2326-9865

Residential Distribution System Harmonic Mitigation Using PV Interfacing Inverter

Dr. B. Mouli Chandra,

Professor and HoD, Dept. of EEE, QISCET,
Ongole, A.P., India. email:bmoulichandra@gmail.com
T.Kishore Kumar, T Pavan Kumar, N. Narasimha Rao

Assistant Professor, Dept of EEE, KSRMCE, Kadapa, AP, India.

Article Info
Page Number: 9917 – 9929
Publication Issue:
Vol 71 No. 4 (2022)

Abstract: — In this study, electricity quality was improved in residential areas by adopting distributed generating systems. In the distribution network, active and passive filters are utilised to counteract a harmonic resonance in residential areas. The harmonics were corrected to enhance distribution generation (DG) using a photovoltaic interface inverter. For utility providers, the rising non-linear demands in the typical home of today constitute a significant worry. The harmonic resonance generated by the installation of capacitor banks in the distribution network might make the issue worse. Passive or active filters are frequently employed to reduce harmonic distortions. Harmonic distortions caused by an increase in the use of electronic gadgets in households are a significant problem for utility providers. In addition to the deteriorating power quality, the harmonic current flow may disrupt the nearby phone lines. Because home loads are distributed, it is challenging to measure harmonics in a residential system. The possibility of employing photovoltaic (PV) interface inverters to correct the harmonics in home systems is investigated in this study. First, a system model including the residential load and DG is created. Then, using the virtual harmonic damping impedance idea, several compensation systems are thoroughly analysed and compared. Studies are also done on the system's capacitor banks' impacts. Through research and simulations, the efficiency of the harmonic compensatory schemes is confirmed under various scenarios.

Keywords: Distributed generation (DG), photovoltaic (PV),power quality improvement, harmonic compensation, renewableenergy, residential distribution system.

Article History

Article Received: 15 September 2022

Revised: 25 October 2022 Accepted: 14 November 2022 Publication: 21 December 2022

I. INTRODUCTION

Renewable energy is produced using replenishable natural resources including wind, wave, sun, biomass, and tidal power. In recent years, the need for renewable energy has increased significantly. The surge in renewable energy production has been ascribed to the rise in the price of fossil fuels and the country's desire for greener energy sources. Governments and companies Due to their potential to create significant amounts of energy without producing greenhouse gases that can contribute to climate change, countries all over the globe are investing extensively in the development of technology to harness the power of clean, renewable energy sources. We are turning back to renewable energy sources as a result of the rise in fossil fuel prices and the environmental issues brought on by the usage of conventional fuels in recent years.

Renewable energy sources are limitless, clean, and have the potential for decentralised usage (they can be used in the same place as they are produced). Additionally, they have the benefit of complementing one another, resulting in a positive integration. On electricity distribution networks all throughout the world, distributed generation (DG) units are becoming more and more prevalent. As more distributed energy resource-based distributed generation (DG) units are connected to the grid, the energy business is going through fundamental changes as a result of growing concerns about the cost of conventional energy, energy security, and

Vol. 71 No. 4 (2022) http://philstat.org.ph

9917

2326-9865

greenhouse gas emissions. Electricity businesses are focusing increasingly on distributed generation systems in order to enhance power quality.

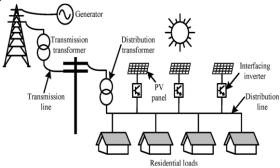


Fig.1. Residential system with PV installations

The telecommunications industry is particularly concerned about the harmonic current flow, which might interfere with nearby phone lines, in addition to the declining power quality. Due to the distributed nature of residential loads, harmonic compensation in residential systems is challenging. As a result, lump sum payments are only sometimes effective. Finding a practical method to offset scattered load harmonics and enhance the power quality of the home distribution system is thus a crucial issue.

