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Abstract 

In today's digital age, data is invaluable, and massive amounts of data have 

been produced in every field imaginable. Reports from the healthcare sector 

often contain details about patients' health. By having this clinical expertise, 

we are better able to detect undetectable health problems and provide 

individualised therapy to each patient. The purpose of this study was to 

evaluate and contrast several kernel-based Support Vector Machine (SVM) 

models for use in healthcare prognostication. With the SVM-LRBF 

technique, we examined the models with the feature reduction set of the 

Renal Disorders Disease, Diabetes Mellitus, and Cardiovascular Disease 

datasets. Similarities and differences between the models and other machine 

learning systems such as Random Forest, SVM-Linear, Decision Tree, SVM-

Gaussian Radial Bias Kernel, and SVM-Polynomial were also analysed. 

Performance of machine learning approaches was measured using a number 

of different metrics, including specificity, sensitivity, precision, 

misclassification rate, and accuracy. The experimental findings showed 98.1 

percent accuracy for the Renal Disorders Disease dataset, 90.9 percent 

accuracy for the Diabetes mellitus dataset, and 98.1 percent accuracy for the 

Cardiovascular Disease dataset. 

Keywords: Support Vector Machine, Laplace Radial Bias Kernel, Multi-

Disease Prediction Model, Radial Bias function, Diabetesmellitus and 

Cardiovascular Disease, Renal Disorders. 

 

I. INTRODUCTION 

Today, we utilise Machine Learning to make predictions about almost everything. Applications 

include weather forecasting, stock market analysis, disease prognosis, cyber attack forecasting, 

battery life prediction, software quality forecasting, wireless sensor network (WSN) security threat 

forecasting, Internet of Things (IoT) device fraud detection, and many more. Algorithms that utilise 

large datasets [7, 13] can be better comprehended, generalised, and predicted with the aid of 

machine learning algorithms [25]. Both computational statistics and decision theory have deep roots 

in the field of machine learning (ML). Forecasting product sales, predicting low oxygen levels 

during surgery, estimating the likelihood of a certain amount of rain falling in a specific area, etc., 

are all examples of situations in which machine learning techniques and approaches are used. 
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In the field of medicine and health care today, most machine learning models are created to study 

only one disease. Most state-of-the-art approaches[31] focused on a single type of analysis, such as 

diabetes [29][36], cancer [30][32][33][34], skin diseases [35], or lung diseases [37][38]. There is 

currently no well-accepted method for making multiple disease predictions from a single study.In 

order to aid in the diagnosis and critical stages of a disease, doctors need to be able to recognise 

patterns in patient cases [5].Predictive analytics [27][28] for individual health care, monitoring 

patients' adverse signs during trials, and assisting doctors in determining the medication for patients 

can all benefit from the methodical study of machine learning algorithms. Here, we present a 

Medico-Supportive System [10] for disease prognosis that makes use of machine learning 

methods.The primary goal of this system is to speed up diagnosis so that treatment can begin sooner 

for patients. This decision support system was built on top of the SVM-LRBF for disease 

prediction, and its performance was compared to that of other state-of-the-art methods [6]. 

IIRELATED WORK 

Medical data statisticians and analysts utilise a wide variety of algorithms to make illness 

predictions. Different algorithms[23][24] utilised for the analysis of clinical data are discussed, as 

well as many studies in health analytics [19], chronic renal illnesses, diabetes mellitus, 

cardiovascular disease, and other related topics.Numerous strategies[14], procedures[19], and 

methods[20][21][22] have been created for the purposes of multi-disease prediction[1][2][6], multi-

disease diagnosis[16][17][20], multi-disease recommendations[10][11][15], multi-disease 

analysis[13], and multi-disease classification[12][16] [18]. This section will focus on a handful of 

them. 

Using Flask API (the python pickling and unpickling files idea), Tensor Flow, and Machine 

Learning algorithms, Yaganteeswarudu, A. (2020) [1] predicted a variety of ailments, including 

diabetes, cancer, and heart disease. To study diabetic retinopathy, we gathered data from the UCI 

machine learning repository; to study diabetes, we used the Pima Indian Diabetes Dataset; and to 

study cancer, we used the Cancer Wisconsin (Diagnostic) Data Set. For diabetes, the model had a 

92% success rate; for cardiovascular disease, 95%; and for cancer, 96%. 

