
Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9029

Vol. 71 No. 4 (2022)

http://philstat.org.ph

HISA-LB: A Novel Load Balancing Approach for Improvising

Harmony Memory in Cloud Environment

Ms. Shruti Tiwari
1
 , Dr. Chinmay Bhatt

2

1
Research Scholar,Dept. Of Computer Science Engineering,RKDF College, Bhopal (M. P.), India

1
shruti.tiwari08@gmail.com

2
Professor, Dept. Of Computer Science Engineering, RKDF College, Bhopal (M. P.), India

2
chinmay20june@gmail.com

Article Info

Page Number: 9029 - 9055

Publication Issue:

Vol 71 No. 4 (2022)

Article History

Article Received: 15 September 2022

Revised: 25 October 2022

Accepted: 14 November 2022

Publication: 21 December 2022

Abstract

In a cloud context, task scheduling (TS) is an NP-hard combinational

optimization issue since the number of tasks rises, and their durations vary

rapidly. The mappings between resources and tasks are challenging to

develop. As a result, we essential a capable task scheduling strategy that

can better handle the work and address the NP-hard problem. Several

researchers have concentrated on heuristic, meta-heuristic, and hybrid

scheduling algorithms to address this problem. This work provides a

unique load balancing strategy based on two optimization algorithms to

address the problem of uneven load distribution at virtual machines (VMs)

via proper task scheduling. This approach consists of music inspired

harmony search algorithm (HSA) and simulated annealing (SA) algorithm,

named HISA-LB (load balancing) approach. This approach works on

HMCR and PAR values in which probability is checked. Based on the

probability threshold, it calculates the best objective function by choosing

either Harmony search or simulated annealing to distribute tasks across

available cloud resources. This is accomplished by maintaining accurate

information among the data center's tasks and resources. The CloudSim

simulator is applied to implement the proposed algorithm for load

balancing. The simulations have been done by considering two scenarios

1) 3 VMs and 10 to 50 cloudlets, 2) 5 VMs and 10 to 50 cloudlets. Both

scenarios have been experimented with and considered only the five best

performance results. The simulation outcomes indicate that the proposed

HISA-LB strategy outperforms other existing LBMPSO approaches in

decreasing Makespan and increasing resource usage. In addition,

throughput is another parameter for comparison and achieved the highest

throughput than the LBMPSO approach.

Index Terms— Cloud computing, Load balancing, Task scheduling,

VM process, Harmony search, Simulated annealing.

I. INTRODUCTION

Cloud computing (CC) is a potential paradigm in contrast to conventional information technology

techniques. Businesses and organizations employ elastic cloud services on a pay-per-use basis to

cut expenses. Virtualization is a widely used technology in modern data centers (DCs) to increase

resource usage, minimize greenhouse gas emissions, and cut costs. VM migration is frequently used

inside or between DCs to suit a broad range of virtualized cloud environment demands. [1].

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9030

Vol. 71 No. 4 (2022)

http://philstat.org.ph

The distribution and management of resources is a hard problem for cloud service providers, even

though cloud computing has several advantages. The demand for cloud resources is growing by the

day. Because of the increased demand for cloud resources, cloud service providers have difficulties

allocating resources [2]. Similarly, the work of cloud resource management develops much more

challenging when there is a rapid increase in on-demand resources due to a lack of natural physical

resources at cloud premises. Inappropriate cloud resource allocation may result in either on-time

resource unavailability to service customers or poor usage of cloud resources, resulting in Service

Level Agreement (SLAs) breaches [3].

SLA infractions can occasionally lead to a reduction in return on investment or even the

termination of the contract. Overall, the "consistent availability" of the high-performance network

has been an essential criterion of clients from cloud service providers (CSPs) since the creation of

CC. This has been one of the greatest foundational demands of consumers from CSPs ever since the

discovery of CC [4]. Applications running on a set of interconnected instances of VMs in

fundamental CC systems may leave a few instances loaded down. At the same time, other VM

occurrences may be idle or lightly packed, causing efficiency loss and expenditure of CC resources

and power.

The problem of inefficient resource usage in CC settings may be solved by distributing the

workload across networked VMs using an LB approach. This will allow for more effective use of

the available resources. In cloud computing, control of efficiency and performance has continued to

be a pressing issue. In addition, unbalanced workload allocation can potentially lower the efficiency

of cloud virtual machines [5]. In contrast to the method of migrating a whole virtual machine, the

method proposed in this study consists of moving just the needed tasks from one virtual machine to

another inside a cloud environment. The technique contributes to the resolution of the issue of load

balancing that affects virtual machines. The load balancing approach offers a potential solution to

the issue of inefficient resource allocation and usage in CC. An innovative method for LB in CC

environments is proposed in this work for effective usage of available computer resources.

This paper provides the following contributions to this research work:

1) To solve the load balancing issue at VMs because of uneven distribution of resources.

2) To design an approach to HISA load balancing based on two optimization algorithms for

improvising the harmony memory.

3) It has been statistically validated using different performance parameters for assessing

execution and makespan time. It will improve the resource utilization of resources with proper

task allocations.

4) The HISA-LB technique effectively locates high-performance regions of optimal solution

promptly.

5) It provides better load balancing at VMs by efficient allocation of tasks.

The remainder of the paper is organized as shown below. Section II section II will provide research

on several existing cloud load balancing approaches. Section III presents a novel load balancing

technique. The findings of the experiments are described in section IV. Section V includes a

discussion of concluding thoughts and ideas for further study.

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9031

Vol. 71 No. 4 (2022)

http://philstat.org.ph

II. RELATED WORK

Among the many components of cloud task scheduling, task-LB on VMs is highly recognized as

important. The present study of [6] created a dynamic LB solution based on the hybrid optimization

methodologies used in this investigation. This study used a Mantaray-modified version of the multi-

objective Harris hawk optimization (MMHHO). The hybridization procedure, which considers cost,

reaction time, and resource consumption, updates the search space of HHO by employing the

MRFO (Manta Ray Forging Optimization) algorithm. The hybrid strategy presented in this work

increases system efficiency by increasing VM throughput, balancing load across VMs, and

maintaining task priority balance by modifying the waiting time of the associated processes.

CloudSim is a tool that implements the suggested MMHHO-based LB algorithm. The efficacy of

the proposed method was evaluated using different parameters and associated with other previous

algorithms. According to the simulation findings, the proposed MMHHO load balancing technique

beats alternative algorithms.