The power business is undergoing a paradigm transition as more distributed generation (DG) systems powered by renewable energy are connected to the power distribution network, in addition to having growing worries about power quality. These PV systems, which are linked to the grid as indicated in Fig. 1, do so using DG-grid interfacing inverters, which are primarily used to convert the voltage from the energy source to a voltage that can be easily connected to the grid and to send any additional power to the grid. If correctly managed, these DG-gridinterfacing converters may perform a variety of ancillary functions in addition to their principal actual power injection function, including power factor adjustment, voltage support, flicker avoidance, system harmonic compensation, and imbalance voltage compensation.

By effectively leveraging the available apparent power rating from the interface inverters, this potential for supplementary services may be achieved. This is possible since these inverters are typically not operating at full power due to the intermittent nature of renewable energy (such as PV). The idea of grid-interfacing PV inverters for system harmonic correction has been mentioned in the literature. However, the system that was previously studied is typically too simplistic (it frequently just consists of a few lines and loads) to produce accurate findings.

II. SYSTEM MODELING

In this study, the harmonics of the home system are compensated for by controlling the PV inverters as virtual harmonic impedance at the harmonic frequencies. Therefore, the virtual impedance control idea is introduced in this part before the residential system model and harmonic compensation performances are explored. Without requiring the system to be connected to any physical components, virtual impedance simulates the effects of physical impedance.

When controlling DG inverters digitally, the virtual impedance is implemented by changing the voltage or current reference or the PWM signal. Either the fundamental frequency or the harmonic frequencies might have virtual impedance. The primary purposes of the basic frequency virtual impedance are DG power flow regulation and grid disturbance ride through. Active damping and harmonic correction for distribution systems are the two major uses of the harmonic virtual impedance. The virtual harmonic impedance and its management techniques are covered in more detail in the next subsections because the main focus of this work is on the system harmonics correction utilising PV inverters.

ISSN: 2094-0343 2326-9865

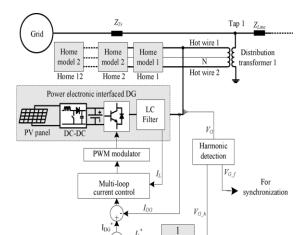


Fig.2. Harmonic damping with R-APF based DG.

The PV inverters act as R-APFs and regulate virtual harmonic resistance. Figure 2 displays a block schematic of the system harmonic damping control. The PV system in this illustration is a two-stage conversion system that consists of an inverter to connect the system to the grid and a DC-DC converter to boost the PV output to the DC link voltage level with MPPT management.

The output current reference of the PV system has two components: I the fundamental component, which results from the power factor and DC link voltage control loops (which are not shown in Fig. 2 because the focus is on harmonics compensation), and (ii) the harmonic components, which are used for harmonic compensation.

$$G_c = K_p + \sum_{h=1,5,7...} \frac{2K_{ih}\omega_{ch}s}{s^2 + 2\omega_{ch}s + \omega_h^2}$$

The distribution system is modelled in the part that follows, and the previously described PV inverter system is then connected to the created distribution system model to examine the performance of harmonic correction.

$$i_{Lh} = \sum_{h=3,5,7...} i_h$$

In the remaining sections of this work, regulated current sources at the required harmonic frequencies are utilised to model the PV inverter with virtual impedance control in order to prevent the impacts of various current control approaches on the PV inverter. This part develops the system model that includes the residential home load, PFC capacitor-equipped distribution systems, and PV inverters (with virtual harmonic impedance management). The remaining sections of the study employ the established models to analyse harmonic distortions and compensation performances using various strategies. The end-of-line compensation technique can be used in a distribution system with several PV systems by giving the PV inverters linked at the feeder's end harmonic compensation precedence.

These appliances are then linked to hot wires 1, 2, and neutral to build the home model, as illustrated in Fig. 3. As illustrated in Fig. 4, the built-in house models are integrated to a distribution system model. For the house model 1, all appliance models—aside from the dryer—are linked between hot wire 1 and the neutral, while for the home model 2, appliance models are connected between the neutral and hot wire 2. For both the home model 1 and the home model 2, the dryer model is linked to hot wires 1 and 2.

