent replying during the selected time period, 

multiplied by the number of reactions received during the selected time period.  

C. Results 

This section discusses the results of the proposed HISA load balancing cloud computing approach 

for two scenarios, including 3VMs 10 to 50 cloudlets and 5VMs 10 to 50 cloudlets.  

 

Fig. 4. Enter GUI for VMs at the Data center 
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Figure 4 shows the GUI for inputting the Virtual machine 3 or 5 at the data center. From here, the 

user can choose one of the scenarios to test the approach. 

 

Fig. 5. Enter GUI for Cloudlets 

Figure 5 shows the GUI for inputting the cloudlets between 10 to 50 for any scenario after selecting 

VMs at the data center. From here, the user can choose a maximum of 50 cloudlets for any scenario 

to test the approach. 

1) Scenario 1: 3 VMs 10 to 50 cloudlets 

 

Fig. 6. 3 VMs 10 cloudlets 

Figure 6 shows the output for scenario-1 with 3 VMs and ten cloudlets. In this cloudlets ID, status, 

DC ID, VM ID, time, start time and finish time are displayed, where cloudlet ID 8 takes minimized 

finish time of 10.68 seconds, and the highest finish time is 40.71 seconds at Cloudlets ID 9. By 

experimenting, five runs at this scenario achieved at least 40.71 seconds maximum makespan. The 

highest resource utilization is 5.189, and the throughput is 0.246. 

 

Fig. 7. 3 VMs 20 cloudlets 
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Figure 7 shows the output for scenario-1 with 3 VMs and 20 cloudlets. In this scenario, cloudlet ID 

15 takes minimized finish time of 9.54 seconds, and the highest finish time is 66.66 seconds at 

Cloudlets ID 13. By experimenting, five runs at this scenario achieved the least 66.66 seconds 

maximum makespan. The highest resource utilization is 11.19, and the throughput is 0.3. 

 

Fig. 8. 3 VMs 30 cloudlets 

Figure 8 shows the output for scenario-1 with 3 VMs and 30 cloudlets. In this scenario, cloudlet ID 

8 takes minimized finish time of 16.21 seconds, and the highest finish time is 127.48 seconds at 

Cloudlets ID 3. But the start time for each cloudlet is 0.1 seconds. By experimenting, five runs at 

this scenario achieved least 127.48 seconds maximum makespan. The highest resource utilization is 

13.45, and the throughput is 0.235. 

 

Fig. 9. 3 VMs 40 cloudlets 

Figure 9 shows the output for scenario-1 with 3 VMs and 40 cloudlets. In this scenario, cloudlet ID 

36 takes the highest finish time, 161.93 seconds, at Cloudlets ID 3. But the start time for each 

cloudlet is 0.1 seconds. By experimenting, five runs at this scenario achieved 161.93 seconds 

maximum makespan. The highest resource utilization is 17.97, and the throughput is 0.247. 
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Fig. 10. 3 VMs 50 cloudlets 

Figure 10 shows the output for scenario-1 with 3 VMs and 50 cloudlets. In this scenario, cloudlet 

ID 38 is successful at Datacenter ID 2 with no allocation of VM and takes 103.48 seconds highest 

finish time Cloudlets ID 3 with 0.1 seconds start time. Out of five experiments for 3 VMs 50 

cloudlets, it has achieved 103.48 seconds maximum Makespan. The highest resource utilization is 

18.44, and the throughput is 0.483. 

2) Scenario 2: 5 VMs 10 cloudlets 

 

Fig. 11. 5 VMs 10 cloudlets 

 

Fig. 12. 5 VMs 20 cloudlets 
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Fig. 13. 5 VMs 30 cloudlets 

 

Fig. 14. 5 VMs 40 cloudlets 

 

Fig. 15. 5 VMs 50 cloudlets 

Similar to scenario-1, Figures 11 to 15 show the output for scenario-2 with 5 VMs and 10 to 50 

cloudlets. In this, cloudlet IDs are included as per their status and finish time, where cloudlet IDs 

are arranged as minimized finish time, and the highest finish time is considered the maximum 

Makespan in seconds. In this case, five different experiments have been done and take only the least 
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maximum makespan results at scenario-2. Due to the proposed HISA-LB approach, some other 

performance parameters like highest resource utilization, ARUR, average execution time, minimum 

Makespan and throughput are added. 