In the research article [7], FIMPSO is a suggested new load balancing algorithm that combines the

firefly algorithm with the IMPSO (Improved Multi-Objective Particle Swarm Optimization)

method. While the IMPSO method is used to locate the improved response, the Firefly (FF)

algorithm is applied to compress the search area. IMPSO algorithm chooses the particle with the

smallest point-to-line distance as the global best (gbest). The best particle candidates were selected

using a mini distance from a point to a line. The suggested FIMPSO algorithm improved key

indicators, including appropriate resource utilization and task response time and attained effective

average load for making. According to the simulation results, the suggested FIMPSO model

outperformed the competing approaches. The simulation results demonstrate that the FIMPSO

method is the most successful of the ones tested, with a makespan of 148, a dependability rate of

67%, a throughput rate of 72%, a reaction time of 13.58ms on average, as well as a CPU utilization

rate of 98%.

Every DC negatively impacts the environment because of its excessive energy consumption.

Therefore, making cloud computing more successful necessitates addressing challenges related to

using computer resources effectively and reducing energy use. One of the most important tools for

addressing these issues is load balancing. The authors of [8] created an adaptive cat swarm

optimization (ACSO) algorithm-based LB software to address optimization issues. Several value

indicators and performance comparisons are used to assess the effectiveness of the suggested

solution.

Security, as well as LB, are two major concerns in the CC environment. A node's request time and

response time are crucial characteristics of loading balancing. LB in the cloud may be optimized

using meta-heuristics algorithms[9]. EMAMBO is a technique to ensure equitable distribution of

public clouds across all nodes. Several metrics suggest that the proposed system performs better

than several existing benchmarks.

Massive data centers have an impact on the environment as well as the economy due to their high

power consumption. Micro-Genetic (MG) Algorithms provide a stable combined processes

workload allocation approach using CSO (MG-CSO) by fixing pre-convergence issues and finding

the best available resources. The resources are constantly clustered and condensed for maximum

computational efficiency. Comparing the results of the MG-CSO Algorithm against those of other

popular algorithms like the GA and the BA reveals good results for the earlier. The goal of the

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9032

Vol. 71 No. 4 (2022)

http://philstat.org.ph

study [10]was to decrease cost, time, SLA, and energy, as well as provide a high QoS. Our final

tally for the scientific findings was 91%.

To efficiently use a VM's resources, load balancing must be performed to distribute the workload

evenly across all VMs. [11] developed an innovative approach to dynamically distributing work

across VMs by combining a PSO (MPSO) variant with an enhanced version of the Q-learning

algorithm, which they called QMPSO. Hybridization is applied to fine-tune MPSO's velocity using

gbest and pbest according to the best action given by refined Q-learning. Hybridization aims to

enhance the machine's efficiency by distributing workload evenly across VMs, increasing VMs'

throughput to their fullest extent, and keeping workload priorities in check by minimizing the

waiting time for each operation. The method's reliability was confirmed by comparing the simulated

QMPSO outcomes with the current load balancing and scheduling technique. When our suggested

algorithm's performance is measured against that of a leading rival, it performs much better on both

simulations and a real platform.

The cloud simulator is a set of Java classes that may simulate various aspects of cloud computing.

For improved resource distribution through load balancing, researchers suggest and implement an

algorithm based on the work of honey bees, with certain modifications. [12] the empirical study of a

suggested effective approach for LBof tasks utilizing honey bee-inspired resource allocation in a

cloud scenario.

III. RESEARCH METHODOLOGY

Within this section, we will suggest a technique that, as illustrated in Figure 3, aims to optimize

resource allocation while minimizing the impact on execution time. This method illustrates the

importance of framework structure, tasks, and resources. The primary objective of the suggested

HISA-LB technique is to properly schedule all incoming tasks to accessible VMs, hence reducing

Makespan and increasing machine utilization in CC. Every task must be assigned to one VM. It

firstly discusses problems in existing literature work. Then provide a detailed proposed

methodology based on two nature-inspired optimization techniques in this section. In this model,

the mapping is done with a music-inspired harmony search and a simulated annealing load

balancing (HISA-LB) approach to concentrate on a resource allocation method in that resources are

maintained such that no task is overlooked or overall execution time is minimized. As a result, the

overall approach, which incorporates multiple types of task and resource data, may be optimized in

terms of time or resource allocation techniques.

A. Problem Statement

Currently, LB in the CC environment is a significant challenge. A distributed solution has always

been necessary. Because it is not always practicable or cost-effective to keep one or more idle

services to meet demand, it is not always possible to do so [13]. As the cloud's structure is very

complicated and its components are dispersed over a large region, it is impossible to allocate tasks

to specific servers and clients for effective load balancing. Assigning specific tasks is accompanied

by a degree of uncertainty. In a cloud computing environment, mapping all tasks to available VMs

and determining the appropriate solution is difficult. In this instance, a productive TS method is

required to balance VM load and assign each user's task to an appropriate resource. The existing

work used a PSO-based load balancing technique for task scheduling. However, this technique

maximizes resource allocation using different buffers to numerous task or resource information

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9033

Vol. 71 No. 4 (2022)

http://philstat.org.ph

types. But it faced some convergence issues and did not efficiently utilize the task allocation in

minimized execution time. This technique was not able to utilize proper resources. This study

illustrates the direct relevance of framework structure, tasks, and resources.

B. Proposed Methodology: HISA-LB Model

This paper proposes a new LB approach based on harmony inspired and simulated annealing

algorithm named HISA-LB to overcome the abovementioned problems and issues of LB and TS.

HISA-LB task scheduling technique is founded on the HISA algorithm, which uses fitness function

to determine the optimal arrangement of each harmony. The fitness function computes the

execution times of each VM or returns the execution time with the highest score as the fitness value

(F) of every harmony.

1) Harmony Inspired Search Algorithm

HS is a search heuristic built on jazz improvisation [14]. When playing jazz music, musicians

strive to alter their pitches so that the resulting harmonies are the most beautiful possible version of

themselves. They start with specific harmonies and then use improvisation to attempt to improve

upon those harmonies. This comparison might be used to build search heuristics, strategies that may

be utilized to maximize a particular objective function. Harmonies are not the only application for

this analogy. In this scenario, musicians are considered decision variables, and harmony is regarded

as a solution. HS algorithm, much like jazz musicians, creates new harmonies by improvisation.

Therefore it consistently comes up with unique solutions that depend on the outcomes of recent

iterations and random changes. Whereas this framework allows for many interpretations, the

fundamental HS method is usually explained in the literature as a diagram, as seen in fig. 1.

Fig. 1. Flowchart of HSA

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9034

Vol. 71 No. 4 (2022)

http://philstat.org.ph

HM is initialized with randomly generated solutions using the HS method. HM Size determines no.

of explanations saved in HM. Following is how novel solution is developed iteratively. Each

decision variable is produced either by considering memory and possibly undergoing further

modification or by randomly selecting one of many possible values. Harmony Memory Considering

Rate (HMCR) and Pitch Adjusting Rate (PAR) are both terms that refer to factors applied in the

procedure of developing novel solutions. Every decision variable is given the value of a particular

variable of opportunities in HM with a probability of HMCR, or an additional variation of this

value is carried out with a probability of PAR. In addition, this value is subjected to an additional

modification with a probability of PAR. Instead, the value of a choice variable is made to be

completely arbitrary (with a chance of 1 HMCR). Once a new response has been developed, it is

compared against the worst option in HM. If the objective value of this solution is higher than the

value of the worst option, then it will replace the worst solution in the HM. This cycle will continue

until the conditions for completion have been fulfilled. This algorithm's extensive explanations may

be found in [15][16].