Chronic obstructive pulmonary disease, obesity, hypertension, bronchial asthma, cardiovascular 

disease, blood cholesterol, triglycerides, pneumonia, diabetes, and other conditions were predicted 

using a non-invasive diagnostic approach by Vijayalaxmi, A. et al., (2020) [2]. They looked at just 

one factor for each condition, such as blood pressure for hypertension, temperature for fever, pulse 

oximeter for lung disease, glucose for diabetes disregarding skin thickness and insulin, body mass 

index (BMI) for obesity, and so on. They used many machine learning models to predict diabetes 

based on both basic and advanced sets of characteristics, and then compared the algorithms' 

performance. Using Decision Tree Classifier, they got an accuracy of 74.68%, whereas using Naive 

Bayes, they got 78.57% for diabetes milletus. 

Taking into account both diabetic retinopathy and diabetic macular edema, Tu, Z., Gao, S., et al., 

(2020) [3] created a model for the simultaneous prediction of retinal illnesses, which they dubbed 

the feature Separation and Union Network (SUNet). The model's overall accuracy is 61.16 percent. 

The model has a 65% success rate in identifying diabetic retinopathy and an 81.5% success rate in 

identifying diabetic macular edema. 



Mathematical Statistician and Engineering Applications 
ISSN: 2094-0343 

2326-9865 

 
25 

Vol. 68 No. 1 (2019) 

http://philstat.org.ph 

 

 

Using Recurrent Neural Networks, Wang et al. (2019) [4] predicted a wide range of ailments, 

including acute renal failure, diabetes, heart disease, lung disease, etc. Different measures of the 

model's efficacy were taken into account throughout the analysis. Experiments on the MIMIC 

dataset, which includes information about patients hospitalised in intensive care units, yielded an 

exact-match score of 98.90% when using 3-digit aggregation and 96.60% when using 4-digit 

aggregation, while those conducted on the GenCare dataset yielded scores of 95.12% and 96.83%, 

respectively. 

Multiple Linear Discriminant Model was suggested by Kundu, A. K. et al., (2020) [5] to predict 

gastrointestinal disorders such as bleeding, ulcer, and tumour. Different measures of performance, 

such as F1-Score, recall, precision, and accuracy, are used to assess the model's efficacy. The 

proposed model achieved a high F-1 score (86.27%) along with high accuracy (91.38%), precision 

(87.14%), recall (85.41%), and accuracy (86.27%) from independent samples.Multi-disease 

prediction using SVM-Radial bias kernel technique: Harimoorthy, K., et al., (2020) [6] obtained 

98.3% accuracy for the Renal disorders dataset, 98.7% accuracy for the Diabetes mellitus dataset, 

and 89.9% accuracy for the Cardiovascular Disease dataset. 

Using a k-medoid clustering algorithm and a fuzzy model, i.e. a modified adaptive neuro-fuzzy 

inference (M-ANFIS) system, Vidhya, K et al. (2020) [7] focused on health care big data (BD) of a 

healthcare organisation in the United States and analysed a number of diseases, including diabetes, 

malaria, dengue, etc . Precision, recall, F-measure, and accuracy were some of the metrics used to 

assess M-performance. ANFIS's After being pitted against Neural Networks, SVM, Deep Neural 

Networks, and an adaptive neuro-fuzzy inference system, M-ANFIS came out on top with 98% 

recall, 98% F-measure, 98% precision, and 95% accuracy (ANFIS). 

Using weakly supervised image classification, Tushar, F. I. et al. (2020) [8] successfully predicted 

many illnesses, including lung, liver, and renal ailments, with an F1-score of 98% and an accuracy 

of 99% when the test set was manually verified.Using a recursive neural knowledge network 

(RNKN), Jiang, J. et al. (2020) [9] predicted many illnesses with a degree of accuracy of 55, 67, 

and 59 percent for networks of 50, 100, and 200 dimensions, respectively. 

IIIMETHODOLOGY 

Figure 1 shows the conceptual architecture we advocate for the recommended medically supporting 

system, and Figure 2 shows a data flow depiction of the system. The illness classification flowchart 

utilising a medically-based method is shown in Figure 3. 
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Figure 1: Health Care Sustaining Mechanisms 

 

Figure 2: Illustration of a Decision Support System as a Flow of Data 

Support Vector Machine 

Support vector machine (SVM) is a statistical learning technique that may be used to divide the data 

into two groups: positive and negative. The following equations are used to classify the data along 

the maximum marginal hyperplane: 

zi . v + i ≥ +1 ∀ yi = +1 

zi . v + i ≤ -1 ∀ yi = -1 

where z, v are vectors and i is bias. 
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Figure 3: Disease classification flowchart based on medical decision support data. 