Table 2. Experiments run for the proposed HISA-LB approach

Scenarios  

Cloudlets 

Maximum 

Makespan 

Minimum 

Makespan 

Average 

Execution 

Time 

Throughput ARUR RU 

 

 

Scenario-

1 

 

10 40.710 10.68 20.99 0.246 0.692 5.18 

20 66.66 9.54 37.2 0.300 0.763 11.19 

30 127.48 16.21 57.09 0.235 0.622 13.46 

40 161.93 23.22 72.66 0.247 0.639 17.97 

50 103.48 6.21 38.07 0.483 0.511 18.44 

 

 

Scenario-

2 

 

10 28.65 4.66 13.62 0.349 0.641 4.79 

20 48.55 7.56 19.94 0.412 0.57 8.26 

30 50.67 7.48 25.41 0.592 0.676 15.10 

40 85.24 7.15 31.68 0.469 0.539 14.91 

50 99.7 7.98 39.23 0.501 0.550 19.72 

Table 2 represents two scenarios' different experimental results in the cloud computing running 

environment. It calculated the results on different cloudlets by including performance parameters 

like min and max makespan, avg. Execution time, throughput, resource utilization and average 

resource utilization resources. 

 

(a)Scenario-1                                                                                     (b) Scenario-2 

Fig. 16. Time taken results using the HISA-LB approach 

Figure 16 shows the time results found by the proposed HISA-LB approach. Here, three-timing 

results are included in which maximum Makespan, minimum Makespan and average execution time 

are measured in seconds. In this figure, the x-axis specifies no. of cloudlets, or the y-axis specifies 

time in seconds. Fig. 16 (a) is used to display the Makespan and avg. Execution time results for 3 

VMs in the first scenario. From this graph, it can be seen that initially, the Makespan is a minimum 

of 10 cloudlets. Makespan increases as the number of cloudlets or tasks increases, and the highest 
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Makespan is at 40 cloudlets. But makespan decreases 50 cloudlets for all maximum and minimum 

values and reduces the average execution time. Similarly, Fig. 16 (b) displays the Makespan and 

avg. Execution time results for 5 VMs in the second scenario. This graph shows that initially, the 

maximum Makespan is less than 30 seconds at ten cloudlets, then it increases slowly and reaches 

the highest at 50 cloudlets by taking approx. 100 seconds. If we talk about the minimum Makespan, 

this is initially less than 5 seconds. It is constant with 7 to 8 seconds till the 50
th

 cloudlets, and 

average execution time increases as the number of cloudlets or tasks increases with 6 seconds time 

differences at each task size. 

 

(a) Scenario-1                                                                                     (b) Scenario-2 

Fig. 17. Throughput results using the HISA-LB approach 

Figure 17 shows the throughput results found by the proposed HISA-LB approach. Here, the x-axis 

specifies the no. of cloudlets, and the y-axis specifies the throughput value. Fig. 17 (a) displays the 

throughput results for 3 VMs in the first scenario. This graph shows that the throughput value is 

highest at 50 cloudlets only among all cloudlets, achieving 48.3% throughput. But when looking for 

5 VMs in scenario 2 (in figure 17 (b)), it achieved a higher throughput rate compared to the 

scenario1, and maximum throughput was achieved at 30 cloudlets size by achieving 59.2% 

throughput.

 

(a) Scenario-1                                                                                     (b) Scenario-2 

Fig. 18. Resource utilization results using the HISA-LB approach 
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Figure 18 shows the Resource utilization results found by the proposed HISA-LB approach. Here, 

the x-axis indicates several cloudlets of 10-50 size, and the y-axis indicates Resource utilization 

values. Fig. 18 (a) displays the Resource utilization results for 3 VMs in the first scenario. From this 

graph, it may be seen that Resource utilization rises as no. of tasks rises. Therefore, the highest 

resource utilization value is 18.44 at 50 cloudlets size. 

Similarly, in fig. 18 (b), Resource utilization is increased per increment in cloudlets size for 5 VMs 

in the second scenario. But the Resource utilization is higher than in the first scenario because of 

maximum availability of VMs. So, the number of cloudlets can efficiently utilize their available 

resources and achieved the highest Resource utilization19.72 at 50 cloudlets. 

 

Table 3. Comparison table for different experiments in Scenario-1 

Scenarios  Runs Maximum 

Makespan 

Minimum 

Makespan 

Average 

Execution 

Time 

Throughput ARUR RU 

 

 

HISA-LB  

Experiment 

1 

40.71 10.68 20.99 0.246 0.692 5.18 

Experiment 

2 

66.66 9.54 37.2 0.300 0.763 11.19 

Experiment 

3 

127.48 16.21 57.09 0.235 0.622 13.46 

Experiment 

4 

161.93 23.22 72.66 0.247 0.639 17.97 

Experiment 

5 

103.48 6.21 38.07 0.483 0.511 18.44 

 

 