The HS algorithm optimization technique is given below in five phases [17].

Step 1: Parameters Initialization

Optimization issue is specifically distinct:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥)

subject to

𝑥𝑗𝑋𝑗 = 1,2,… ,𝑁, (1)

here f(x) is an objective function; x set of every decision variable 𝑥𝑗 ; N no. of decision variables, 𝑋𝑗

Set a possible range of values for every decision variable, which is 𝑥𝑗
𝑚𝑖𝑛 or 𝑥𝑗

𝑚𝑎𝑥 Are lower or

upper boundaries of the jth decision parameter correspondingly. HMS, or no. of solution vectors

stored in HM, HMCR, PAR, bandwidth distance (BW), no. of improvisations (NI), or halting

criteria, are all HS technique parameters specified at this stage.

Step 2: HM Initialization and Evaluation

Random initial population, consisting of elements like, for example:

𝑥𝑖 ,𝑗
0 = 𝑥𝑗

𝑚𝑖𝑛 + 𝑟𝑗 (𝑥𝑗
𝑚𝑎𝑥 − 𝑥𝑗

𝑚𝑖𝑛) (2)

In which i= 1,2,…,HMS; j= 1,2,…,N OR 𝑟𝑗 ∈ [0,1] is uniformly distributed random no. produced

from scratch for every value of j. In HM, solution vectors are studied, and objective function values

are determined.

Step 3: Improvisation

This stage generates a novel harmony vector built on three rules: memory consideration, pitch

correction, and random selection. A design variable's value can be chosen with the probability

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9035

Vol. 71 No. 4 (2022)

http://philstat.org.ph

HMCR from values recorded in HM. It is possible to further adjust it by shifting to a neighbor value

of a selected value from HM with a probability of PAR, or it is possible to choose it at random from

the set of entirely candidate values without taking into account values that are kept in HM, by the

probability of PAR. Either way, adjusting it further (1 - HMCR) is possible.

Step 4: HM Update

An updated harmony vector will replace a previous one if it has a higher goal value and a smaller

constraint violation.

Step 5: Termination criterion check

If the stopping requirement (e.g., the largest amount of improvisations) is fulfilled, the HS method

is terminated. Steps 3 and 4 are then repeated if necessary.

The HS method is described in pseudocode in Algorithm 1, which gives a general overview of the

algorithm.

Algorithm 1: HSA

Procedure:

1. Initialize HM using HMS chosen solutions randomly.

2. reiteration

3. Develop novel solutions in a subsequent manner

4. for entirely decision variables, do

5. Most probably, HMCR takes a value from one of the possibilities in HM and changes it

slightly with probability PAR.

6. Instead, choose a random value for this decision variable (with a probability of 1HMCR).

7. end for

8. If the novel approach outperforms the worst solution in HM, it is accepted.

9. Swap worst resolution via novel one

10. end if

11. until the Termination criterion is satisfied

12. return the best solution in HM

2) Simulated Annealing

SA is recognized as an iterative improvement solution to optimization issues, as well as the

statistical physics approach for computer simulation of annealing a solid to its energy level, that

is, the state with the least amount of energy. In other words, SA is the state with the least amount

of potential energy. [18]. The iterative improvement method may be defined as follows, given the

collection of configurations, a cost function, and neighborhood architecture. At the start of each

iteration, configuration i is provided, and a transition to configuration j ϵ P(i) is created. P (i) is a

subset of configurations named neighborhood of I for every configuration i. If C(j) < C(i), next

iteration's start configuration is j; or else, it is i. If transitions are produced in an exhaustive

enumerative manner, the method will, thru description, terminate at a local minimum. However,

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9036

Vol. 71 No. 4 (2022)

http://philstat.org.ph

the cost of a min may differ significantly from that of a global min. SA may be considered an

effort to identify near-optimal local minima by accepting cost-increasing transitions. More

precisely, if i as well as j P(i) are two configurations to pick from, the method proceeds with

configuration j with such a probability determined by:

𝑚𝑖𝑛{1, 𝑒𝑥𝑝(−(𝐶(𝑗) − 𝐶(𝑖))/𝑐)} (3)

wherein c is a positive control parameter that will be steadily lowered while the algorithm is

executed, and the drop will occur at regular intervals. Therefore, in the process of physical

annealing, c is equivalent to the applied temperature. Probability reduces with higher values of C(j)

- C(i) or lower values of c, and transitions with decreasing costs are always acceptable. The basic

SA algorithm is described in the form of a flowchart, as displayed in fig. 2.

Fig. 2. Flowchart of the simulated annealing algorithm

Simulated annealing attempts to avoid cycling through randomization and simulates an annealing

procedure in physics. A neighbor is generated through random choices in any iteration. Whenever

produced neighbor has a higher objective function value than the initial solution, the neighbor is

always recognized as the new offensive way to solve. Still, a worse neighbor is only approved with

a fixed probability. The neighborhood selected and the cooling strategy used are crucial factors in

the quality of the outcomes produced by a simulated annealing technique. More information is

provided following.

Step 1: Neighborhood

The determination of a suitable neighborhood for an efficient scheduling solution generally has a

significant impact on the ultimate solution's quality. The following algorithm is derived from the

generation of a neighbor in a certain neighborhood. For permutation issues, the Swap operator may

be used to generate a neighbor. The produced neighbor with the highest objective function value

among these is then chosen and evaluated to the actual starting solutions using the simulated

annealing acceptance criteria. We discovered that the composite neighborhood performed better

than each neighborhood.

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9037

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Swap operator: In this case, two tasks are exchanged at random. Taking Ϩ0 in Example 1, as well

as assuming two randomly chosen positions m = 3 as well as n = 5, we get the sequence.

Swap (Ϩ0, m, n) = Swap (Ϩ0, 3, 5) = (3, 1, 5, 2, 4).