2326-9865

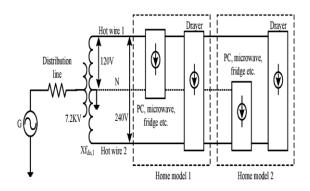


Fig. 3. Connection configuration of home model 1.

Locations of residential PV systems are typically unpredictable because they rely on which home has been installed. To get the optimum harmonic compensation outcome, an appropriate compensation approach should be established. However, coordinated management of the PV inverters in a system is achievable. The end-of-distribution-feeder (or end of line) compensation and distributed compensation are the two methods for harmonic compensation when utilising DG connecting inverters.

These capacitors could result in harmonic resonances and compromise the effectiveness of the harmonic correction. The analysis in the preceding sections is expanded in this part to take PFC capacitor effects into account. The position of the capacitor and the reactance value of the capacitor both affect the voltage profile along the distribution line with a capacitor. By enhancing power transfer capability, voltage control, and power factor, a capacitor linked to the end of a distribution network often offers the optimum performance for enhancing the voltage profile down the distribution line.

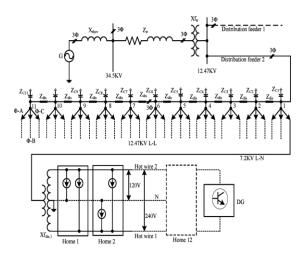


Fig. 4.Distribution system model.

On the other hand, the distributed compensationapproach can be implemented by operating all PV inverters in the harmonic compensation mode with equal priority. Capacitors are often installed in distribution systems forvoltage regulation and reactive power compensation. However, the most efficient capacitor placement also depends on the load, load power factor, line parameters of the distributionnetwork, and reactance value. Fig. 5 shows the simplified distribution feeder of the distribution system shown in Fig. 4 with DG connected at the secondaryside of the distribution transformer.

2326-9865

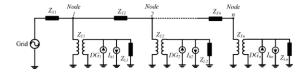


Fig. 5. Typical distribution feeder with DG.

Referring the system to the primary side of the transformer, the equivalent circuit of such a system is shown in Fig. 6 (notethat the same symbols as in Fig. 5 are used in Fig. 6 to represent the system. Also, as the analysis here focuses on harmonic frequencies, the source is shorted in Fig. 6).

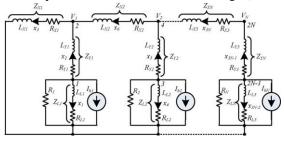


Fig. 6.Equivalent circuit of an N node distribution feeder.

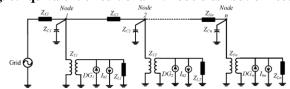


Fig. 7. Typical distribution feeder with DG and PFC capacitors.

The installation of the power factor correction (PFC) capacitorin the distribution system makes the harmonic issues complex, and some harmonics can be amplified. Although installingan active power filter may mitigate the harmonics at the point of installation in such a situation, the harmonics may beamplified on the other busses due to the whack and mole effects. To investigate the effectiveness of different harmonic compensation schemes in such a situation, a distribution bus with capacitors connected has to be modeled. Fig. 7 shows the equivalent distribution feeder of the distribution system with PFC capacitors. It also includes DG systems connected at these condary side of the distribution transformer.

III. SIMULATION RESULTS

Matlab/Simulink was also used to do time domain simulations of an 11-node system in order to validate the results of the research presented above. The problem will include the relatively low frequency range since the house model contains harmonics up to the thirteenth in the time domain simulations. Different compensation systems' harmonic current and voltage contents along the distribution line are displayed, demonstrating how end-of-line compensation results in decreased low-order harmonics along the whole distribution line.

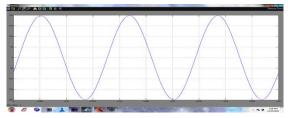


Fig.8. Current through distribution line

2326-9865

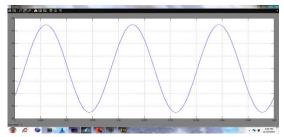


Fig.9. current flowing from node 11 to primary side of distribution transformer 11

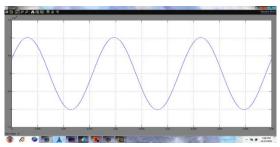


Fig.10. Distribution voltages at node 1

It shows the Distribution voltages at node 1 in distribution system by using the PV interfacing inverter and shows the improvement of the power quality. It shows the Voltage at node 11 in the distribution system using PV interfacing inverter and shows the improvement of the power quality.

