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Abstract: — This paper gives an overview of Modeling and simulation of 

Doubly Fed Induction generator (DFIG) coupled with wind turbine using 

SVPWM technique. The power transfer matrix model uses instantaneous 

real/reactive power theory to improve the stability of power, which is 

injected by the wind energy to the power system. A power/current limiting 

scheme is also presented to protect power converters during a fault.  Because 

of the advantages of the DFIG over other generators it is being used for most 

of the wind applications. Various researches have been done in modeling and 

simulation field of DFIG coupled with wind turbine. This paper summarizes 

the researches in the area of study of DFIG, steady state and transient 

analysis, its modeling, simulation, reactive power control strategies and 

performance analysis of DFIG coupled with wind turbine. The control 

schemes of DFIG are modelled and simulated in MATLAB/SIMULINK.  

 

I. INTRODUCTION 

Worldwide concern about the environmental pollution and a possible energy crisis has led to increasing interest 

in technologies for generation of clean and renewable electrical energy. Among various renewable energy 

sources, wind power is the most rapidly growing one. 

     Much research effort has gone into modeling the DFIG wind turbines and studying their impact on the 

dynamic performance of the power system. In these works, the power electronic converter models are simplified 

as controlled ideal voltage-sources or current-sources. This permits large integration time-steps during transient 

simulations, which is essential in the representation of large networks. However, in the DFIG wind turbine 

system, the VFC and its power electronics (IGBT-switches) are the most sensitive part to grid disturbances. A 

question that arises is whether the simplified models of the VFC adequately represent its behavior during 

transient conditions. At the most detailed level, the operation of individual IGBT switches is fully represented. 

This level of modeling is useful for the detailed study of the power converter and its control strategy, and 

confirming the results of various simplified models. However, since the IGBT components in the VFC are 

switched on and off at a high frequency (several kHz or higher), it requires a very small simulation time-step 

(typically 10-50 μs) to accurately represent the PWM waveforms. This detailed switching-level (SL) model uses 

excessive computation time and is unsuitable for dynamic and transient study of large power systems with a 

high-level penetration of DFIG wind turbines. 

     This paper presents a modeling and control approach which uses instantaneous real and reactive power 

instead of dq components of currents in a vector control scheme. The main features of the proposed model 

compared to conventional models in the dq frame of reference are as follows. 

1) Robustness: The waveforms of power components are independent of a reference frame; therefore, this 

approach is inherently robust against unaccounted dynamics such as PLL. 
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2) Simplicity of realization: The power components (state variables of a feedback control loop) can be directly 

obtained from abc phase voltage/current quantities, which simplify the implementation of the control system. 

Using power components instead of current in the model of the system, the control system requires an additional 

protection algorithm to prevent over current during a fault. Such an algorithm can be simply added to the control 

system via measuring the magnitude of current. The sequential loop closing technique is adopted to design a 

multivariable control system including six compensators for a DFIG wind energy system.  

 

II. GENERAL FORM OF GENERATION SYSTEM 

The general scheme of electrical energy’s generation from the wind power on the basis of using doubly-fed 

induction generator is shown in Figure 1. The stator is considered to be connected to the grid directly whereas 

the rotor is connected to 

it via back-to-back converter. Rotor side converter is a current regulate-voltage source inverter and grid side 

converter is a PWM inverter. 

 
Fig. 1 General form of electrical energy’s generation from the Wind 

Power on the induction generator 

 

III. MODEL AND EQUATIONS OF WIND TURBINE USING POWER COMPONENTS 

 

The schematic diagram of a DFIG wind turbine generator is depicted in Fig. 1. The power converter includes a 

rotor-side converter (RSC) to control the speed of generator and a grid-side converter (GSC) to inject reactive 

power to the system. Using a passive sign convention, the instantaneous real and reactive power components of 

the grid-side converter, pg (t) and qg (t) in the synchronous reference frame are 

 