Step 2: Cooling scheme

Geometric, exponential, Lundy-Mees, and linear reduction techniques are typical cooling

techniques employed in a simulated annealing procedure. The current temperature is lowered using

the geometric cooling scheme to the new temperature that would be seen in the next epoch

following:

𝑇𝑒𝑚𝑝𝑘 = 𝛼𝑇𝑒𝑚𝑝𝑘−1,𝑘 = 1,2,… (4)

where 0 < α < 1. We discovered that the initial temperature must be set such that around 25% of the

most undesirable solutions are accepted at the start. At the last step in the algorithm, following the

geometric cooling strategy, 𝑇𝑒𝑚𝑝𝑁 =∝𝑁 𝑇𝑒𝑚𝑝0. So, we have

𝑁 = log∝
𝑇𝑒𝑚𝑝 𝑁

𝑇𝑒𝑚𝑝 0
 (5)

The procedure of SA is given below in algorithm2:

Algorithm2: Simulated Annealing

Procedure:

1. Randomly start a group of processing units and set the control parameter to an extremely big

positive number.

2. Repeated until the control parameter value approaches the minimal:

a) Produce a random set of processing units as well as compute the Δcost utilizing:

ΔCost = Cost(j) – Cost(i) (6)

b) Choose a new set of processing units based on the probability Pij found utilizing:

𝑃𝑖𝑗 (𝑐𝑜𝑠𝑡) = 𝑚𝑖𝑛 {1, 𝑒𝑥𝑝 (−(𝐶𝑜𝑠𝑡(𝑗) − 𝐶𝑜𝑠𝑡(𝑖))/𝑐𝑜𝑠𝑡)} (7)

c) Repeated until the inner loop break condition is reached.

d) Reduce temperature at a set rate.

e) Goto steps two loops.

3. End

Algorithm 3 gives an overview of the proposed HISA load balancing algorithm using pseudocode,

and the flowchart for this model is given in figure 3.

Algorithm3. HISA-LB Algorithm Pseudocode

Procedure:

1. Start

2. Generate the harmony memory

3. Initialization of all parameters

4. Initialization of Temp

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9038

Vol. 71 No. 4 (2022)

http://philstat.org.ph

5. Num = 0, ꝺ= 500

6. Place BestX (the best solution in Harmony Memory (HM)) into Ϩ

7. BstSol = BstSASol = Ϩ

8. For p = (1 to Num) do

9. If (random (0,1) ≤ HM_CR) Then

10. Select 2 vectors solution symbolized as υ1 & υ2 at random from Harmony memory

11. If (random (0,1) ≤ P_A_R) Then

12. υ = put on a PMX crossover to υ1 and υ2

13. newX = the best neighbor amongst some of the neighbors created by υ

14. If (SumCost(newX) < SumCost(worstX)) Then

15. Swap worstX by newX //Modifying the HM

16. End of If

17. End of If

18. End of If

19. Else

20. Ϩ' = the best neighbor among the generated neighbors of Ϩ

21. ∆Cost = SumCost(Ϩ') – SumCost(Ϩ)

22. probability = Random (0,1)

23. If ((∆Cost ≤ 0) or (probability <𝑒−∆𝐶𝑜𝑠𝑡/𝑇𝑒𝑚𝑝)) Then

24. Ϩ = Ϩ', newX = Ϩ'

25. If (SumCost(newX) < SumCost(worstX)) Then

26. Swap the worstX by newX // Modifying the HM

27. End of If

28. If (SumCost(Ϩ) < SumCost(BstSASol)) Then

29. BstSASol = Ϩ

30. End of If

31. End of If

32. Temp = Modify (Temp)

33. End of Else

34. If (SumCost(BestX) < SumCost(BstSol))

35. BstSol = BestX, Num = 0

36. End of If

37. If (SumCost(BstSASol) - SumCost(BstSol) ≥ ꝺ)

38. Ϩ = BstSol

39. End of If

40. End of For

41. Get result BstSol together with its fitness function value

42. Stop.

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9039

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Fig. 3. Flowchart of proposed HISA-LB model in cloud

IV. RESULTS AND DISCUSSION

The suggested HISA load balancing approach is analyzed and contrasted to other already used

strategies. The suggested HISA load balancing method is implemented using the Eclipse Java

Programming Environment and the CloudSim toolset. We utilized a PC with the following

Start Set all HS parameters, temp, N=0, Nmax

Initialize HM randomly

Calculate fitness function for HM harmonies

N=1

j=1

Random < HM_CR

Select to metros form HM randomly

𝑛𝑒𝑤𝑋 = 𝑥𝑘 ,𝑗

Random < P_A_R

Do pitch Adjacent &Put PMX Crossover
j=d?

j= j+1

𝑛𝑒𝑤𝑋 = 𝑥𝑘 ,𝑗

Calculate fitness function of NewX

Best candidate

Simulated annealing

Random Neighborhood

structure

Acceptance Penalty

evaluation

 Probability evaluation

Cooling schedule

Final Temp

reached?

Cost(NewX) < Cost(worstX)

Do replacement

N=Nmax

Return best solution with

minimum penalty

N=

N+

1

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Result BstSol

with fitness value

Calculate performance

parameters (Execution time,

makespan, RU, throughput)
Stop

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9040

Vol. 71 No. 4 (2022)

http://philstat.org.ph

specifications: Intel (R) Core (TM) i5-Processor (2.40 GHz), NVIDIA GeForce, and 12GB of

RAM. The operating system was Windows 10 64-bit. The parameters used for the simulation are

shown below.

A. Experiment Setup

This section discusses different experimental settings with parameters and their values. As shown

in Table 1, we examined non-preemptive activities that are free for the test. In a data center, tasks

are assigned to several heterogeneous VMs. The HISA load balancing method has many

characteristics. We compared the effectiveness of the HISA load balancing algorithm to that of the

LBMPSO method in this section. It is necessary to use two separate testing scales: (1) three VMs

with ten to fifty tasks each; (2) five VMs with ten to fifty tasks each.

Table 1. Parameters properties.

Parameters Value

Cloud TaskRange 10-50

CloudLength 1000-

6000

Cloud FileSize 300

VMRange 3-5

Memory 256-512

CPUs 1-5

Bandwidths 1000

VMMs XEN

Processing speed (MIPS) 250-300

HM Size (SIZE_HM) 20

Number of New Harmonies

(NUM_IMP)

30

HM Consideration Rate

(HM_CR)

0.9f

PAR 0.1f

Fret Width (F_W) 0.02f

Number of iterations 500

cooling rate (ALPHA) 0.9

initial temperature (t) 1000

B. Performance Metrics

The computing model/layer orchestrated greatly influences performance metrics.

Makespan: Makespan, also known as completion time, is overall time essential to procedure a

collection of tasks from start to finish. It is described as the moment when the last task exited the

system. Makespan may be reduced by allocating a set of Ji tasks to a set of VM 'vm'; the sequence

of execution of the jobs in VMs is unimportant.

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9041

Vol. 71 No. 4 (2022)

http://philstat.org.ph

The scheduling task is to minimize the Makespan since most users want their programs to run as

quickly as possible, as indicated in Eq (8):

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝐶𝑇𝑛 (8)

Where, 𝐶𝑇𝑛 is the completion time of the last task.