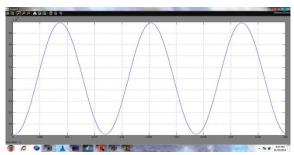


Fig.11. Voltage at node 11

Fig.12. hot wires 1 to neutral voltage of distribution transformer 11

It shows the hot wires 1 to neutral voltage of distribution transformer 11 in the distribution generation system using the PV interfacing inverter and also shows the reduction of the harmonics. It shows the hot wires 1 to neutral voltage of distribution transformer 11 in the distribution system by using the PV interfacing inverter and shows the reduction of the harmonics.

2326-9865

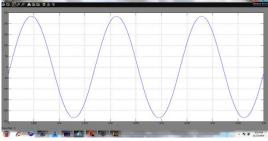


Fig.13. hot wire 1 to hot wire 2 voltage of distribution transformer 11

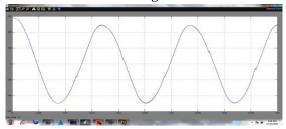


Fig.14. current flowing through hot wire 1 of distribution transformer 11

The current flowing through hot wire 1 of distribution transformer 11 in the distribution system by using the PV interfacing inverter and shows the harmonic compensation with the increasing of the power quality. It shows the distribution generation system harmonic current at 11th node in the distribution system using the PV interfacing inverter and shows the improvement of the power quality.

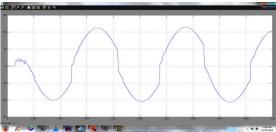


Fig.15. DG harmonic current at 11th node

Capacitors are often installed in distribution systems forvoltage regulation and reactive power compensation. These capacitors may cause harmonic resonances and affect the harmonic compensation performance. This section extends the analysis in the previous sections to include the effects of PFC capacitors. It shows the Current through distribution line in the distribution generation system using the PFC capacitor and it is shows the less power quality improvement than the PV interfacing inverter.

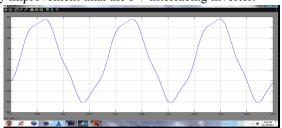


Fig.16. Current through distribution line

2326-9865

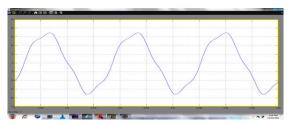


Fig.17. current flowing from node 11 to primary side of distribution transformer 1

The current flowing from node 11 to primary side of distribution transformer 1 in the distribution generation system using the PFC capacitor and it is shows the less power quality improvement than the PV interfacing inverter. The current flowing through hot wire 1 of distribution transformer 11 in the distribution generation system using the PFC capacitor and it is shows the less power quality improvement than the PV interfacing inverter.

Fig.18. current flowing through hot wire 1 of distribution transformer 11

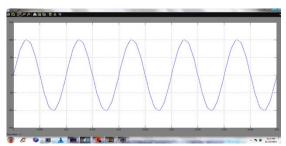
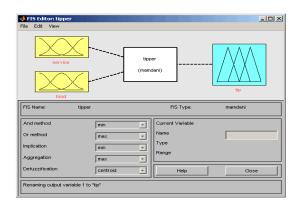
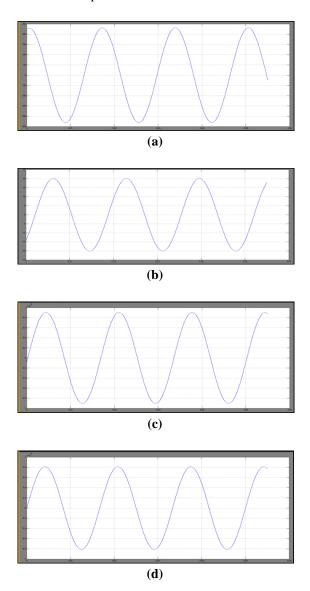



Fig.19. DG harmonic current at 11th node


Fuzzification is the process where the input crisp quantities are converted into fuzzy sets and also converts numeric (non fuzzy) input variables to linguistic (fuzzy) variables. The membership function is defined as errors and changes in error as Positive Small (PS), Positive Medium (PM), Positive Big (PB), Negative Small (NS), Negative Medium (NM) and Negative Big(NB).

