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Abstract 

This study aims to recognize the cotangent bundle and its applications in 

Dynamics, torsion, curvature calculation, recognize   of mathematical 

bundle and knowledge of differential geometry. 

 We followed an analytical induction mathematical method because it is a 

suitable for this research. We found the following some results: 

Differential geometry depends on external geometry which contains 

curvature and torsion , calculation by many method such as derivation 

method and applied cotangent bundle in dynamics. 
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. Introduction : 

         Mathematics highlights visibly two dimensional: 

  Tendency towards abstract ideas which crystallizes the relations and that one which links 

material in connected group of ideas and principles. This research addresses differential geometry 

as life is really full of examples that describes life reality that we live.  

        Our objective is to study  differential geometry and recognize cotangent bundle   and its 

applications in dynamics . 

1. Mathematics Bundles : 

i.  Vector Bundles: 

          Let M⊂R
*
 be an m-dimensional smooth manifold a smooth vector bundle (over M of rank n) 

is a smooth sub manifold E⊂M×R
L
 such that for every 𝑃 ∈ 𝑀 the set. 

𝐸𝑝: =   𝑣 ∈ 𝑅𝐿  𝑝, 𝑣  ∈ 𝐸   

Is an n-dimensional linear subspace of 𝑅𝐿 (called the fiber of E over p) . If E⊂M×R
L
 is a vector 

bundle then a (smooth) section of E is smooth map s : 𝑀 → 𝑅𝐿 such that 𝑠 𝑝 ∈ 𝐸𝑝 for every 

𝑝 ∈ 𝑀. A vector bundle E⊂M×R
L
 is equipped with a smooth map 
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𝜋: 𝐸 → 𝑀                     (1) 

Defined by 𝜋 𝑝, 𝑣 : = 𝑝  called the projection A section 𝑠 ∶ 𝑀 → 𝑅𝐿 of E determines a smooth map 

𝜎: 𝑀 → 𝐸 which sends the point 𝑝 ∈ 𝑀 to the pair (𝑝, 𝑠(𝑝) ∈ 𝐸 this map satisfies.                               

π0𝜎 = 𝑖𝑑                                (2) 

It is sometimes convenient to abuse eliminate the distinction between s and𝜎. Thus we will 

sometimes use the same letter s for the map from M to E. [2]. 

Definition (2.1): 

        Any smooth map s : 𝐵 → 𝐸 such that 𝜋𝑜𝑠 = 𝑖𝑑𝐵 is called a section of E if S is only defined 

over neighbourhood in B it is called a local section [9]. 

Definition (2.2)  

    A smooth section of a vector bundle (E,M𝜋 ) is a map S:M → E so that 𝜋os = id M that is 

𝑠 𝑝 ∈ 𝐸𝑃 for all 𝑝 ∈ 𝑀 S is called  smooth section if it is smooth as a map from M to E denote 

Γ 𝐸 =   𝑠𝑚𝑜𝑜𝑡𝑕 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 (𝐸, 𝑀 𝜋)  [20] 

Corollary (2.3)     

         Let M⊂R
k
 be a smooth m- manifold. Then TM is vector bundle .over M and hence is a 

smooth 2m-manifold in R
k
×R

k
. 

Proof:  

        Let ∅ : 𝑢 → Ω  be a coordinate chart on an m-open set U⊂M with values in an open sunset Ω 

⊂ R
m

. Denote its inverse by  𝜓: ∅−1: Ω → 𝑀. The linear map 𝑑𝜓 𝑥 : 𝑅𝑚 → 𝑅𝑘  is injective and its 

image is 𝑇𝑘×𝑚𝜓 𝑥 𝑀 for every 𝑥 ∈ Ω 

Hence the map D : 𝑈 →  𝑅𝑘×𝑚  defined by  

𝐷 𝑝 : =  𝑑𝜓 (𝜙 𝑝 ∈ R
k×m

         (3) 

Is smooth and for every 𝑝 ∈ 𝑈 , the linear map 𝐷 𝑝 𝑅𝑚 → 𝑅𝑘  is injective and its image is.Thus the 

function 𝜋𝑇𝑀 : 𝑀 → 𝑅𝐾×𝐾 𝑑𝑒𝑓𝑖𝑛𝑒𝑑   by  𝐸𝑝 : 𝑇𝑝𝑀 is given by. 

𝜋𝑇𝑀 𝑝 =  𝐷 𝑝 𝐷 𝑝 𝑇𝐷 𝑝 −1𝐷 𝑝 𝑇  for p∈U 

       Hence the restriction of 𝜋 to 𝑢 is smooth since M can be coverd by coordinate charts is follows 

that 𝜋𝑇𝑀  

Is smooth and hence by theorem TM is a smooth vector bundle  [5]. 

ii.  Fiber Bundle: 

Fiber bundles are special types of manifold which are locally product of a base manifold B 

with a fiber manifold F. 

        To begin we define the cotangent bundle (E) over abase manifold (M) a manifold (e) with 

smooth projection map 𝜋: 𝐸 → 𝐵 onto a manifold (B). 
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      The inverse image 𝜋𝑥
−1 of a point 𝑥 ∈ 𝐵 is called the fiber 𝐹𝑥 above the point 𝑥 we define 

 𝐸, 𝜋, 𝐵, 𝐹, 𝑅  consisting of  

a.  A manifold E projection map 𝜋, base B, fibre F together with structural group G of 

diffeomorphism of F acting on the left  

b.  An atlas of charts i.e a covering of B by open set 𝑈𝑖  where i indexes the sets and maps 𝜙𝑖  called 

local trivializations such that. 

𝜙: 𝜋−1 𝑈𝑖 → 𝑈𝑖 × 𝐹             (4) 

Where : 

𝜙𝑖 𝑝 :  𝜋 𝑝 , 𝑔𝑖(𝑝)  𝑝 ∈ 𝜋−1(𝑈𝑖) 

and  

𝑔𝑖 : 𝜋
−1 𝑈𝑖 → 𝐹                     (5) 

Moreover if we define the restriction  

𝑔𝑖 𝑥 =  𝑔𝑖 𝐹𝑥  

Then : 

𝑔𝑖 𝑥 =  𝐹𝑥 → 𝐹 is a left action of G on F       

c. Compatibility conditions such that ∀ 𝑣𝑖  , 𝑣𝑗 = 𝑣𝑖 ∩ 𝑣𝑗 ≠  𝜙 and if we define transition 

function by : 

𝑔𝑖𝑗  𝑥 = 𝑔𝑖 𝑥 𝑜𝑔𝑖
−1 = 𝐹 → 𝐹           (6) 

Then ∀ 𝑈𝑖 , 𝑈𝑗  , 𝑈𝑘 ∶ 𝑈𝑖 ∪ 𝑈𝑗  ∪ 𝑈𝑘  ≠ 𝜙                

𝑔𝑖𝑗   𝑥 𝑔𝑖𝑘 𝑥 =  𝑔𝑖𝑘 𝑥 ∀𝑥 ∈ 𝑈𝑖 ∪ 𝑈𝑗 ∪ 𝑈𝑘   [2] 

iii.  Concept of Fiber Bundle  

       The concept of a fiber bundle actually is comprised   of two manifolds B and M and a 

surjective map. 