Average Execution Time: CPU time or execution time of a supplied task is the amount spent with

the system performing that task, such as time spent executing run-time or system functions on its

behalf. Generally said, it is the amount of time the task needs to accomplish its execution.

Throughput is described as the ratio of arrival tasks to processed tasks during a certain time period.

The equation reads as follows:

𝑇𝑟𝑜𝑢𝑔𝑝𝑢𝑡 = (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠)/(𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒) (9)

Average Resource Utilisation Ratio: The created algorithm's objective is to optimize the cloud's

resources' most efficient utilization possible. The resource utilisation ratio is determined using Eq.

10[13].

𝐴𝑅𝑈𝑅 = (𝑚𝑒𝑎𝑛𝑡𝑖𝑚𝑒/𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛) ∗ 100 (10)

Resource Utilization is defined as the percentage of resources consumed by the incoming workload.

In other words, it shoes

When average time = ∑processing time resources VMj to carry out tasks that have been allocated,

the value of j may vary from 1 to m, and the range of ARUR can be anything from 0 to 1. The value

1 indicates that a resource is being used to its maximum utilization (100%), whereas the value 0

indicates that the resource is at its optimal condition.

Response time is described as a time that elapses between making a request to the server and

completing the task execution.

Average response time: The total amount of time spent replying during the selected time period,

multiplied by the number of reactions received during the selected time period.

C. Results

This section discusses the results of the proposed HISA load balancing cloud computing approach

for two scenarios, including 3VMs 10 to 50 cloudlets and 5VMs 10 to 50 cloudlets.

Fig. 4. Enter GUI for VMs at the Data center

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9042

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Figure 4 shows the GUI for inputting the Virtual machine 3 or 5 at the data center. From here, the

user can choose one of the scenarios to test the approach.

Fig. 5. Enter GUI for Cloudlets

Figure 5 shows the GUI for inputting the cloudlets between 10 to 50 for any scenario after selecting

VMs at the data center. From here, the user can choose a maximum of 50 cloudlets for any scenario

to test the approach.

1) Scenario 1: 3 VMs 10 to 50 cloudlets

Fig. 6. 3 VMs 10 cloudlets

Figure 6 shows the output for scenario-1 with 3 VMs and ten cloudlets. In this cloudlets ID, status,

DC ID, VM ID, time, start time and finish time are displayed, where cloudlet ID 8 takes minimized

finish time of 10.68 seconds, and the highest finish time is 40.71 seconds at Cloudlets ID 9. By

experimenting, five runs at this scenario achieved at least 40.71 seconds maximum makespan. The

highest resource utilization is 5.189, and the throughput is 0.246.

Fig. 7. 3 VMs 20 cloudlets

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9043

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Figure 7 shows the output for scenario-1 with 3 VMs and 20 cloudlets. In this scenario, cloudlet ID

15 takes minimized finish time of 9.54 seconds, and the highest finish time is 66.66 seconds at

Cloudlets ID 13. By experimenting, five runs at this scenario achieved the least 66.66 seconds

maximum makespan. The highest resource utilization is 11.19, and the throughput is 0.3.

Fig. 8. 3 VMs 30 cloudlets

Figure 8 shows the output for scenario-1 with 3 VMs and 30 cloudlets. In this scenario, cloudlet ID

8 takes minimized finish time of 16.21 seconds, and the highest finish time is 127.48 seconds at

Cloudlets ID 3. But the start time for each cloudlet is 0.1 seconds. By experimenting, five runs at

this scenario achieved least 127.48 seconds maximum makespan. The highest resource utilization is

13.45, and the throughput is 0.235.

Fig. 9. 3 VMs 40 cloudlets

Figure 9 shows the output for scenario-1 with 3 VMs and 40 cloudlets. In this scenario, cloudlet ID

36 takes the highest finish time, 161.93 seconds, at Cloudlets ID 3. But the start time for each

cloudlet is 0.1 seconds. By experimenting, five runs at this scenario achieved 161.93 seconds

maximum makespan. The highest resource utilization is 17.97, and the throughput is 0.247.

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9044

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Fig. 10. 3 VMs 50 cloudlets

Figure 10 shows the output for scenario-1 with 3 VMs and 50 cloudlets. In this scenario, cloudlet

ID 38 is successful at Datacenter ID 2 with no allocation of VM and takes 103.48 seconds highest

finish time Cloudlets ID 3 with 0.1 seconds start time. Out of five experiments for 3 VMs 50

cloudlets, it has achieved 103.48 seconds maximum Makespan. The highest resource utilization is

18.44, and the throughput is 0.483.

2) Scenario 2: 5 VMs 10 cloudlets

Fig. 11. 5 VMs 10 cloudlets

Fig. 12. 5 VMs 20 cloudlets

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9045

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Fig. 13. 5 VMs 30 cloudlets

Fig. 14. 5 VMs 40 cloudlets

Fig. 15. 5 VMs 50 cloudlets

Similar to scenario-1, Figures 11 to 15 show the output for scenario-2 with 5 VMs and 10 to 50

cloudlets. In this, cloudlet IDs are included as per their status and finish time, where cloudlet IDs

are arranged as minimized finish time, and the highest finish time is considered the maximum

Makespan in seconds. In this case, five different experiments have been done and take only the least

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9046

Vol. 71 No. 4 (2022)

http://philstat.org.ph

maximum makespan results at scenario-2. Due to the proposed HISA-LB approach, some other

performance parameters like highest resource utilization, ARUR, average execution time, minimum

Makespan and throughput are added.

Table 2. Experiments run for the proposed HISA-LB approach

Scenarios

Cloudlets

Maximum

Makespan

Minimum

Makespan

Average

Execution

Time

Throughput ARUR RU

Scenario-

1

10 40.710 10.68 20.99 0.246 0.692 5.18

20 66.66 9.54 37.2 0.300 0.763 11.19

30 127.48 16.21 57.09 0.235 0.622 13.46

40 161.93 23.22 72.66 0.247 0.639 17.97

50 103.48 6.21 38.07 0.483 0.511 18.44

Scenario-

2

10 28.65 4.66 13.62 0.349 0.641 4.79

20 48.55 7.56 19.94 0.412 0.57 8.26

30 50.67 7.48 25.41 0.592 0.676 15.10

40 85.24 7.15 31.68 0.469 0.539 14.91

50 99.7 7.98 39.23 0.501 0.550 19.72

Table 2 represents two scenarios' different experimental results in the cloud computing running

environment. It calculated the results on different cloudlets by including performance parameters

like min and max makespan, avg. Execution time, throughput, resource utilization and average

resource utilization resources.