2326-9865

The FIS Editor GUI tool allows you to edit the highest level features of the fuzzy inference system, such as the number of input and output variables, the defuzzification method used, and so on. Refer to The FIS Editor for more information about how to use the GUIs associated with fuzzy. The FIS Editor is the high-level display for any fuzzy logic inference system. It allows you to call the various other editors to operate on the FIS. This interface allows convenient access to all other editors with an emphasis on maximum flexibility for interaction with the fuzzy system.

Fuzzy based controller is designed to mitigate the harmonics and improve the harmonic performance and also reduces the harmonic distortion. In this work, a system model containing the DG and residential loads are first developed. Simulation results using MATLAB program shows the effectiveness of harmonic compensation strategies under different conditions. As in depth analysis and comparison of different compensation methods and effects of the capacitor banks in the system are also studied. This paper mainly discusses the effectiveness of harmonic compensation methods under different conditions.

ISSN: 2094-0343 2326-9865

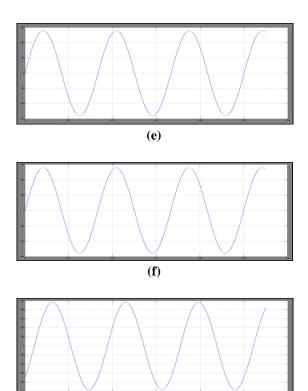


Fig.20. (a) Current through distribution line, (b) Current flowing from node11 to primary side of distribution transformer 11, (c) Distribution voltage at node 1, (d) Voltage at node 11, (e) Hot wire 1 to neutral voltage of distributiontransformer 11, (f) Hot wire 1 to hot wire 2 voltage of distribution transformer11, (g) Current flowing through hot wire 1 of distribution transformer 11.

(g)

IV. CONCLUSION

In this paper, we explored the idea of using residential system DG-grid interfacing inverters as virtual harmonic resistances todamp the system harmonics and improve the power quality. Anin-depth analysis and comparison of different harmonic compensationschemes were conducted to provide a guide for determiningwhether distributed compensation or end-of-line compensationshould be used. After such a determination has beenmade, proper priorities can be assigned to the inverters in the distribution system for optimal compensation performance. Specifically, the analysis and simulation results showed that the end-of-line compensation provided better damping for loworderharmonics, whereas distributed compensation providedbetter damping for high-order harmonics if the equal equivalentrating of the DG was maintained. In the system without PFCcapacitors, this crossover frequency was quite high, and end-oflinecompensation performed better. However, the presence of capacitor in the system could significantly reduce this crossoverfrequency to around the 7th order harmonic, so the decisionabout which compensation strategy to use must be made according to the system load characteristics. Moreover, the effects of capacitor sizes, line impedance, and length on the crossoverfrequency were also analyzed in this paper. With the informationabout a distribution system, the crossover frequency betweenthe two compensation strategies can be determined byusing the model developed in this work, and proper priority canbe assigned to the PV inverters at different locations. In our future work, we will consider a supervisory controlsystem of the DGs with communication in order to control theparticipation from each PV inverter automatically according to the identified priority. Also, to provide an accurate effectivenessanalysis of the harmonics compensation by using PV invertersthroughout the day/season/year, the use of a statisticalhome model of a residential system and solar irradiance historicdata could also be considered.