𝜋: 𝐵 → 𝑀            (7) 

(called the canonical projection) .All the preimages 𝐹𝑥  ≡ 𝜋−1(𝑥) are required to be diffeomorphic 

to a common manifold F and in addition each 𝐹𝑥  is to be a submanifold in B (so it is to be nicely 

placed in B) .The last item of the definition is the requirement of local product structure : there 

exists a covering 𝒪𝑎of the base M and a system of diffeomorphisms 

𝜓𝑎 =  𝜋−1 𝒪a → 𝒪𝑎 × 𝐹 

(the map 𝜓𝑎  is called a local trivialization such that 𝜋0𝜓𝑎 = 𝜋 [10] 

 

Definition (2.4)  
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       The quadruple ( E, B, F, 𝜋) is called a smooth fiber bundle ( or smooth fib ration of around 

each point of B there exists an open neighborhood U and diffeomorphism  

𝜙𝑈 = 𝑈 × 𝐹 → 𝜋−1 𝑈 , 𝜋(𝜙𝑢 𝑥, 𝑦 = 𝑥 

For all 𝑥 ∈ 𝑈  and y ∈ 𝐹 

We call E the total  space, B the base space , F the fiber space and 𝜋 the projection map  [7] 

iv.  Frame Bundle 𝝅: 𝑳𝑴 → 𝑴 

       Define a map 𝜋 ∶ 𝐿𝑀 → 𝑀 , 𝑒(𝑥) ⟼ 𝑥 

i .e we assign to a frame 𝑒 𝑥  in (the tangent space of ) a point 𝑥 just x itself .check that. 

i. It is a smooth map a coordinate presentation (398) 

𝜋 =  𝑥𝑖  , 𝑦𝑏
𝑎 ⟼ 𝑥𝑖             (8) 

ii. For arbitrary 𝑥  the preimage 𝜋−1(𝑥) is diffeomorhic to GL  𝑛, 𝑅  so that for any two points 𝑥, 𝑥  

∈ 𝑀, 𝜋−1(𝑥) and 𝜋−1 𝑥   are diffeomorphic to each other )    [10]. 

Example (2.5) 

        Frame bundle and associated tangent bundle it is possible to regard the frame bundle for 𝑅𝑛  

considered as an affine space, as the affine group F(𝑅𝑛) = 𝐴 𝑛 = 𝑅𝑛 ⋈ 𝐺𝐿  𝑛, 𝑅  and the base 

space as the coset 𝑅𝑛  = GL (𝑛, 𝑅)/𝐴(𝑛) .The projection map 𝜋 assigns each element of 𝐴(𝑛) to its 

coset with respect to GL(𝑛, 𝑅) .To make this more concert recall that 𝐸 = 𝐴 𝑛 =  𝑠, 𝑥  may be 

given a matrix representation. 

 
𝑠 𝑥
0 1

  

With S∈GL (𝑛, 𝑅) and 𝑥 column 𝑛 a vector acts on 𝑅𝑛  considered as the column vector. 

 
𝑥
1
  

The projection map 𝜋 maps to  

 
1 𝑥
0 1

  

Which  may be affected by left multiplication by 

 
𝑠 0
0 1

                       [2] 

v.  The Orthonormal Frame Bundle : 

         The orthonormal frame bundle of M is the set O (M) :=  𝑝, 𝑒 ∈ 𝑅𝑛 ×  𝑅𝑛×m  𝑝  ∈ 𝑀  ime =

 TpM, 𝑒𝑇𝑒 = mxm 

        If we denote by  

𝑒𝑖: = 𝑒 0, … ,0,1,0, … . ,01  
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The basis 0 TPM inducted by the isomorphism  

𝑒: 𝑅𝑚 →  𝑇𝑝  𝑀 then we have  

𝑒𝑇𝑒 = 1 ⇔  𝑒𝑖, 𝑒𝑗 = 𝜎𝑖𝑗 ⇔ 𝑒𝑖, … , 𝑒𝑚 is an orthonormal basis.Thus O (M) is the bundle of 

orthonormal frames of the tangent spaces 𝑇𝑝𝑀 or the bundle of orthogonal Isomorphisms 𝑒: 𝑅𝑚 →

𝑇𝑝𝑀.it is a principal bundle over M with structure group  𝒪 𝑚  [5]  

 Example (2.5) 

    Observe that if M is homeomorphism to 𝑅𝑛  , then we expect TM to be homeomorphic to 𝑅2𝑛  , 

we just take a logbal coordinate chart 𝜙 = 𝑥 on M get at each 𝑝 ∈ 𝑀 a basis of vector  
𝜕

𝜕𝑥 𝑘
 
𝑝
 and 

then say that ourc coordinates on TM are given by the following rule : if 𝑣 ∈  𝑇𝑝𝑀 expressed as 

𝑣 =   𝑎𝑖  𝜕
𝜕𝑥 𝑖 

𝑝

𝑛
𝑖=1 𝑤𝑕𝑒𝑟𝑒 𝑥 𝑝 =  𝑞1, … , 𝑞𝑛   then the coordinate chart Φ on TM will be given by  

Φ 𝑣 =  𝑞1, … , 𝑞𝑛 , 𝑎1 , … , 𝑎𝑛  

Since Φ is a globally – defined chart , every P and every 𝑣 ∈  𝑇𝑝𝑀 has a unique representation in 

this way , and conversely the coordinates  𝑞1, … , 𝑞𝑛 , 𝑎1, … , 𝑎𝑛  we set 𝑝 =  𝑥−1 (𝑞1, … , 𝑞𝑛 ) and 

𝑣 ∈  𝑇𝑝𝑀 to b 𝑣 =   𝑎𝑖  𝜕
𝜕𝑥 𝑖

 
𝑝

𝑖      [12] 

vi.  The Tangent Bundle : 

Definition (2.6) : 

        The tangent bundle TM of a manifold M is ( as a set) the (disjoint) union of all tangent spaces 

to M at all points 𝑝 ∈ 𝑀. 