LBMPSO  

Experiment 

1 

54.1 4.27 24.04 0.185 0.604 4.46 

Experiment 

2 

107.8 13.38 49.22 0.186 0.565 9.15 

Experiment 

3 

155.26 13.81 69.16 0.193 0.553 13.38 

Experiment 

4 

208.63 23.54 92.18 0.192 0.539 17.69 

Experiment 

5 

246.82 24.47 102.41 0.203 0.541 20.77 

 

Table 3 represents the best five experimental results for both proposed HISA-LB and existing 

LBMPSO approaches in the cloud computing running environment for the scenario1. It compares 

the experimented results on different cloudlets sizes in terms of min makespan and max makespan, 

avg. Execution time, throughput, average resource utilization, and resource utilization for scenario 

1. 

 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 

9049 

 

 

Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

 

 

 

 

Fig. 19. Comparison graph of Makespan and execution time found  for 3 VMs and 10-50 task sets  

Fig. 19 represents the bar graph comparison of the HISA-LB approach with the LBMPSO approach 

for 3 VMs and 10-50 tasks in scenario 1 to show the comparison of Makespan. This bar comparison 

graph reveals that maximum Makespan is less, with a significant difference as the number of tasks 

increases. Initially, the maximum Makespan is 40.71 seconds at ten cloudlets, which is minimal to 

the LBMPSO approach, which takes 54.1 seconds. Still, the highest maximum Makespan was 

achieved at 40 tasks, which is 161.93 seconds by the HISA-LB approach. At the same time, 

minimum Makespan is also minimized in the proposed HISA-LB approach than LBMPSO except 

for ten and 30 tasks in this scenario. Also, a comparison of average execution time is made between 

the HISA-LB approach and the LBMPSO approach for scenario 1. 

Similarly to maximum makespan comparison, HISA-LB takes minimized average execution time 

for all task sets compared to the LBMPSO approach. Here the considerable difference in execution 

time of both approaches with an increased number of tasks and least execution time is 20.99 

seconds at ten tasks by HISA-LB. However, the highest execution time is 72.66 seconds for 40 

tasks by HISA-LB, but LBMPSO takes more than 92.18 seconds for 40 tasks and 102.41 seconds 

for 50 tasks. 

 

Fig. 20. Comparison graph of throughput found  for 3 VMs and 10-50 task sets 
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Fig. 20 represents the throughput comparison between HISA-LB and LBMPSO approach for 3 

VMs and 10-50 task sets in scenario 1. From this line comparison graph, we can see that throughput 

is variate as the number of tasks increases. Initially, throughput was 0.246 at ten cloudlets, then 

constant in between 30 to 40 cloudlets, but suddenly throughput increased to 0.483 at 50 cloudlets 

for the HISA-LB approach. But when we look for the LBMPSO approach, it achieved a constant 

throughput value from 10 to 20 task sets in a cloud with minor differences and lastly achieved 0.203 

throughputs at 50 task sets. 

 

Fig. 21. Comparison graph of resource utilization found  for 3 VMs and 10-50 task sets 

Figure 21 depicts the resource utilization and average resource utilization in the HISA-LB 

technique when compared to other LBMPSO-based strategies with task sets ranging from 10-50 run 

across three virtual machines in scenario 1. Furthermore, regardless of the number of VMs, resource 

use increases with the tasks. This resource utilization is less at 50 cloudlets/tasks using the proposed 

HISA-LB approach than LBMPSO, achieving 18.44 and 20.77, respectively. Similarly, if resource 

utilization of the HISA-LB approach is good than LBMPSO, then ultimately, resource utilization is 

achieved the same results. ARUR is also good at each cloudlet size except 50 cloudlets. 

Table 4. Comparison table for different experiments in Scenario-2 

Scenari

os  

Runs Maximu

m 

Makesp

an 

Minimu

m 

Makesp

an 

Average 

Execution 

Time 

Throughp

ut 

ARU

R 

RU 

 

 

HISA-

LB 

Experimen

t 1 

28.65 4.66 13.62 0.349 0.641 4.79 

Experimen

t 2 

48.55 7.56 19.94 0.412 0.57 8.26 

Experimen

t 3 

50.67 7.48 25.41 0.592 0.676 15.10 
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Experimen

t 4 

85.24 7.15 31.68 0.469 0.539 14.91 

Experimen

t 5 

99.7 7.98 39.23 0.501 0.550 19.72 

 

 

LBMPS

O  

Experimen

t 1 

27.4 4.44 14.03 0.365 0.702 5.16 

Experimen

t 2 

100.1 4.93 37.21 0.199 0.328 7.46 

Experimen

t 3 

92.1 4.95 29.58 0.326 0.431 9.67 

Experimen

t 4 

128.83 6.74 40.56 0.310 0.404 12.63 

Experimen

t 5 

130.23 8.83 45.69 0.384 0.456 17.58 

 

Table 4 represents scenario two experimental results, including the best five experiments on 10-50 

cloudlets for proposed HISA-LB and existing LBMPSO approaches in the cloud. The proposed 

HISA-LB is compared with LBMPSO performance parameters and achieves better results than the 

LBMPSO approach on different cloudlets. 