ISSN: 2094-0343 2326-9865

V. REFERENCES

- [1]MdShirajumMunir, YunWei Li, "Residential Distribution System Harmonic Compensation Using PV Interfacing Inverter," *IEEE Trans. Smart grid.*, vol. 4, no. 2, June 2013.
- [2] C. H. Lin, W. L. Hsieh, C. S. Chen, C. T. Hsu, and T. T. Ku, "Optimization of photovoltaic penetration in distribution systems considering annual duration curve of solar irradiation," *IEEE Trans. PowerSyst.*, vol. 27, no. 2, pp. 1090–1097, May 2012.
- [3] European Photovoltaic Industry Association (EPIA) "Annual report2011", Mar. 2012, pp. 5-7.
- [4] Global Wind Energy Council (GWEC) "Global wind report, annualmarket update 2011", Mar. 2012, pp. 4-7.
- [5] M. Triggianese, F. Liccardo, and P. Marino, "Ancillary services performed by distributed generation in grid integration," in *Proc. IEEEInt. Conf. Clean Electr. Power*, 2007, pp. 164–170.
- [6] M. Prodanovic, K. D. Brabandere, J. V. D. Keybus, T. Green, and J.Driesen, "Harmonic and reactive power compensation as ancillary services in inverter-based distributed generation," in *IEE Proc. Gener. Transm. Distrib.*, May 2007, vol. 1, pp. 432–438.
- [7] M. I. Marei, T. K. Abdel-Galil, E. F. El-Saadany, and M. A. Salama, "Hilbert transform based control algorithm of the DG interfacefor voltage flicker mitigation," *IEEE Trans. Power Del.*, vol. 20,pp. 1129–1133, Apr. 2005.
- [8] Y. W. Li, D. M. Vilathgamuwa, and P. C. Loh, "Microgrid powerquality enhancement using a three-phase four-wire grid-interfacing compensator," *IEEE Trans. Ind. Appl.*, vol. 41, pp. 1707–1719, Nov.–Dec. 2005.
- [9] J. Arrillaga and N. R. Watson, Power System Harmonics, 2nd ed.Hoboken, NJ, USA: Wiley, 2003, pp. 176–180.
- [10] K. Wada, H. Fujita, and H. Akagi, "Considerations of a shunt active filter based on voltage detection for installation on a long distribution feeder," *IEEE Trans. Ind. Appl.*, vol. 38, no. 4, pp. 1123–1130, July/Aug 2002.
- [11] A. Capasso, W. Grattieri, R. Lamedica, and A. Prudenzi, "A bottom-upapproach to residential load modeling," *IEEE Trans. Power Syst.*, vol.9, no. 2, pp. 957–964, May 1994.
- [12] Tabassum, Saleha, and B. Mouli Chandra. "Power Quality improvement by UPQC using ANN Controller." International Journal of Engineering Research and Applications 2.4 (2012): 2019-2024.
- [13] Chandra, B. Mouli, and Dr S. Tara Kalyani. "FPGA controlled stator resistance estimation in IVC of IM using FLC." Global Journal of Researches in Engineering Electrical and Electronics Engineering 13.13 (2013).
- [14] Chandra, B. Mouli, and S. Tara Kalyani. "Online identification and adaptation of rotor resistance in feedforward vector controlled induction motor drive." Power Electronics (IICPE), 2012 IEEE 5th India International Conference on. IEEE, 2012.
- [15] Chandra, B. Mouli, and S. Tara Kalyani. "Online estimation of Stator resistance in vector control of Induction motor drive." Power India Conference, 2012 IEEE Fifth. IEEE, 2012.
- [16] MURALI, S., and B. MOULI CHANDRA. "THREE PHASE 11-LEVEL INVERTER WITH REDUCED NUMBER OF SWITCHES FOR GRID CONNECTED PV SYSTEMS USING VARIOUS PWM TECHNIQUES."
- [17] BABU, GANDI SUNIL, and B. MOULI CHANDRA. "POWER QUALITY IMPROVEMENT WITH NINE LEVEL MULTILEVEL INVERTER FOR SINGLE PHASE GRID CONNECTED SYSTEM."
- [18] NAVEENKUMAR, K., and B. MOULI CHANDRA. "Performance Evaluation of HVDC Transmission system with the Combination of VSC and H-Bridge cells." Performance Evaluation 3.02 (2016).
- [19] Vijayalakshmi, R., G. Naga Mahesh, and B. Mouli Chandra. "Seven Level Shunt Active Power Filter for Induction Motor Drive System." International Journal of Research 2.12 (2015): 578-583.
- [20] BAI, RM DEEPTHI, and B. MOULI CHANDRA. "Speed Sensorless Control Scheme of Induction Motor against Rotor Resistance Variation." (2013).
- [21] Chandra, B. Mouli, and S. Tara Kalyani. "Online Rotor Time Constant Tuning in Indirect Vector Control of Induction Motor Drive." International Journal on Engineering Applications (IREA) 1.1 (2013): 10-15.
- [22] Rajesh, P., Shajin, F. H., Mouli Chandra, B., & Kommula, B. N. (2021). Diminishing Energy Consumption Cost and Optimal Energy Management of Photovoltaic Aided Electric Vehicle (PV-EV) By GFO-VITG Approach. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-19.