𝑇𝑀 =    𝑝, 𝑋𝑝 ∈ 𝑀 ×  = 𝑋𝑝∈𝑇𝑝𝑀
𝑇𝑝𝑀

𝑝∈𝑀
  

   The bundle projection 𝜋 = 𝑇𝑀 ⟼ 𝑀 is defined by 𝜋 𝑝, 𝑥𝑝 = 𝑝 .The fiber over 𝑝 ∈ 𝑀 is the 

preimage 𝜋−1 𝑝 =  𝑝 × 𝑇𝑝𝑀 

A section of TM or tangent vector field is a map X = 𝑀 ⟼ 𝑇𝑀 that satisfies 𝜋 𝑜𝑋 = 𝑖𝑑 𝑀  [22] 

vii. The Tangent Bundle (TM) of the Tangent Bundle 

       The tangent bundle TM is a smooth 2m – dimensional manifold in 𝑅𝑛 × 𝑅𝑛  the tangent space of 

TM at a point  𝑝, 𝑣 ∈ 𝑇𝑀 can be expressed in terms of the second fundamental form as. 

𝑇𝑝𝑀   𝑇𝑀 =   (𝑝ˆ, 𝑣ˆ) ∈  𝑅𝑛 × 𝑅𝑛   𝑝^ ∈ 𝑇𝑝𝑀                      (9) 

𝕝 −  𝜋 𝑝 )𝑣 = 𝑕𝑝 (𝑝 , 𝑣) 

       By the gauss Weingarten formula the derivative of a curve 𝑡 ⟼ (𝛾 𝑡 , 𝑋(𝑡) in TM satisfies   

(𝕝 −  𝜋 𝛾 𝑡  𝑋  𝑡 =  𝑕𝛾(𝑡)(𝛾  𝑡 , 𝑋 𝑡 )  for every t. 
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      This proves the inclusion  in (3-8) Equality follows from the fact that both sides of the equation 

are 2m-dimensional linear subspace of 𝑅𝑛 × 𝑅𝑛  Now it follows from (3-8) that the formula . 

𝛾 𝑝, 𝑣 : = (𝑣, 𝑕𝑝(𝑣, 𝑣) ∈ 𝑇(p, v)𝑇𝑀  for 𝑝 ∈ 𝑀 and 𝑣 ∈ 𝑇𝑝𝑀 defines a vector field on TM     [5] 

        We have defined the tangent bundle of a manifold as the disjoint union of the tangent space 

𝑇𝑀 =  𝑈𝑝∈𝑀𝑇𝑝𝑀   [4] 

 

3.Curvature and Torsion 

i.  Curvature : 

Definition (3.1)  

       Let C be a smooth curve with position vector 𝑟 (𝑠) where S is the length parameter the curvature 

k of C is defined to be  

𝑘 =   
𝑑𝑇      

𝑑𝑠
     

Where 𝑟  is the unit tangent vector [15]  

Definition (3.2) 

The magnitude of 𝑇  𝑠  is called curvature k ( at the point given by the vector 𝑅(𝑠) 

𝑘 =   𝑘 𝑠 =   𝑇 (𝑠)        [18] 

Definition (3.3)  

The vector 𝑁(𝑠) is called the principal normal vector with this definition we have  

𝑇  𝑠 =  𝑘 𝑠 𝑁 𝑠            [18] 

Theorem (3.4) 

        Let C be a smooth curve with position vector 𝑟  (𝑡) where t is any  parameter. Then the 

following formulas can be used to compute is  

𝑘 =  
 𝑑

𝑇
→̀ 

 𝑟`    (𝑡) 
                     (10) 

𝑘 =  
 𝑟`    (𝑡) × 𝑟``     (𝑡) 

 𝑟``(𝑡)            
3                (11) 

Proof 

We prove each formula separately  
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1- Proof  k = 
   𝑑𝑇 `        (𝑡) 

 𝑟 `    (𝑡) 
𝑢𝑠𝑖𝑛𝑔 the chain , we have 

𝑑𝑇  

𝑑𝑡
=

𝑑 𝑇
→

𝑑𝑠

𝑑𝑠

𝑑𝑡
=∥ ´(𝑡)  ∥ 𝑓𝑟𝑜𝑚 formula.

𝑟
→ 𝑑 𝑇

→

𝑑𝑠
=

𝑑𝑇 

𝑑𝑡

 𝑟 `    (𝑡) 
 

=   
𝑇  ` 𝑡 

 𝑟 ` 𝑡  
   

2- proof of  k =  
 ´× ´´r

→
𝑟
→

 

 ´(𝑡)𝑟
→  

3  

We express 𝑟`    (𝑡) and 𝑟``       𝑡  in terms of T : then compute their cross product. 

          Computation of 𝑟`    since 𝑇   = 
𝑟 `    

 𝑟 `     
 and 

𝑑𝑠

𝑑𝑡
 =  𝑟`     we get that 𝑟`     =

𝑑𝑠

𝑑𝑡
𝑇   

Computation of 𝑟`     𝑡 ×  𝑟``     (𝑡) from the two previous formulas and using the properties of cross 

products we see that. 

𝑟`     ×  𝑟``     =  
𝑑𝑠

𝑑𝑡
 
𝑑2𝑠

𝑑𝑡2
  𝑇  × 𝑇   +  

𝑑𝑠

𝑑𝑡
 

2

𝑇 × 𝑇`      

 𝑟`    × 𝑟``      =   
𝑑𝑠

𝑑𝑡
 

2

 𝑇  × 𝑇`      

=   
𝑑𝑠

𝑑𝑡
 

2

  𝑇  × 𝑇`     sin 𝜃 

We know that 𝑇        
𝑇
→̀ 

Thus  𝑟`    × 𝑟``      =   
𝑑𝑠

𝑑𝑡
  2   𝑇`      =    𝑟`      2        

There fore  𝑇`      =  
  𝑟 `    ×𝑟 ``       

 𝑟 `     
2  

K=
 ´𝑇

→  

 ´ (𝑡)𝑟
→  

     = 
 ´× ´´r

→
𝑟
→  

 ´(𝑡)𝑟
→  3      [15] 

iii. The Normal Curvature and Geodesic Curvature 

Definition (3.5) 

      The scalars 𝑘𝑛 𝑡0  and 𝑘𝑔  (t0) are called the normal curvature and the geodesic curvature of ∝ at 

the point 𝑝 =∝  𝑡𝑜  note that, from above we have 
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𝑘𝑛  𝑡 = ∝   𝑡 𝑛 𝑡           𝑘𝑔 𝑡 =∝   𝑡 . (𝑛 𝑡 ×∝  𝑡   13                     (12) 

iv.  Curvature Computation : 

                  Consider a parameterized curve 𝑟(𝑡) = 

(𝑥 𝑡 , 𝑦 𝑡 ) and assume that  𝑡, 𝑛  forms a right – hand basis  

The curvature 𝑘(𝑡) is given by  

𝑘 𝑡 =  
𝑥 𝑦  −  𝑥  𝑦 

(𝑥 2 +  𝑦 2)
3
2

              [19] 

Example (3.6) 

An ellipse is described parametrically by the equations . 