(a)Scenario-1 (b) Scenario-2

Fig. 16. Time taken results using the HISA-LB approach

Figure 16 shows the time results found by the proposed HISA-LB approach. Here, three-timing

results are included in which maximum Makespan, minimum Makespan and average execution time

are measured in seconds. In this figure, the x-axis specifies no. of cloudlets, or the y-axis specifies

time in seconds. Fig. 16 (a) is used to display the Makespan and avg. Execution time results for 3

VMs in the first scenario. From this graph, it can be seen that initially, the Makespan is a minimum

of 10 cloudlets. Makespan increases as the number of cloudlets or tasks increases, and the highest

0

50

100

150

200

10 20 30 40 50

in
 s

e
c
.

No. of cloudlets(tasks)

TIME FOR 3 VMS

Maximum Makespan Minimum Makespan

Average Execution Time

0

20

40

60

80

100

120

10 20 30 40 50

IN
 S

E
C

.

NO. OF CLOUDLETS

TIME FOR 5 VMS

Maximum Makespan Minimum Makespan

Average Execution Time

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9047

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Makespan is at 40 cloudlets. But makespan decreases 50 cloudlets for all maximum and minimum

values and reduces the average execution time. Similarly, Fig. 16 (b) displays the Makespan and

avg. Execution time results for 5 VMs in the second scenario. This graph shows that initially, the

maximum Makespan is less than 30 seconds at ten cloudlets, then it increases slowly and reaches

the highest at 50 cloudlets by taking approx. 100 seconds. If we talk about the minimum Makespan,

this is initially less than 5 seconds. It is constant with 7 to 8 seconds till the 50
th

 cloudlets, and

average execution time increases as the number of cloudlets or tasks increases with 6 seconds time

differences at each task size.

(a) Scenario-1 (b) Scenario-2

Fig. 17. Throughput results using the HISA-LB approach

Figure 17 shows the throughput results found by the proposed HISA-LB approach. Here, the x-axis

specifies the no. of cloudlets, and the y-axis specifies the throughput value. Fig. 17 (a) displays the

throughput results for 3 VMs in the first scenario. This graph shows that the throughput value is

highest at 50 cloudlets only among all cloudlets, achieving 48.3% throughput. But when looking for

5 VMs in scenario 2 (in figure 17 (b)), it achieved a higher throughput rate compared to the

scenario1, and maximum throughput was achieved at 30 cloudlets size by achieving 59.2%

throughput.

(a) Scenario-1 (b) Scenario-2

Fig. 18. Resource utilization results using the HISA-LB approach

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50

No. of cloudlets

THROUGHPUT FOR 3 VMS

Throughput

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 20 30 40 50

No. of cloudlets

THROUGHPUT FOR 5 VMS

Throughput

0

5

10

15

20

10 20 30 40 50

NO. OF CLOUDLETS

RESOURCE UTILIZATION FOR 3 VMS

RU

0

5

10

15

20

25

10 20 30 40 50

NO. OF CLOUDLETS

RESOURCE UTILIZATION FOR 5 VMS

RU

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9048

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Figure 18 shows the Resource utilization results found by the proposed HISA-LB approach. Here,

the x-axis indicates several cloudlets of 10-50 size, and the y-axis indicates Resource utilization

values. Fig. 18 (a) displays the Resource utilization results for 3 VMs in the first scenario. From this

graph, it may be seen that Resource utilization rises as no. of tasks rises. Therefore, the highest

resource utilization value is 18.44 at 50 cloudlets size.

Similarly, in fig. 18 (b), Resource utilization is increased per increment in cloudlets size for 5 VMs

in the second scenario. But the Resource utilization is higher than in the first scenario because of

maximum availability of VMs. So, the number of cloudlets can efficiently utilize their available

resources and achieved the highest Resource utilization19.72 at 50 cloudlets.

Table 3. Comparison table for different experiments in Scenario-1

Scenarios Runs Maximum

Makespan

Minimum

Makespan

Average

Execution

Time

Throughput ARUR RU

HISA-LB

Experiment

1

40.71 10.68 20.99 0.246 0.692 5.18

Experiment

2

66.66 9.54 37.2 0.300 0.763 11.19

Experiment

3

127.48 16.21 57.09 0.235 0.622 13.46

Experiment

4

161.93 23.22 72.66 0.247 0.639 17.97

Experiment

5

103.48 6.21 38.07 0.483 0.511 18.44

LBMPSO

Experiment

1

54.1 4.27 24.04 0.185 0.604 4.46

Experiment

2

107.8 13.38 49.22 0.186 0.565 9.15

Experiment

3

155.26 13.81 69.16 0.193 0.553 13.38

Experiment

4

208.63 23.54 92.18 0.192 0.539 17.69

Experiment

5

246.82 24.47 102.41 0.203 0.541 20.77

Table 3 represents the best five experimental results for both proposed HISA-LB and existing

LBMPSO approaches in the cloud computing running environment for the scenario1. It compares

the experimented results on different cloudlets sizes in terms of min makespan and max makespan,

avg. Execution time, throughput, average resource utilization, and resource utilization for scenario

1.

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9049

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Fig. 19. Comparison graph of Makespan and execution time found for 3 VMs and 10-50 task sets

Fig. 19 represents the bar graph comparison of the HISA-LB approach with the LBMPSO approach

for 3 VMs and 10-50 tasks in scenario 1 to show the comparison of Makespan. This bar comparison

graph reveals that maximum Makespan is less, with a significant difference as the number of tasks

increases. Initially, the maximum Makespan is 40.71 seconds at ten cloudlets, which is minimal to

the LBMPSO approach, which takes 54.1 seconds. Still, the highest maximum Makespan was

achieved at 40 tasks, which is 161.93 seconds by the HISA-LB approach. At the same time,

minimum Makespan is also minimized in the proposed HISA-LB approach than LBMPSO except

for ten and 30 tasks in this scenario. Also, a comparison of average execution time is made between

the HISA-LB approach and the LBMPSO approach for scenario 1.

Similarly to maximum makespan comparison, HISA-LB takes minimized average execution time

for all task sets compared to the LBMPSO approach. Here the considerable difference in execution

time of both approaches with an increased number of tasks and least execution time is 20.99

seconds at ten tasks by HISA-LB. However, the highest execution time is 72.66 seconds for 40

tasks by HISA-LB, but LBMPSO takes more than 92.18 seconds for 40 tasks and 102.41 seconds

for 50 tasks.