2326-9865

- [23] Reddy C, Narukullapati BK, Uma Maheswara Rao M, Ravindra S, Venkatesh PM, Kumar A, Ch T, Chandra BM, Berhanu AA. Nonisolated DC to DC Converters for High-Voltage Gain Applications Using the MPPT Approach. Mathematical Problems in Engineering. 2022 Aug 22;2022.
- [24] Sravani, B., C. Moulika, and M. Prudhvi. "Touchless door bell for post-covid." South Asian Journal of Engineering and Technology 12.2 (2022): 54-56.
- [25] Mounika, P., V. Rani, and P. Sushma. "Embedded solar tracking system using arduino." South Asian Journal of Engineering and Technology 12.2 (2022): 1-4.
- [26] Prakash, A., Srikanth, T., Moulichandra, B., & Krishnakumar, R. (2022, February). Search and Rescue Optimization to solve Economic Emission Dispatch. In 2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT) (pp. 1-5). IEEE.
- [27] Kannan, A. S., Srikanth Thummala, and B. Mouli Chandra. "Cost Optimization Of Micro-Grid Of Renewable Energy Resources Connected With And Without Utility Grid." Materials Today: Proceedings (2021).
- [28] Chandra, B. M., Sonia, D., Roopa Devi, A., Yamini Saraswathi, C., Mighty Rathan, K., & Bharghavi, K. (2021). Recognition of vehicle number plate using Matlab. J. Univ. Shanghai Sci. Technol, 23(2), 363-370.
- [29] Noushin, S. K., and Daka Prasad2 Dr B. Mouli Chandra. "A Hybrid AC/DC Micro grid for Improving the Grid current and Capacitor Voltage Balancing by Three-Phase AC Current and DC Rail Voltage Balancing Method."
- [30] Deepika, M., Kavitha, M., Chakravarthy, N. K., Rao, J. S., Reddy, D. M., & Chandra, B. M. (2021, January). A Critical Study on Campus Energy Monitoring System and Role of IoT. In 2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET) (pp. 1-6). IEEE.
- [31] ANITHA, CH, and B. MOULI CHANDRA. "A SINGLE-PHASE GRID-CONNECTED PHOTOVOLTAIC INVERTER BASED ON A THREE-SWITCH THREE-PORT FLYBACK WITH SERIES POWER DECOUPLING CIRCUIT."
- [32] Sai, V. N. V., Kumar, V. B. C., Kumar, P. A., Pranav, I. S., Venkatesh, R., Srinivasulu, T. S., ... & Chandra, B. M. Performance Analysis of a DC Grid-Based Wind Power Generation System in a Microgrid.
- [33] Prakash, A., R. Anand, and B. Mouli Chandra. "Forward Search Approach using Power Search Algorithm (FSA-PSA) to solve Dynamic Economic Load Dispatch problems." 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS). IEEE, 2019.
- [34] K Balasamy, N Krishnaraj, K Vijayalakshmi "Improving the security of medical image through neuro-fuzzy based ROI selection for reliable transmission" Journal of Multimedia Tools and Applications, Springer US, Page no. 14321-14337Vol:81, 4/2022.
- [35] M. Jeyaselvi, C. Jayakumar, M. Sathya, S. J. A. Ibrahim and N. S. Kalyan Chakravarthy, "Cyber security-based Multikey Management System in Cloud Environment," 2022 International Conference on Engineering and Emerging Technologies (ICEET), Kuala Lumpur, Malaysia, 2022, pp. 1-6, doi:10.1109/ICEET56468.2022.10007104, https://ieeexplore.ieee.org/abstract/document/10007104
- [36] S. Jafar Ali Ibrahim et al., "Rough set based on least dissimilarity normalized index for handling uncertainty during E-learners learning pattern recognition", International Journal of Intelligent Networks, Volume 3, 2022, Pages 133-137, ISSN 2666-6030, https://doi.org/10.1016/j.ijin.2022.09.001.(https://www.sciencedirect.com/science/article/pii/S26666030220001 48)
- [37] Ibrahim,S. Jafar Ali, Rajasekar S. Chakravarthy N. S. Kalyan, Varsha, Singh Maninder Pal, Kumar Vaneet and Saruchi Synthesis, Characterization of Ag/Tio2 Nanocomposite: Its Anticancer and Anti-Bacterial and Activities, Global Nest, Volume 24, Issue 2, June 2022, Pages:262-266, Issn No: 1790-7632, DOI: https://doi.org/10.30955/gnj.0042505
- [38] Linjiang Xie, Feilu Hang, Wei Guo, Yao Lv, Wei Ou, and C. Chandru Vignesh "Machine learning-based security active defence model security active defence technology in the communication network "International Journal of Internet Protocol Technology 2022 15:3-4, 169-181 https://doi.org/10.1504/IJIPT.2022.125955
- [39] KexuWu, Chaolin Li, Chandru Vignesh C, Alfred Daniel J "Digital teaching in the context of Chinese universities and their impact on students for Ubiquitous Applications" Computers and Electrical Engineering, Volume 100, May 2022, 107951, https://doi.org/10.1016/j.compeleceng.2022.107951