𝑥 = 2 cos 𝑡 , 𝑦 = sin 𝑡 ;    0 ≤ 𝑡 ≤ 2𝜋 

Solution : 

First found 𝑥  = −2 sin 𝑡 , 𝑦  = cos 𝑡 

𝑥  =  −2 cos 𝑡  , 𝑦  = − sin 𝑡 

∵ 𝑘 𝑡 =  
𝑥 𝑦  − 𝑥  𝑦  

 𝑥 2 + 𝑦 2 
3
2

 

𝑘 𝑡 =    
2 sin2  𝑡 + 2cos2t

4 sin2 𝑡 +  cos2t 
3
2

                  

=  
2

[ 1 + 3sin2t
3
]2

             [15] 

Example (3.7): 

    Compute the normal and geodesic curvature of the circle 𝜎 𝑡 = cos 𝑡 , sin 𝑡 ,1) on the elliptic 

parabolic ∝  𝑢, 𝑣 = (𝑢, 𝑣, 𝑢2 + 𝑣2) 

Solution : 

First we note that 𝑠𝑖𝑛2𝑡 + 𝑐𝑜𝑠2𝑡 = 1 so the curve ∝ (𝑡) is contained in the surface 𝜎  𝑢, 𝑣 =

(𝑢, 𝑣, 𝑢2 + 𝑣2) we need to compute ∝  𝑡 , 𝑛 𝑡  and 𝑛 𝑡 ×  𝛼 (𝑡) in fact ∝   𝑡 = (− sin 𝑡, cos 𝑡, 0)  
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 ∝ (𝑡) = 1  so ∝ is the arc – length parameterization .To find 𝑛(𝑡) we note that 𝑛(𝑡) is the 

restriction of n to the curve ∝ . So we first calculate n since 𝜎𝑢 =  1,0,2𝑢  𝜕𝑣 = (0,1,2𝑣)  

𝜎𝑢 × 𝜎𝑣 = (−2𝑢 − 2𝑣, 1),  𝜎𝑛 × 𝜎𝑣 =   1 + 4𝑢2 + 4𝑣2 

𝑛 =   
−2𝑢

 1 + 4𝑢2 +  4𝑢2 
 ,

−2𝑣

 1 + 4𝑢2 + 4𝑣2
 ,

1

 1 + 4𝑢2 + 4𝑣2
  

We need to write ∝  𝑡 =  𝜎 𝑢 𝑡 , 𝑣 𝑡   means that  

(𝑐𝑜𝑠𝑡 , sin 𝑡, 1) = < 𝑢 𝑡 , 𝑣 𝑡 , 𝑢2 𝑡 + 𝑣2(𝑡). 

      This implies that 𝑢 𝑡 = 𝑐𝑜𝑠𝑡 , 𝑣 𝑡 = sin 𝑡  

The restriction of n to the curve ∝ is taking 𝑢  𝑡 = cos 𝑡 𝑣 𝑡 = sin 𝑡 

𝑛 𝑡 =  𝑛(∝  𝑡 =   
−2

5
cos 𝑡 , − 

2

 5
sin 𝑡 ,

1

 5
  

Finally 𝑛 𝑡 ×∝  𝑡 =  −
1

 5
cos 𝑡 ,

−1

 5
sin 𝑡,

1

 5
   

       To find the normal curvature kn we note that in 

𝑘𝑛 = ∝   𝑡 . 𝑛 𝑡  𝑠𝑖𝑛𝑐𝑒 ∝    𝑡 = (−𝑐𝑜𝑠𝑡 , −𝑠𝑖𝑛𝑡 ,0) we  have . 

𝑘𝑛 𝑡 = ∝   𝑡 . 𝑛 𝑡 =  
2

 5
] 

Similarly 

𝑘𝑔(𝑡) = ∝   𝑡 . 𝑛 𝑡 ×∝  𝑡 =  
1

 5
          [9] 

Example (3.8) 

         Find the curvature of circular helix earlier we found that the parameterization of the circular 

helix with respect to arc-length was  

𝑟  𝑠 = (cos
𝑠

 2
 , 𝑠𝑖𝑛 

𝑠

 2
 ,

𝑠

 2
 ) 

Solution  

    As before we need to compute 𝑇  (𝑠) which can be obtained from  𝑟   (𝑠) 

        𝑟    𝑠 = (− 
1

 2
 𝑠𝑖𝑛 

𝑠

 2
 ,

1

 2
cos

𝑠

 2
 ,

1

 2
 ) 

Thus : 
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𝑇   𝑠 = (−
1

 2
𝑠𝑖𝑛 

𝑠

 2
 ,

1

 2
cos

𝑠

 2
 ,

1

 2
) 

Before  

𝑑𝑇  

𝑑𝑠
=

1

 2
 (

−1

 2
cos

𝑠

 2
 ,
−1

 2
sin

𝑠

 2
 , 0 ) 

It follows that : 

𝑘 =    𝑑𝑇  

𝑑𝑠
  =  

1

2
        [15] 

v.  The Gauss Curvature and Mean Curvature:  

Definition (3.8) : 

       Let M be a surface and p∈ 𝑀 . Let k1 ,k2 be the principal curvatures of M at p.Then 𝑘 = 𝑘1𝑘2 is 

called the Gussian curvature of M and  

H  =  
𝑘1+𝑘2

2
                (13) 

Is called the mean curvature of M .   [9] 

Example (3.9): 

       Consider a surface of revolution  

𝛿 𝑢, 𝑣 = (𝜙 𝑢 cos 𝑣 , 𝜙( 𝑢 𝑠𝑖𝑛 𝑣, 𝜓(𝑢)  

Where 𝑄 2 +  𝜓 2 = 1 . As we calculated 𝐸 = 1   𝐹 = 0  

𝑄 =  𝜙2 𝑢  and 𝑒 = 𝜙  𝑢 𝜓   𝑢 − 𝜙   𝑢  𝜓   𝑢                (14) 

𝑓 = 0  𝑔 =  𝜙 𝑢 𝜓 (𝑢)  Hence  

𝐹1 =   
1 0
0 𝜙2(𝑢)

 =  𝐹11 =   
𝜙   𝑢 𝜓   𝑢 − 𝜙   𝑢 𝜓 (𝑢) 0

0 𝜙 𝑢 𝜓 (𝑢)
  

𝐴 =  𝐹1
−1 𝐹11 =   

𝜙   𝑢 𝜓   𝑢 − 𝜙   𝑢 𝜓 (𝑢) 0

0 𝜓  𝑢 /𝜙(𝑢)
     