Fig. 20. Comparison graph of throughput found for 3 VMs and 10-50 task sets

0 50 100 150 200 250 300

10

30

50

20

40
H

IS
A

-L
B

L

B
M

P
S

O

in Seconds

N
o

 o
f

ta
sk

s
at

 a
p

p
ro

ac
h
es

SCENARIO-1 TIME COMPARISON

Average Execution Time

Minimum Makespan

Maximum Makespan

0
0.1
0.2
0.3
0.4
0.5
0.6

10 20 30 40 50 10 20 30 40 50

HISA-LB LBMPSO

No of tasks at Approaches

SCENARIO-1 THROUGHPUT COMPARISON

Throughput

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9050

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Fig. 20 represents the throughput comparison between HISA-LB and LBMPSO approach for 3

VMs and 10-50 task sets in scenario 1. From this line comparison graph, we can see that throughput

is variate as the number of tasks increases. Initially, throughput was 0.246 at ten cloudlets, then

constant in between 30 to 40 cloudlets, but suddenly throughput increased to 0.483 at 50 cloudlets

for the HISA-LB approach. But when we look for the LBMPSO approach, it achieved a constant

throughput value from 10 to 20 task sets in a cloud with minor differences and lastly achieved 0.203

throughputs at 50 task sets.

Fig. 21. Comparison graph of resource utilization found for 3 VMs and 10-50 task sets

Figure 21 depicts the resource utilization and average resource utilization in the HISA-LB

technique when compared to other LBMPSO-based strategies with task sets ranging from 10-50 run

across three virtual machines in scenario 1. Furthermore, regardless of the number of VMs, resource

use increases with the tasks. This resource utilization is less at 50 cloudlets/tasks using the proposed

HISA-LB approach than LBMPSO, achieving 18.44 and 20.77, respectively. Similarly, if resource

utilization of the HISA-LB approach is good than LBMPSO, then ultimately, resource utilization is

achieved the same results. ARUR is also good at each cloudlet size except 50 cloudlets.

Table 4. Comparison table for different experiments in Scenario-2

Scenari

os

Runs Maximu

m

Makesp

an

Minimu

m

Makesp

an

Average

Execution

Time

Throughp

ut

ARU

R

RU

HISA-

LB

Experimen

t 1

28.65 4.66 13.62 0.349 0.641 4.79

Experimen

t 2

48.55 7.56 19.94 0.412 0.57 8.26

Experimen

t 3

50.67 7.48 25.41 0.592 0.676 15.10

0 5 10 15 20 25

10

20

30

40

50

10

20

30

40

50

H
IS

A
-L

B

L
B

M
P

S
O

N
o

 o
f

ta
sk

s
at

 A
p

p
ro

ac
h
es

SCENARIO-1 RESOURCE UTILIZATION

COMPARISON

RU ARUR

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9051

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Experimen

t 4

85.24 7.15 31.68 0.469 0.539 14.91

Experimen

t 5

99.7 7.98 39.23 0.501 0.550 19.72

LBMPS

O

Experimen

t 1

27.4 4.44 14.03 0.365 0.702 5.16

Experimen

t 2

100.1 4.93 37.21 0.199 0.328 7.46

Experimen

t 3

92.1 4.95 29.58 0.326 0.431 9.67

Experimen

t 4

128.83 6.74 40.56 0.310 0.404 12.63

Experimen

t 5

130.23 8.83 45.69 0.384 0.456 17.58

Table 4 represents scenario two experimental results, including the best five experiments on 10-50

cloudlets for proposed HISA-LB and existing LBMPSO approaches in the cloud. The proposed

HISA-LB is compared with LBMPSO performance parameters and achieves better results than the

LBMPSO approach on different cloudlets.

Fig. 22. Comparison graph of Makespan and execution time found for 5 VMs and 10-50 task sets

Figure 22 represents the bar graph comparison between of HISA-LB approach and the LBMPSO

approach for 5 VMs and 10-50 tasks in scenario 2 to show the comparison of Makespan. From this

0 20 40 60 80 100 120 140

10

20

30

40

50

10

20

30

40

50

H
IS

A
-L

B
L

B
M

P
S

O

in Seconds

N
o
 o

f
ta

sk
s

a
t

A
p

p
ro

a
ch

es

SCENARIO-2 TIME COMPARISON

Average Execution Time Minimum Makespan Maximum Makespan

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9052

Vol. 71 No. 4 (2022)

http://philstat.org.ph

comparison graph, we found that the maximum Makespan is very less as the number of tasks

increases in HISA-LB. However, initially, the maximum Makespan is high 28.65seconds at ten

cloudlets than the LBMPSO approach, which takes 27.4 seconds by exceeding 1.25 seconds. Still, it

is very minimum for remaining all task sets from 20 to 50 cloudlets/tasks than LBMPSO maximum

makespan, and the difference is just double approximately for maximum Makespan. If seeing at

minimum Makespan, then found that minimum Makespan is high in HISA-LB compared to

LBMPSO except for 50 tasks set, which takes 7.98 seconds and 8.83seconds, respectively, in

scenario 2. Also, a comparison of average execution time is visualized between the HISA-LB

approach and LBMPSO approach for scenario 2.

Similarly to the maximum makespan comparison, HISA-LB takes a reduced average execution time

for all task sets compared to the LBMPSO approach. The difference in average execution time is

significant using both approaches. If the number of tasks increases, then their execution time is also

increasing, and the least execution time is 13.62 seconds for ten tasks by HISA-LB than 14.03

seconds by LBMPSO. However, the highest execution time is 39.23 seconds at 50 tasks by HISA-

LB, but LBMPSO takes 45.69 seconds which is higher.

Fig. 23. Comparison graph of throughput found for 5 VMs and 10-50 task sets

Figure 23 represents the line comparison graph of throughput between HISA-LB and LBMPSO

approaches for 5 VMs and 10-50 task sets in scenario 2. From this line graph, we can compare and

find high variations in throughput values for several tasks. Initially, throughput is 0.349 at ten

cloudlets, then it increases till 30 cloudlets with the highest throughput is 0.592, then it decreases at

40 cloudlets and increases at 50 cloudlets for the HISA-LB approach. When we look for the

LBMPSO approach, it achieved not such a good throughput value as HISA-LB from 10-50 tasks

sets but increased with several tasks minor differences except at 20 cloudlets which achieved 0.199

and lastly achieved 0.384 throughputs at 50 tasks set.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 20 30 40 50 10 20 30 40 50

HISA-LB LBMPSO

No. of tasks at Approaches

SCENARIO-2 THROUGHPUT COMPARISON

Throughput

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9053

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Fig. 24. Comparison graph of resource utilization found for 5 VMs and 10-50 task sets

Figure 24 represents the resource utilization with average resource utilization using HISA-LB and

LBMPSO approach for 5 VMs or 10-50 task sets in scenario 2. From this comparison, we can see

that as the number of tasks increases, resource utilization also increases, and the highest resource

utilization HISA-LB achieves average utilization-LB compared to LBMPSO. However, resource

utilization is high at each cloudlet's size, but the highest resource utilization was achieved, i.e.,

19.72 at 50 cloudlets by HISA-LB, while LBMPSO achieved 17.58.