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

2326-9865

- [40] Huiyi Zang, C Chandru Vignesh and J Alfred Daniel "Influence of Social and Environmental Responsibility in Energy Efficiency Management for Smart City" Journal of Interconnection Networks, Vol. 22, No. Supp01, 2141002 (2022), https://doi.org/10.1142/S0219265921410024
- [41] R Menaha, VE Jayanthi, N Krishnaraj," A Cluster-based Approach for Finding Domain wise Experts in Community Question Answering System", Journal of Physics: Conference Series, Volume: 1767, IOP Publishing, 2021. DOI 10.1088/1742-6596/1767/1/012035.
- [42] J Ramprasath, M Aswin Yegappan, Dinesh Ravi, N Balakrishnan and S Kaarthi, Assigning Static Ip Using DHCP In Accordance With MAC, INTERNATIONAL JOURNAL FOR TRENDS IN ENGINEERING & TECHNOLOGY, Vol 20, Issue 1, 2017.
- [43] J Ramprasath, Dr S Ramakrishnan, P Saravana Perumal, M Sivaprakasam, U Manokaran Vishnuraj, Secure network implementation using VLAN and ACL, International Journal of Advanced Engineering Research and Science, Vol 3, Issue 1, PP. 2349-6495, 2016
- [44] J Ramprasath, V Seethalakshmi, Secure access of resources in software-defined networks using dynamic access control list, International Journal of Communication Systems, Vol 34, Issue 1, PP. e4607, 2020
- [45] Balasamy, K., Krishnaraj, N. & Vijayalakshmi, K. An Adaptive Neuro-Fuzzy Based Region Selection and Authenticating Medical Image Through Watermarking for Secure Communication. Wireless Pers Commun 122, 2817–2837 (2022). https://doi.org/10.1007/s11277-021-09031-9