So its Gauss curvature is using 𝜙 2 +  𝜓 2 = 1   
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𝐾 = det 𝐴 =  
𝜙  𝑢 𝜓   𝑢 −𝜙    𝑢  𝜓   𝑢 𝜓 (𝑢) 

𝜙(𝑢)
                                                        

=  
−𝜙    𝑢 

𝜙(𝑢)
 

And its mean curvature is  

𝐻 =  
1

2
 𝑡𝑟𝑎𝑐𝑒 (𝐴) 

=  
1

2
(𝜙  𝑢 𝜓    𝑢 − 𝜙   𝑢 𝜓   𝑢 +

𝜓   𝑢  

𝜙 𝑢 
         [9] 

Example (3.10) : 

      Let us compute the Gaussian curvature of the metric g= 𝑑𝑥2 + 2𝑐𝑜𝑠 w 𝑑𝑥 𝑑𝑦 +  𝑑𝑦2 where 

𝑤 = 𝑤(𝑥, 𝑦) is some function .Represent this metric in the form  

𝑔 = (𝑑𝑥 + cos 𝑤 𝑑𝑦)2 + (sin 𝑤 𝑑𝑦)2 

we may set 𝑢1 = 𝑑𝑥 + cos 𝑤 𝑑𝑦 , 𝑢2 = sin 𝑤 𝑑𝑦 and get 

𝛿 =  𝑢1 ∧ 𝑢2 = sin 𝑤 𝑑𝑥 ∧ 𝑑𝑦  

Differentiating the basic forms we get  

𝑑𝑢1 = − sin 𝑤𝑤 𝑥 𝑑𝑛 ∧ 𝑑𝑦     𝑑𝑢2 = cos 𝑤𝑤 𝑥 𝑑𝑥 ∧ 𝑑𝑦 

Therefore  

∝1=  −𝑤𝑥   ∝2= cot 𝑤  𝜃 = ∝1 𝑢1 +∝2 𝑢2  = −𝑤𝑥𝑑𝑥 

Differentiating we get  

𝑑𝜃 = 𝑤𝑥𝑦 𝑑𝑥 ∧ 𝑑𝑦           𝑘 =
−𝑤𝑥𝑦

sin 𝑤
 

    The metric is flat (𝑘 = 0) if 𝑤xy = 0 let us determine the Euclidean coordinates for the case 

𝑤 = 𝑥 + 𝑦 in this case the form 𝜃 is exact 𝜃 = −𝑑𝜓 with 𝜓 𝑥, 𝑦 = 𝑥  rotating the frame 𝑢1, 𝑢2 by 

the angle 𝜓  we get. 

𝑢1 = cos 𝜓 𝑢1 + sin 𝜓 𝑢2 = cos 𝑥 𝑑𝑥 + (𝑐𝑜𝑠𝑥 cos 𝑥, 𝑦  

+ sin 𝑥 𝑠𝑖𝑛𝑥 + 𝑦 𝑑𝑦 = cos 𝑥 𝑑𝑥 + cosy 𝑑𝑦 = 𝑑 (sin 𝑥 + sin 𝑦) 
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𝑢 2 = sin 𝜓 𝑢1 − cos 𝜓 𝑢2 = sin 𝑥 cos 𝑥 + 𝑦  

− cos 𝑥 sin 𝑥 + 𝑦 𝑑𝑦 = sin 𝑥 𝑑𝑥 − sin 𝑦  𝑑𝑦 

= 𝑑(− cos 𝑥 + cos 𝑦) 

The desired Euclidean coordinates are 𝑋 = sin 𝑥 + sin 𝑦 and 𝑦 = − cos 𝑥 + cos 𝑦   [9] 

vi. Gaussian Curvature : 

 Definition (3.11) 

       The Gaussian curvature of the hyper surface M is the real valued function  

𝐾: 𝑀 → 𝑅  defined  by  

𝑘 𝑝 : = det(𝑑𝑣 𝑝 : 𝑇𝑝  𝑀 → 𝑇𝑝𝑀           (15) 

For 𝑃 ∈ 𝑀 replacing 𝑣 by – 𝑣 has the effect of replacing k by (−1)𝑚𝑘 ; so K is independent of the 

choice of the Gauss map when m is even [5] 

Definition (3.12) 

   At a point 𝑃 an a surface S the Gauss curvature at P is the limit  

𝑘 = lim
∆𝐴→0

   
∆𝜃

∆𝐴
                               16  

Where ∆𝐴 is the area of some region the surface containing P and ∆𝜃 is the total curvature of that 

region     [1] 

viii. Torsion : 

Definition (3.13) : 

                  Let ∝: 𝐼 → 𝑅3 be a curve parameterized by arc length s. The torsion of ∝  at s is defined 

by: 

𝜏(𝑠) = 𝑁  𝑠 . 𝐵(𝑠)                                                  (17) 

Now we can express 𝑁  𝑠  as  

𝑁  𝑠 =  −𝑘 𝑠 𝑇 𝑠 +  𝜏 𝑠 𝐵 𝑠        12              (18) 

Curvature 𝒗𝒔, Torsion(3.15)   

     The curvature indicates how much the normal changes in the direction tangent to the curve. 
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      The torsion indicates how much the normal changes in the direction orthogonal to the osculating 

plane of the curve. 

      The curvature is always positive, the torsion can be negative. 

       Both properties do not doped on the choice of parameterization. 

What is 𝐵  𝑠 as a combination of N,T,B? 

We know 𝐵 𝑠 . 𝐵 𝑠 = 1                       (19) 

Form the lemma → 𝐵  𝑠 . 𝐵 𝑠 = 0 

We know : 

                    𝐵 𝑠 . 𝑇 𝑠 = 0    𝐵 𝑠 . 𝑁 𝑠 = 0        (20) 

From the lemma → 

                      𝐵  𝑠 . 𝑇 𝑠 = −𝐵 𝑠 . 𝑇 𝑠                 (21) 

−𝐵 𝑠 . 𝑘 𝑠 𝑁 𝑠 = 0       

From the lemma 

                       𝐵  𝑠 . 𝑁 𝑠 = −𝐵 𝑠 . 𝑁 𝑠              (22) 

Now  

We can express 𝐵  𝑠   as : 

𝐵  𝑠 =  − 𝜏 𝑠 𝑁(𝑠) 

Proposition (3.16) : 

(a) if 𝑘 𝑠 = 0 for all 𝑠 ∈ 𝐼 then ∝ (𝑠) is part of a straight line  

(b) If 𝑇 𝑠 = 0 for all 𝑆 ∈ 𝐼 then ∝ (𝑠) apalnar curve that is it lies inside some plane in 𝑅3 

Proof : 

(a) If 𝑘 𝑠 = 0 for all  𝑆 ∈ 𝐼 then ∝ (𝑠) is part of straight line. 

