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Abstract 

The complex character of crop development is influenced by a variety of 

factors, including genetics, the environment, and their interactions. Large 

data sets and powerful algorithms are both necessary for accurate yield 

prediction because it involves figuring out the functional relationship 

between yield and numerous competing elements. The 2018 Syngenta Crop 

Challenge asked participants to make predictions about the yield 

performance for 2017 using a variety of significant datasets that Syngenta 

released. These datasets listed the genotype and yield performance of 2,267 

corn hybrids grown at 2,247 different locations between 2008 and 2016.A 

deep neural network (DNN) strategy was developed by one of the winning 

teams using cutting-edge modelling and resolution techniques. Including a 

Predicted values of 12%, our analysis showed boosted forecast accuracy. The 

validation dataset that determines whether or not the storm instrument is 

aligned with the annualized return and halves of the standard deviation. If the 

climate estimates were still the best, the RMSE might be trimmed to 11% of 

the average yield or 46% of the beta value. The trained DNN model was also 

modified for feature selection, which was effective in reducing the input 

space without noticeably lowering prediction accuracy. Our numerical 

results indicate that this model fits much poorer than other powerful 

techniques like Lasso, flat neural networks (SNN), even decision tree (RT). 

According to the study, non-genetic factors may have a larger detrimental 

impact on crop performance.  

Keywords: Machine learning, crop recommendation, and agriculture. 

 

I. INTRODUCTION 

 About 58 percent of the people in our country make their living mostly from agriculture [14],[15]. 

The use of farmland for non-agricultural purposes and farmer suicides were both on the rise in 17 

states, in a economic poll released in 2016–17. In order to ensure that their fields preserved by the 

next generation, 48% of farmers were moved to urban areas. One reason for this is that farmers 

frequently select crops that do not yield well on a particular soil or are planted at the wrong time of 

year [9]. The farmer may have purchased the land from another party, so the decision was made 

without any prior information. It could be difficult for a family to make ends meet if this money is 

their only source of income. Case studies in developing countries are hampered by researchers' 

difficulty to get valid and reliable data. Using machine learning models that have been trained to 

take important economic and environmental elements into account in order to make forecasts and 

provide counsel on crop sustainability, an approach has been developed to tackle the problem. 



Mathematical Statistician and Engineering Applications 
ISSN: 2094-0343 

2326-9865 

 
480 

Vol. 70 No. 2 (2021) 

http://philstat.org.ph 

 

 

Environment is considered in the suggested system. The system helps determine soil parameters 

including soil type, pH, and nutrient content as well as weather factors like rainfall, temperature, 

and condition to assist the user in selecting the best crop. If the farmer selects the right crop, he will 

also receive a forecast of the yield. Create an accurate and reliable crop sustainability model based 

on the distinct soil type and climatic conditions for each state. Farmers should be advised on the 

best crops to grow in the region to minimize losses. Based on the crop statistics from the previous 

year, create a profit analysis for each type of crop. Machine learning, an application of artificial 

intelligence that enables systems to learn and adapt automatically without the need for explicit 

programming by a developer, is used by the suggested system. This improves the software's 

accuracy as it doesn't require human intervention. Many scientists are working on this issue to help 

farmers in making the decisions stated below, which take into account a number of aspects, 

including physical, environmental, and economic considerations. 

RELATEDWORKS 

Due to cultivation, we ranked plants by decision tree having to learn ID3 (Iterative Dichotomize 3) 

and artificial neural network K Nearest Neighbor Regression [9] approaches. Plant traits were 

examined using both the random forest method and Big ML [10]. To lessen the effects of water 

stress, a set of judgment criteria was developed using machine learning techniques [11]. To produce 

real-time predictions concerning agricultural expenses, intelligent technologies and machine 

learning techniques have been applied [5]. The many machine learning techniques used in 

agricultural production systems were summarized in this paper [8]. Additionally, using AI-based 

technologies, crop management guidance was given. Deep learning methods can increase crop yield 