 

Fig. 22. Comparison graph of Makespan and execution time found for 5 VMs and 10-50 task sets 

Figure 22 represents the bar graph comparison between of HISA-LB approach and the LBMPSO 

approach for 5 VMs and 10-50 tasks in scenario 2 to show the comparison of Makespan. From this 
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comparison graph, we found that the maximum Makespan is very less as the number of tasks 

increases in HISA-LB. However, initially, the maximum Makespan is high 28.65seconds at ten 

cloudlets than the LBMPSO approach, which takes 27.4 seconds by exceeding 1.25 seconds. Still, it 

is very minimum for remaining all task sets from 20 to 50 cloudlets/tasks than LBMPSO maximum 

makespan, and the difference is just double approximately for maximum Makespan. If seeing at 

minimum Makespan, then found that minimum Makespan is high in HISA-LB compared to 

LBMPSO except for 50 tasks set, which takes 7.98 seconds and 8.83seconds, respectively, in 

scenario 2. Also, a comparison of average execution time is visualized between the HISA-LB 

approach and LBMPSO approach for scenario 2. 

Similarly to the maximum makespan comparison, HISA-LB takes a reduced average execution time 

for all task sets compared to the LBMPSO approach. The difference in average execution time is 

significant using both approaches. If the number of tasks increases, then their execution time is also 

increasing, and the least execution time is 13.62 seconds for ten tasks by HISA-LB than 14.03 

seconds by LBMPSO. However, the highest execution time is 39.23 seconds at 50 tasks by HISA-

LB, but LBMPSO takes 45.69 seconds which is higher. 

 

Fig. 23. Comparison graph of throughput found for 5 VMs and 10-50 task sets 

Figure 23 represents the line comparison graph of throughput between HISA-LB and LBMPSO 

approaches for 5 VMs and 10-50 task sets in scenario 2. From this line graph, we can compare and 

find high variations in throughput values for several tasks. Initially, throughput is 0.349 at ten 

cloudlets, then it increases till 30 cloudlets with the highest throughput is 0.592, then it decreases at 

40 cloudlets and increases at 50 cloudlets for the HISA-LB approach. When we look for the 

LBMPSO approach, it achieved not such a good throughput value as HISA-LB from 10-50 tasks 

sets but increased with several tasks minor differences except at 20 cloudlets which achieved 0.199 

and lastly achieved 0.384 throughputs at 50 tasks set. 
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Fig. 24. Comparison graph of resource utilization found for 5 VMs and 10-50 task sets 

Figure 24 represents the resource utilization with average resource utilization using HISA-LB and 

LBMPSO approach for 5 VMs or 10-50 task sets in scenario 2. From this comparison, we can see 

that as the number of tasks increases, resource utilization also increases, and the highest resource 

utilization HISA-LB achieves average utilization-LB compared to LBMPSO. However, resource 

utilization is high at each cloudlet's size, but the highest resource utilization was achieved, i.e., 

19.72 at 50 cloudlets by HISA-LB, while LBMPSO achieved 17.58. 

VI. CONCLUSION 

The scheduling process in a cloud computing infrastructure involves several difficult challenges, 

including computation time, cost, load balancing, and others. One of the most significant issues for 

the Cloud infrastructure is LB. LB is the balancing load to obtain greater throughput or improved 

resource usage. Because scheduling is an NP-complete issue, heuristic or meta-heuristic techniques 

are favored solutions. In this research, we used a nature-inspired meta-heuristic technique to tackle 

task scheduling problems in a cloud context, concentrating on two key goals: decreasing the 

makespan/ computation time and improving LB. This work introduces HISA-LB, an LB strategy 

based on harmony inspired by simulated annealing that may reduce total makespan time, boost 

resource usage, and balance the load for each virtual machine. CloudSim Toolkit was used to run 

the simulations. The results of the tests show that, under each situation, HISA-LB reduces the 

makespan time and increases resource consumption compared to the LBMPSO approach. 

Furthermore, as the number of tasks grows, so does resource usage with throughput in all 

circumstances. 

In preparation for future work, we are putting a lot of effort into developing a novel approach 

that, in the not-too-distant future, will allow for an improvement in the quality of service 

characteristics.  
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