If 𝑘 𝑠 = 0 the 
𝑑𝑇

𝑑𝑠
= 0 which implies that 𝑇 = 𝑎 for some constant vectora with  𝑎 = 1 then 

since 𝑇 = ∝ (𝑠) intergrading a gain , we obtain ∝  𝑠 = 𝑎𝑠 + 𝑏 
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(b) If 𝑇 𝑠 = 0 for all 𝑠 ∈ 𝐼 then ∝ (𝑠) is a planer  curve , that is it lies inside some plane in 𝑅3 

If 𝑇 𝑠 = 0 then we have.  

𝐵 = 0 

     This implies that B(s) is a constant vector which we just denote as B, we claim that ∝ (𝑠)  

lies in a plane of which B is normal vector In particular proving the claim will finish the proof 

of the proposition  

To prove the claim we need to see that 𝐵. ∝ (𝑠) to obtain . 

𝐵 . ∝  𝑠 +  𝐵. ∝  𝑠 =  𝐵. ∝  𝑠 =  𝐵. 𝑇 𝑠 = 0       (23) 

Since 𝐵 = 𝑇 𝑠 ∧ 𝑁 𝑠 then (𝐵. ∝  𝑠 = 0 implied 𝐵. ∝ (𝑠)𝑖𝑠 a constant C say so that ∝ (𝑠) 

this liens in plane 𝑟. 𝐵 = 𝑐 as claimed. [16] 

Definition(3.17) : 

     The vector 𝑁(𝑠) is called the principal normal vector with this definition we have  

𝑇  𝑠 =  𝑘 𝑠   𝑁(𝑠) 

𝐵 𝑠 =  𝑇 𝑠  × 𝑁 𝑠              (24) 

sin 𝑐𝑒     𝐵 𝑠  is a unit vector        [12] 

Example (3.18)  

       Find T, N, B, k ,and T for 𝑟 𝑡 = (6 sin 2𝑡) 𝑖 + 6 cos 2𝑡 𝑗 + 5 𝑡𝑘 

First  

𝑟  𝑦 = (12 cos 2 𝑡) 𝑖 − (12 sin 2𝑡 𝑗 + 5𝑘 

𝑟   𝑦 = (−24 sin 2𝑡 𝑖 − (24 cos 2𝑡)𝑗 

This means we have 𝑇 𝑡 =  
𝑟  (𝑡)

 𝑟  (𝑡) 
                                           

=
12 cos2 𝑡𝑖 − 12 sin 2𝑡 𝑗

 144 𝑐𝑜𝑠2 2𝑡 +  144𝑠𝑖𝑛2 2𝑡 + 25
 

=  
12 cos 2𝑡 𝑖 − 12 sin 2𝑡 𝑗

 169
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𝑇 𝑡   =   
12

13
cos 2𝑡𝑖 − 

12

13
sin 2𝑡 𝑗 +  

5

13
 𝑘 

𝑇  𝑡  =   
−24

13
sin 2𝑡 𝑖 

−24

13
cos 2𝑡 𝑗 

This has magnitude 
24

13
 , so we divide by this to get the unit normal vector N. 

𝑁 𝑡 =  −(sin 2𝑡 𝑖 − (cos 2𝑡 𝑗 

The unit binormal vector is the cross product of the unit tangent and normal vectors. 

𝐵 𝑡 =  𝑇 𝑡 × 𝑁 𝑡 =    

𝑖 𝑗 𝑘
12

13
cos(2𝑡) −

12

12
sin(2𝑡)

5

13
− sin(2𝑡) − cos(2𝑡) 0

   

We can find  the  curvature  b  

𝑘 =  
 𝑟 ×  𝑟   

 𝑟  2
 =   

24

169
 

The torsion is then given by  

𝜏 =  

 

𝑥 𝑦 𝑧 

𝑥  𝑦  𝑧  

𝑥   𝑦   𝑧   
 

 𝑟 × 𝑟   
2   =  

 
 
−

12 cos 2𝑡 −12 sin(2𝑡) 5

24 sin(2𝑡) −24 cos(2𝑡) 0

−48 cos(2𝑡) 48 cos(2𝑡) 0

 
 
 

 5  (−24 × 48 𝑠𝑖𝑛2(2𝑡) − 24 × 48 𝑐𝑜𝑠2(2𝑡) 

𝜏 =  −5 
(1152)

3122
=  −

5760

3122
                    [12] 

4.The Cotangent Bundle and its some Applications  

i.  The Cotangent Bundle : 

               Let M n be an n-dimensional differentiable manifold of class 𝐶∞  and 𝑇∗ (𝑀𝑛) the 

cotangent bundle over 𝑀𝑛  . If 𝑥𝑖  are local coordinates in neighborhood 𝑈 of a point 𝑥 ∈ 𝑀𝑛  , then  a 

covector p at x which is , an element of 𝑇∗𝑀𝑛  , is expressible in the from (𝑥𝑖 , 𝑝𝑖)where 𝑝𝑖  are 

components of p with repect to the normal frame ∂𝑖  we many consider  
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 𝑥𝑖 , 𝑝𝑖 =  𝑥𝑖 , 𝑥𝑖  =  𝑥𝑗  , 𝑖 = 1, . . 𝑛;  𝑖 = 𝑛 + 1, … ,2𝑛 , 𝐽 = 1 … 2𝑛 as local coordinate in a 

neighborhood 𝜋−1(𝑈) (𝜋 is natural projection 𝑇∗ 𝑀𝑛  on to 𝑀𝑛 . 

        Let now 𝑀𝑛  be a Riemannian with nondegenarate metric whose components a coordinate 

neighborhood 𝑈 are gij and denote by Γ𝑗𝑖
𝑕  the christoffe symbols formed with gji   [12]  

Definition (4.1)  

       Let us define the cotangent bundle of a manifold M to be the set 

𝑇∗𝑀: =   𝑇𝑝
∗

𝑃∈𝑀

 𝑀 

and define the map 𝜋: =  𝜋𝑀 = 𝑈 𝑇p∗𝑀 → 𝑀 

to be the obvious projection 𝑝 ∈ 𝑀 

taking element in space  to the corresponding p [4] 

Theorem (4.2)  

      Regular cotangent reduction at zero .Let G act freely and properly by cotangent lifts on 𝑇∗𝑄 

with momentum m J, Denote 𝜋𝐺 : 𝑄 → 𝑄/𝐺 𝑖 = 𝐽−1(0) → 𝑇∗𝑄 

And 𝜋0: 𝐽−1 0 → 𝐽−1 0 𝜆(𝐺) the natural quatient maps and inclusion consider. 