[12][19]. Based on the current monthly weather, this work [2] provides an efficient yield forecast 

algorithm. The above predictive mechanism is devised via generic repressors and a modest 

statistical model. Using machine learning and data mining tools, farmers can select crops using soil 

qualities, a specific geographic region, sowing time, and environmental circumstances [3]. Utilizing 

regression analysis, the soil data set is examined [4]. To generate plant suggestions based on the 

underlying soil data, five different algorithms were used in this work [6]. Support Vector Machine, 

Bagged Tree, Adaboost, Naive Bayes, the Artificial Neural Networks are some five techniques. To 

get even more comprehensive data, the ensemble technique is frequently used. Radars are used in 

precision agriculture to locate bugs on coconut palms [7]. The students used CHAID, K-Nearest 

Neighbor, Naive Bayes, and Random Tree in a prediction model with a majority decision scheme. 

PROPOSED SYSTEM ARCHITECTURE 

The studies we propose carefully consider environmental and soil factors. This is due to the fact 

that some soil types are better suited to producing crops than others, and productivity will decrease 

if the weather is unfavorable. Figure 1 shows how the proposed system functions in general. We 

look for relationships among the data set's various attributes. 

Acquisition of the Training Data Set: 

The studies we propose carefully consider environmental and soil factors. This is due to the fact 

that some soil types are better suited to producing crops than others, and productivity will decrease 

if the weather is unfavorable. Figure 1 shows how the proposed system functions in general. We 

look for relationships among the data set's various properties. 
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Utilizing the cultivation cost, market price, standard pricing, and yield statistics, profit is computed. 

Having the study's profit may help with crop forecasts. By subtracting the profit particular to each 

nation by each cultivation in that region, the profit margin for entities that raise no or no harvests is 

calculated. To ensure that the overall prediction is unaltered, the zero and 0 yield values are now 

changed to -1. The data set must first be coded for the neural network to operate correctly. Prior to 

being utilized by machine learning algorithms, the data must be parsed. Preprocessing eliminates 

outliers, false positives, and missing data. Values are a topic. Values from the data collection are 

stored in strings. Prior to entering this data it in to a neural network, it will be molded into integers. 

Further information defect occurs once plants are weeded per the  nutrient status and the nutrients 

in their soil. If the soil lacks the nutrients the plants need, training a plant requires far less time. 

Before training algorithms for machine learning such as synapses and regressions, the accumulated 

data is preprocessed.  

LINEAR INCREASE 

The y-red value for each crop is derived using yield, moisture, weather, pH, and linear regression. 

The crops are quickly listed in order of their linear regression model's your value, starting with the 

crop with the highest your value. The Keras module streamlines the neural network creation 

process. The long-term survival of various crops is predicted using a sequential model with three 

input layers and fifteen output layers. 

 

II   CONCLUSION AND RESULTS 

Tensor flow, a free and open-source scripting tool, was then used to create the two deep neural 

networks in Python (Abadi et al., 2016). In assertion, the flat neural network (with a single hidden 

layer of 300 neurons), the least absolute shrinkage and selection operator (LASSO), and the 

regression tree were rehired as auxiliary comparison models (Breiman, 2017). These three models 

were segregated into two, prefiguring yield and dictating yield, to permit for fair comparisons. They 

made yield predictions based on changes in their results. In order to assure fair comparisons, each 
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of these models was constructed in Python as efficiently as feasible and put through the identical 

software and hardware testing process. The regression tree's hyper parameters were as follows. Two 

and unearthed that the most correct estimates were made for rates in the range of 0.1 and 0.3. The 

tree's maximum depth was set at 10 to prevent over fitting. 

 
Fig. 2: state-by-state crop profit 

 
Fig.3: Regression model outcomes 
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Fig.4: Recommend crop 

 

 
Fig.5: Producing data for the predictor 

 

 
Fig.6: Values for predicting crop sustainability 

 

 
Fig. 7: Analyzing the suggested system in comparison to several statistics methods 
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TABLE 1: Dependability For CROPS RECOMMENDED 

 
 

VI. FUTURE SCOPE AND CONCLUSION  

The prototype has data access that ordinary peasants do not, which lowers crop failure and boosts 

output.  They yet don't experience any financial problems. Web and cellular apps may be able to 

provide rural households with advice on how to cultivate crops more adeptly and productively, 

depending on specific theories. 
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