In all, there are four different models that make up the Medico-Supportive System. 

A. Data preprocessing model 

Removing irrelevant, missing, incomplete, and noisy information from data sources is a crucial part 

of data analysis, which is why data preparation is so important. These questions will be answered 

during the preliminary processing of the data. Some of the following methods are used in machine 

learning to deal with missing information. 

(i)The missing fields are ignored. 

(ii) Missing values are computed with the mean value of the attributes. 

(iii) Computing missing values using statistical models such as a linear regression model. 

In this work, we ignored the missing fields for data preprocessing. 

B. Feature selection model 

In order to find the best attributes from the selected data set we used ANOVA(Analysis Of  

Variance) method because the classifier’s accuracy doesn’t rely on entire set of features{f1, f2, f3, 

f4,…,fC} of the dataset ‘D’ where ‘C’ is the count of total attributes. The best attributes which are 

chosen from the data set ‘D’ is represented as {f1, f2, f3, f4,…,fc }, where c<C.  

C. Feature extraction model 

When selected features are broken down further, we get a new, more manageable collection of 

features. It's a process that takes the richness of the raw data and distils it into a more manageable 

collection of characteristics. 
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D. Predictive model. 

The quality of the data, the quantity of the data collection, and the prediction algorithm all 

contribute to the reliability of the predictions made by a medico-supportive framework. 

There are several ways in which the SVM algorithm's precision might be enhanced. One such 

option is to modify the kernel's function. 

The kernel function K(p, q) is defined as <f(m), f(n)>, where ‘f’ is function that maps from the 

dimensional space and p, q are the dimensional inputs. 

The following are the different types of mathematical functions used in the kernel. 

1. Polynomial Kernel 

It is widely used in image processing. It can be formulated as follows: 

K(pu, pv ) = (pu * pv +1)d 

Where ‘d’ is the degree of the polynomial. 

2. Gaussian Kernel 

It can be formulated as follows: 

K(p, q) = exp(-||p−q||
2

2σ2
) 

3. Gaussian Radial Bias function (RBF) 

It can be formulated as follows: 

K(pu, pv ) = exp(- γ || pu- pv ||
2 ) 

4. Laplace RBF Kernel 

It can be formulated as follows: 

K(p, q) = exp(- 
||𝑝−𝑞||

𝜎
 ) 

5. Hyperbolic Tangent Kernel 

It can be formulated as follows: 

K(pu, pv ) = tanh(k(pu * pv) + c ) 

6. Sigmoid Kernel 

It can be formulated as follows: 

K(p, q) = tanh(α pTq +c) 

7. Bessel function of first kind kernel 

It can be formulated as follows: 
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K(p, q) = 
𝐽𝑎+1𝜎||𝑝−𝑞||

||𝑝−𝑞||−𝑛(𝑎+1)
 

8. Anova  Radial Basis Kernel 

It can be formulated as follows: 

K(p, q) = ∑ exp⁡(−σ((𝑝𝑘 − 𝑞𝑘))2)𝑑)
𝑛

𝑘=1
 

9. Linear Spline Kernel in One dimension 

It's helpful when working with large sparse vectors of data. Sometimes it is used in categorization of text. 

Even the splines kernel performs well inregression issues. It is formulated as follows: 

𝐤(𝐩, 𝐪) = 𝟏 + 𝐩𝐪 + 𝐩𝐪⁡𝐦𝐢𝐧(𝐩, 𝐪) −⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝐩 + 𝐪

𝟐
𝐦𝐢𝐧(𝐩, 𝐪)𝟐 +

𝟏

𝟑
𝐦𝐢𝐧(𝐩, 𝐪)𝟑 

IV RESULTS AND DISCUSSION 

The framework has been tested on data relating to renal illness, diabetes, and cardiovascular disease 

that may be found in the UCI repository. In this experiment, we split the dataset in half, using 80% 

for training and 20% for validation. To define the most salient features of the illness dataset, we 

used an ANOVA strategy. 