𝜓 =  𝐽−1(0) ⟶ 𝑇∗(𝑄/𝐺)                    (25) 

       Defined by (𝜓 𝑧 , 𝑇𝑞𝜋𝐺(𝑣)) = (𝑧, 𝑣) for ever z∈ 𝑇𝑞
∗𝑄 and 𝑣 ∈ 𝑇𝑞𝑄. The map 𝜓 is a 𝐺 − 𝑀 

variant surjective submersion that induce a symplectomorphism  

𝜓 =  𝐽−1 0 /𝐺 → 𝑇∗(𝑄/𝐺)                      (26) 

Where 𝐽−1 0 /𝐺 is endowed with the reduced symplectic from 𝑤0 that is the one satisfying 

𝜋0 
∗ 𝑤0 =  𝑖∗𝑤𝑄     [11] 

ii. The Cotangent Bundle Tp*M and Forms : 

Definition (4.3): 

         Suppose 𝑃 ∈ 𝑀is any point, and let F be a germ of a function at p. That is there is some open 

𝑈 ∋ 𝑝 and a smooth function f ∶ 𝑉 → 𝑅 . We define 𝑑𝑓𝑝 =  𝑇𝑝𝑀 → 𝑅 to be the operation  𝑑𝑓 𝑝 𝑣 =

𝑣 𝑓 . 
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     The operator  𝑑𝑓 𝑝  is linear and hence  𝑑𝑓 𝑝  ∈ 𝑇𝑝
∗𝑀, the dual space of 𝑇𝑝𝑀 . it is called the 

differential of f at p .In general , elements of 𝑇𝑝
∗𝑀 are usually called cotangent vectors or 1- forms. 

[5]   Example (4.4): 

    Suppose 𝑓: 𝑐 → 𝑅 is given by 𝑓 𝑧 = 𝑙𝑚(𝑒𝑧). Then is coordinate we have 𝑓 𝑥, 𝑦 = 𝑒𝑥  siny 

writting 𝑣 = 𝑎  
𝑑

𝑑𝑥
 

0
+ 𝑏  𝑑

𝑑𝑦
 

0
  we have  

 𝑑𝑓 0 𝑣 = 𝑣 𝑓 =  𝑎
𝑑

𝑑𝑥
  𝑒𝑥𝑠𝑚𝑦  0,0 +  𝑏 

𝑑

𝑑𝑦
  𝑒𝑥𝑠𝑚𝑦  0,0 = 𝑏 

Hence the cotangent vectors satisfies  

𝑑𝑓    
𝑑

𝑑𝑥
  

0
 0   ) = 0 

𝑑𝑓    
𝑑

𝑑𝑦
  

0

  = 1           [5] 

Theorem (4.5) :  

      Suppose that 𝑑𝑖 ≥ 𝑐  for 𝑖 = 1, … . , 𝑘 and  

𝑘  𝑘 − 1 >  
8𝑑2(2𝑑 − 5)

𝑐2(𝑑2 − 1)
 

     Then the minimal resolution 𝑦 → 𝑥  has bis cotangent bundle 

 Proof:  

      The charn number of the minimal desingularization  y of X are = 𝑐1
2 = 𝑑(𝑑 − 4)2               𝑐2 =

𝑑(𝑑2 − 4𝑑 + 6) the chern number of the orbifold × are 𝑐1
2 𝑥 =  𝑐1

2 and 

𝑐2 𝑥 =  𝑐2 −  𝑑 −
1

𝑑
  𝑑𝑖𝑑𝑗

𝑖<𝑗

                     (27) 

Thus  

𝑠2 𝑦 ≠ 𝑠2 𝑥 = 4𝑑 5 − 2𝑑 +  𝑑 −
1

𝑑
   𝑑𝑖𝑑𝑗

𝑖<𝑗

  

> 4𝑑 5 − 2𝑑 +  
𝑘(𝑘 − 1)

2
  𝑑 −

1

𝑑
 𝑐2 
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   As a corollary we obtain may examples of surfaces in p
3
 with big cotangent bundle [21] 

Example (4.6) :  

        Let 𝑀 = 𝑇∗𝑁 with canonical symplectic form 𝑤 = 𝑑𝜃 if we consider a smooth 1- form ∝ on 

N a smooth section ∝ :N→ 𝑀 of the cotangent bundle 𝜋: 𝑀 → 𝑁, then the sub manifold ∝: 𝑁 → 𝑀 

is lagrangian if and only if ∝ is closed[7] 

Theorem (4.7) : 

        Let 𝑋, 𝑦 ∈  T0
1  (𝑀𝑛) . Then the inner product of the horizontal lifts 𝐻𝑥  and 𝐻𝑦  to 𝑇∗ (𝑀𝑛) 

with the metric 𝐷𝑔  is equal to the vertical of the inner product of 𝑥 and 𝑦 in 𝑀𝑛 . 

We have  

𝐷𝑔 𝑣𝑤 , 𝑣𝜃 = 𝑣(𝑔 𝑤, 𝜃 ∀ 𝑤, 𝜃 ∈ 𝑇1
0  𝑀𝑛          

𝐷𝑔 𝑣𝑤 , 𝑐𝑥 =  − 𝑔𝑖𝑠  𝑤𝑗𝑝𝐿 𝜎𝑠𝑋
𝐿 + Γ𝑠𝑖

𝐿𝑥𝑖   

=  − 𝑔𝑖𝑠𝑤𝑗   𝐿  ∇𝑥  𝑠 

=  −𝑣(𝑔 𝑤, 𝐿 ∇𝑋  . 

𝐷𝑔  𝑐𝑥 , 𝑐𝑦 =  𝑔𝑗𝑖 𝑥
𝑗 𝑦𝑖 + 𝑔𝑗𝑖 𝑝𝑘𝑝𝐿 ∇𝑗𝑋

𝑘 (∇𝑖𝑦
𝐿) 

=  𝑔𝑗𝑖 𝑥
𝑗  𝑦𝑖 +  𝑔𝑗𝑖   𝐿∇𝑋 j 𝐿 ∇𝑦  𝑖 

= 𝑣 (𝑔 𝑥, 𝑦 +  𝑣(𝑔(𝐿 ∇𝑋 , 𝐿 ∇𝑦 )∀𝑋, 𝑦 ∈ 𝑇0
−1(𝑀0 

∀ 𝑤 ∈ 𝑇1
0(𝑀𝑛  

Where (𝐿 ∇𝑋 𝑖𝑠 𝑎 1 − from with local expression  

𝐿 ∇𝑋 =  𝑃𝐿∇𝑠𝑋
𝐿𝑑𝑥𝑠  

We recall that any element 𝑡 ∈ 𝑇𝑟
0 (𝑇∗(𝑀𝑛) is completely determined by its action on lifts of the 

type 𝑋1
𝑐 , 𝑋2

𝑐 …𝐶𝑥2 where 𝑋𝑖 , 𝑖 = 1, … 𝑟 are arbitrary vector fields in 𝑀𝑛      [12] 