VI. CONCLUSION

The scheduling process in a cloud computing infrastructure involves several difficult challenges,

including computation time, cost, load balancing, and others. One of the most significant issues for

the Cloud infrastructure is LB. LB is the balancing load to obtain greater throughput or improved

resource usage. Because scheduling is an NP-complete issue, heuristic or meta-heuristic techniques

are favored solutions. In this research, we used a nature-inspired meta-heuristic technique to tackle

task scheduling problems in a cloud context, concentrating on two key goals: decreasing the

makespan/ computation time and improving LB. This work introduces HISA-LB, an LB strategy

based on harmony inspired by simulated annealing that may reduce total makespan time, boost

resource usage, and balance the load for each virtual machine. CloudSim Toolkit was used to run

the simulations. The results of the tests show that, under each situation, HISA-LB reduces the

makespan time and increases resource consumption compared to the LBMPSO approach.

Furthermore, as the number of tasks grows, so does resource usage with throughput in all

circumstances.

In preparation for future work, we are putting a lot of effort into developing a novel approach

that, in the not-too-distant future, will allow for an improvement in the quality of service

characteristics.

0 5 10 15 20 25

10

20

30

40

50

10

20

30

40

50

H
IS

A
-L

B
L

B
M

P
S

O

N
o

 o
f

ta
sk

s
at

 A
p

p
ro

ac
h
es

SCENARIO-2 RESOURCE UTILIZATION

COMPARISON

RU ARUR

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9054

Vol. 71 No. 4 (2022)

http://philstat.org.ph

REFERENCES

[1] G. Singh, M. Malhotra, and A. Sharma, “A Comprehensive Study on Virtual Machine

Migration Techniques of Cloud Computing,” in Lecture Notes in Electrical Engineering, vol.

553, 2019, pp. 591–603. doi: 10.1007/978-981-13-6772-4_51.

[2] N. Joshi, K. Kotecha, D. B. Choksi, and S. Pandya, “Implementation of Novel Load

Balancing Technique in Cloud Computing Environment,” in 2018 International Conference

on Computer Communication and Informatics, ICCCI 2018, 2018, pp. 1–5. doi:

10.1109/ICCCI.2018.8441212.

[3] M. Hosseini Shirvani, A. M. Rahmani, and A. Sahafi, “An iterative mathematical decision

model for cloud migration: A cost and security risk approach,” Softw. - Pract. Exp., vol. 48,

no. 3, pp. 449–485, 2018, doi: 10.1002/spe.2528.

[4] N. A. Joshi, “Performance-Centric Cloud-Based e-Learning,” IUP J. Inf. Technol., vol. 10,

no. 2, pp. 7–17, 2014.

[5] M. Hosseini Shirvani, A. M. Rahmani, and A. Sahafi, “A survey study on virtual machine

migration and server consolidation techniques in DVFS-enabled cloud datacenter: Taxonomy

and challenges,” J. King Saud Univ. - Comput. Inf. Sci., vol. 32, no. 3, pp. 267–286, 2020,

doi: https://doi.org/10.1016/j.jksuci.2018.07.001.

[6] M. Haris and S. Zubair, “Mantaray modified multi-objective Harris hawk optimization

algorithm expedite optimal load balancing in cloud computing,” J. King Saud Univ. -

Comput. Inf. Sci., 2022, doi: 10.1016/j.jksuci.2021.12.003.

[7] A. F. S. Devaraj, M. Elhoseny, S. Dhanasekaran, E. L. Lydia, and K. Shankar,

“Hybridization of firefly and Improved Multi-Objective Particle Swarm Optimization

algorithm for energy efficient load balancing in Cloud Computing environments,” J. Parallel

Distrib. Comput., vol. 142, pp. 36–45, 2020, doi: https://doi.org/10.1016/j.jpdc.2020.03.022.

[8] K. Balaji, P. Sai Kiran, and M. Sunil Kumar, “An energy-efficient load balancing on cloud

computing using adaptive cat swarm optimization,” Mater. Today Proc., 2021, doi:

10.1016/j.matpr.2020.11.106.

[9] R. Kaviarasan, P. Harikrishna, and A. Arulmurugan, “Load balancing in cloud environment

using enhanced migration and adjustment operator based monarch butterfly optimization,”

Adv. Eng. Softw., vol. 169, p. 103128, 2022, doi: 10.1016/j.advengsoft.2022.103128.

[10] K. S. Kannan, G. Sunitha, S. N. Deepa, D. Vijendra Babu, and J. Avanija, “A multi-objective

load balancing and power minimization in the cloud using bio-inspired algorithms,” Comput.

Electr. Eng., vol. 102, p. 108225, 2022, doi:

https://doi.org/10.1016/j.compeleceng.2022.108225.

[11] U. K. Jena, P. K. Das, and M. R. Kabat, “Hybridization of a meta-heuristic algorithm for

load balancing in a cloud computing environment,” J. King Saud Univ. - Comput. Inf. Sci.,

vol. 34, no. 6, Part A, pp. 2332–2342, 2022, doi:

https://doi.org/10.1016/j.jksuci.2020.01.012.

[12] A. K. Sharma, K. Upreti, and B. Vargis, “Experimental performance analysis of load

balancing of tasks using honey bee inspired algorithm for resource allocation in a cloud

environment,” Mater. Today Proc., 2020, doi: 10.1016/j.matpr.2020.09.359.

[13] M. Kumar and S. C. Sharma, “Load balancing algorithm to minimize the makespan time in a

cloud environment,” UK World J. Model. Simul., vol. 1, no. 4, pp. 276–288, 2018.

[14] Z. W. Geem and J. C. Williams, “Harmony search and ecological optimization,” Int. J.

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

9055

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Energy Environ., vol. 1, pp. 150–154, 2007.

[15] M. Mahdavi, M. Fesanghary, and E. Damangir, “An improved harmony search algorithm for

solving optimization problems,” Appl. Math. Comput., vol. 188, no. 2, pp. 1567–1579, 2007,

doi: https://doi.org/10.1016/j.amc.2006.11.033.

[16] K. S. Lee and Z. W. Geem, “A new meta-heuristic algorithm for continuous engineering

optimization: harmony search theory and practice,” Comput. Methods Appl. Mech. Eng., vol.

194, no. 36, pp. 3902–3933, 2005, doi: https://doi.org/10.1016/j.cma.2004.09.007.

[17] O. Abdel-Raouf and M. Metwally, “A Survey of Harmony Search Algorithm,” Int. J.

Comput. Appl., vol. 70, pp. 17–26, 2013, doi: 10.5120/12255-8261.

[18] B. Mondal and A. Choudhury, “Simulated Annealing (SA) based Load Balancing Strategy

for Cloud Computing,” Int. J. Comput. Sci. Inf. Technol., vol. 6, no. 4, pp. 3307–3312, 2015.