Important characteristics of the Diabetes mellitus illness dataset are shown in Figure 4. Important 

characteristics of the cardiovascular disease dataset are shown in Figure 5, whereas those of the 

renal diseases dataset are depicted in Figure 6. 

 

Figure 4:Significant Diabetes mellitusFeatures 
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Figure 5: Significant Cardiovascular Disease Features 

 

Figure 6: Significant Renal disorders Disease features 

Table 1 compares the results from various machine learning algorithms, including SVM-Laplace 

RBF kernel, Random Forest, SVM-Linear, Decision Tree, SVM-Gaussian RBF kernel, and SVM-

Polynomial, in terms of evaluation metrics like specificity, sensitivity, precision, recall, 

misclassification rate, and accuracy. 

The accuracy, misclassification, sensitivity, Precision, and Specificity of SVM-Radial bias, as well 

as comparisons to other approaches, are shown graphically in Figures 7, 8, 9, 10, and 11. 
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Figure 7: Graphical Illustration showing SVM-Laplace Radial Bias's accuracy compared to other 

Machine Learning methods' 

 

Figure 8: Graphical representation comparing the SVM-Laplace Radial Bias's misclassification rate 

with those of other Machine Learning methods. 

 

Figure 9: Graphical interpretation comparing the SVM-Laplace Radial Bias's sensitivity to those of 

other Machine Learning methods. 
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Figure 10: Precision of SVM-Laplace Radial Bias compared to other Machine Learning Methods 

using a Graphical Representation. 

 

Figure 11: Specificity of SVM-Laplace Radial Bias against Other Machine Learning Methods, 

displayed as a Bar Chart. 
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Table 1:  Performance Evaluation metrics for Machine learning algorithms. 

Model/  

Evaluation 

Parameters 

Disease 

SVM

- 

Linea

r 

SVM-

Polynomia

l 

Rando

m 

Forest 

Decisio

n tree 

SVM-

Gaussia

n Radial 

SVM-

Laplac

e 

Radial 

Accuracy 

Renal 

disorder 
96.7 96.7 97.8 66.3 98.3 98.9 

Cardiovascu

lar Disease 
86.5 84.3 82.0 73.0 89.9 90.9 

Diabetes 

mellitus 
77.6 77.6 79.9 97.4 98.7 98.9 

Misclassificati

on 

Renal 

disorder 
3.3 3.3 2.2 33.7 1.7 1.5 

Cardiovascu

lar Disease 
13.5 15.7 18.0 27.0 10.1 9.5 

Diabetes 

mellitus 
22.4 22.4 20.1 2.6 1.3 1.0 

Sensitivity 

Renal 

disorder 
100.0 100.0 100.0 65.9 100.0 100.0 

Cardiovascu

lar Disease 
91.9 86.8 80.5 71.1 97.2 98.5 

Diabetes 

Mellitus 
61.9 69.2 67.4 96.1 95.5 96.1 

Precision 

Renal 

disorder 
90.0 90.0 94.7 65.9 95.0 96.1 

Cardiovascu

lar Disease 
79.1 78.6 80.5 83.3 81.4 81.4 

Diabetes 

Mellitus 
59.1 40.9 66.0 96.1 100.0 100.0 

Specificity 

Renal 

disorder 
95.2 95.2 96.3 66.7 97.6 98.3 

Cardiovascu

lar Disease 
82.7 82.4 83.3 74.5 84.9 86.4 

Diabetes 

mellitus 
83.6 79.4 85.2 98.1 100.0 100.0 

 

According to the results of the evaluations, the SVM-LRBF kernel strategy yielded the highest 

degree of precision. The experimental findings demonstrated an accuracy of 98.9% in the renal 

diseases dataset, 90.9% in the Diabetes Mellitus dataset, and 98.9% in the cardiovascular disease 

dataset. 
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V CONCLUSION 

Several medical diagnostic illnesses' prognosis may be predicted with the use of a comparative 

analysis we done here. Datasets for renal illnesses, cardiovascular disease, and diabetes mellitus 

have all been tested inside the framework, all of which were obtained from the biggest repository of 

the machine learning community, the UCI repository. 

We have tried out many different SVM procedures, including SVM-Laplace RBF kernel, Random 

Forest, SVM-Linear, Decision Tree, SVM-Gaussian RBF Kernel, and SVM-Polynomial, on these 

datasets using the characteristics we've isolated. 
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