 

iii.  The Cotangent Bundle of a Manifolds : 

       Before we can introduce the Legendre transformation we need some basic facts about the 

structure of the cotangent bundle 𝑇∗𝑀 of an n- dim differentiable manifold 𝑀     , we suppose that 

M is the configuration space of some classical system  
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𝑇∗𝑀 =    (𝑥, 𝜆) 𝑥 ∈ 𝑀 , 𝜆 ∈  𝑇𝑥
∗𝑀        (28)  

= momentum phase space  

= set of all kinematically possible states of motion   

= a 2n – dim differentiable manifold  

The projection map 𝜋: 𝑇∗𝑀 → 𝑀 is defined by 𝜋 𝑥, 𝜆 = 𝑥  [7] 

iv.  The Cotangent Bundle of Question Variety. 

Definition (4.9) :  

The cotangent bundle of an orbit space X/G is the stratified symplectic space definition makes 

sense [13]  

 Example (4.10) :  

Consider the action of G/L (𝑛, 𝑅) the group of 𝑛 × 𝑛 inventible matrices or more properly, the 

group of invertible linear transformation of 𝑅𝑛  to itselfType equation here.. 

Φ 𝐴 𝑞 = 𝐴𝑞 

The group of induced canonical transformation of 𝑇∗𝑅𝑛    to itself is given  

Φ𝐴 
∗ 𝑞, 𝑝 =   𝐴−1𝑞, 𝐴𝑇𝑞  

    Which is readily verified notice that this reduces to the same transformation of q and p when A is 

orthogonal.[7] 

 

Theorem (4.11) : 

For any 1- from ∝ and vector filed 𝑋 on N  

𝑅 (∝𝑣) = 𝑅(∝)𝑣 

𝑅  𝑋  =  𝑅  𝑋  +  (ℒ𝑥𝑅 )𝑣 

Proof :  

    The proof consist essentially of repeated applications of the proceeding formula .To obtain the 

second result we use this formula with 𝜀 =  𝑋   

𝑑𝜃 𝑅  𝑋  , 𝐵𝑣 = ℒ𝑅𝑣(𝑑𝜃𝑁   𝑋 , 𝐵𝑣 ) +  𝑑𝜃𝑁( ℒ𝑥𝑅 𝑣 , 𝐵𝑣) 

+ 𝑑𝜃𝑁(𝑋 , 𝑅 𝐵 𝑣) 
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= 𝑑𝜃𝑁(𝑋 , 𝑅 𝐵 𝑣)  

=  − 𝜋𝑁∗(𝑋, 𝑅 𝐵 ) 

=  − 𝜋𝑁∗(𝑅 𝑋 , 𝐵) 

=𝑑𝜃𝑁(𝑅  𝑋 , (𝐵 ) 

On the other hand  

𝑑𝜃𝑁(𝑅 (𝑋 )𝑌 ) =  ℒ𝑑𝜃𝑁(𝑋 𝑌 ) 

+ 𝑑𝜃𝑁(( ℒ𝑥  𝑅)𝑣𝑦 ) + 𝑑𝜃𝑁(𝑋 ,  ℒ𝑦, 𝑅 𝑣) 

=  ℒ𝑅𝑣  𝑕   𝑥, 𝑦 +  𝑑𝜃𝑁 ℒ𝑥 , 𝑅 𝑣 , 𝑦  −  𝑕ℒ𝑦 𝑅(𝑥) 

= 𝑕𝑅 𝑋, 𝑌 + 𝑑𝜃𝑁(ℒ𝑥  𝑅)𝑣 , 𝑌 ) − 𝑕[𝑌, 𝑅 𝑋 + 𝑕𝑅[𝑌, 𝑋] 

=  𝑑𝜃𝑁  ( ℒ𝑥 𝑅)𝑣 , 𝑦  +  𝑕 [ 𝑅 𝑥 𝑦] 

=  𝑑𝜃𝑁  ℒ𝑥𝑅 , 𝑦  +  𝑑𝜃𝑁(𝑅  𝑋 , 𝑦 ) 

   The second assertion of the theorem now follows the first assertion is easily verified by similar 

Considerations with ℇ = ∝𝑟      [8]  

v.  Application Discussion of the Dynamics : 

     In the last section we discussed the Hamiltonian dynamics of the reduced system (𝑇∗𝑉 ∕∕𝒪 𝐻0 =

𝐻𝑐𝑚  ) However, now we want to investigate. 

The dynamical behavior an the reduced configuration space 𝑉 𝐺 =    /𝑊 = 𝐶 

    which is often also called the shape space of the system .This is interesting because the dynamics 

that take place on this space are those of the calogero- Moser dynamical system. 

In the previous sections we have given two isomorphic descriptions of an open dense subset of the 

reduced system (𝑇∗𝑉 ∕∕𝒪 𝐻0 = 𝐻𝑐𝑚  )  

   That is we are in the following situation  

𝐶𝑟 ×   × 𝒪 ∕∕0 𝑀 ↪ 𝑇∗𝑉 ∕∕ 𝒪𝐺 ↩   × 𝒪 ∕∕0 𝑀 × 𝐶𝑟   

Where we have placed brackets to distinguish between reduced position and reduced momentum 

coordinates. 
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   As a particular case consider the situation where  𝐿0 
𝑀  is an element of the isotropy lattice such 

that. 

(𝒪 ∕∕0 𝑀)(𝐿0)
𝑚 = (𝒪 𝐿0 

𝑀 ∩ 𝐴𝑛𝑛𝑚 ) ∕ 𝑀 

Is discrete .for Example, this was the case in the explicit approach of section 𝜓. 𝐴. since 𝑊 =

𝑊(  )is a reflection group we conclude from the above that , in this case the dynamic on the shape 

space is given by a line in(  )that is reflection at all walls .Thus the scattering process is given by a 

trans formation of the type  

 𝑥1, … , 𝑥𝐿 ⟼  (𝑥𝐿 , … . , 𝑥1) 

Where  𝐿 = 𝑑𝑖𝑚(  ) 

more generally, the dynamics are more complicated and we consider the coordinates of  (𝒪 ∕

∕0𝑀)(𝐿0)𝑚 to be spin coordinates which keep the dynamics from hitting certain walls [13]. 

Results : 

     We found the following some results: Possibility of calculation curvatures by more than one 

method such as derivation method and we found that its easy to applied the cotangent bundle on 

dynamics . 

Conclusion : 

 Finally we can say that dynamics is an important application of cotangent bundle .   
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