           
Where vsd,sq and igd,gq  are dq components of the stator voltages 

and GSC currents in the synchronous reference frame, respectively. Solving (1) for igd and igq , we obtain 

 

        
Where 

  
Similarly, the instantaneous real/reactive power components of DFIG can be obtained in terms of stator currents 

as 

        
and the stator current components are given by 
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The negative sign in (5) complies the direction of the stator power flow on Fig. 1. The exact dynamic model of 

an induction machine is conventionally expressed by voltage and torque equations. Herein, we develop a 

simplified model for the DIFG-based wind turbine of Fig. 1 by substituting currents in the exact model in terms 

of instantaneous real and reactive power.  

 

A. Model of DFIG using Instantaneous power components 

The voltage and flux equations of a doubly fed induction machine in the stator voltage synchronous reference 

frame can be summarized as  

                        (6)  

          (7)  

           (8) 

where rs and rr   are the stator and rotor resistances, and ws is the synchronous (stator) frequency. Subscripts s 

and r signify the stator and rotor variable, Ls , Lr and Lm  are the stator, rotor, and magnetization inductances, 

respectively. The complex quantities Vdq ,idq and ψdq represent the voltage, current, and flux vectors, and wsl is 

the slip frequency defined as 

               (9) 

where wr is the rotor speed of the induction machine. To obtain a model of DFIG in terms of p(t) and q(t), the 

rotor flux and current are obtained from (8) as 

  (10) 

Where Then, by substituting for irdq and Vrdq from (10) in (7) and then by solving (6) 

and (7) for isdq , we obtain 

 (11) 

Using (5) to replace isd,sq components of isdq in (11) and by rearranging the equation, we obtain 

 

          (12) 

        (13) 

where 

  

(14) 

 

The state equation of the stator flux can be obtained by substituting for isq and isd from (5) in (6). Solving the 

stator voltage equations for ψsd,sq yields 
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       (15) 

     (16) 

The electromechanical dynamic model of the machine is                                                        

(17) 

where P, J and Tm are the number of pole pairs, inertia of the rotor, and mechanical torque of the machine, 

respectively. The electric torque is given by  

                    (18) 

In (17), the mechanical torque Tm is input to the model and Tc based on (18), can be expressed in terms of 

instantaneous real and reactive power. Substituting for isd and isd  from (5) in (18) and then replacing Tc in (17), 

we deduce 

            (19) 

where 

             (20) 

The simplified model of the induction machine is presented in 

(12)–(16) and (19) which is summarized as 

  (21) 

The model of DFIG in (21) is a nonlinear dynamic model since the coefficients of the state variables are 

functions of the state variables. 

 

 
Fig. 2. Equivalent circuit of the grid-side filter. 

 

B. Grid-side converter and filter model 

Fig. 2 shows the representation of the grid-side converter and its filter in the synchronous reference frame. The 

dq model of the grid-side converter and filter is 
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   (22) 

where rf and Lf are the resistance and inductance of the filter, respectively, and subscript signifies the variables 

at the gridside converter [19]. Substituting for igdq from (2) in (22) yields 

      (23) 

where 

      
The dc-link model can be deduced from the balance of real power at the converter dc-link node as given by 

      (26) 

Where pr (t) is the real power that the converter delivers to the rotor and ploss represents the total power loss, 

including converter switching losses and copper losses of the filter. The delivered real power to the rotor is 

         (27) 

Using (10) and (5), pr can be expressed as 

           (28) 

In the high-power converter, the power loss is often less than 1% of the total transferred power, and the impact 

of ploss in (26) can be neglected. Substituting Idc (t) = C (dVdc(t))/dt in (26), the model of the dc link is deduced as 

follows: 

         (29) 

Using (28), the right-hand-side quantities in (29) can be expressed in terms of the state variables ps, qs, pg, ψsq, ψsd 

C. Wind Turbine Model 

The captured mechanical power by a wind turbine can be expressed with the algebraic aerodynamic equation as 

       (30) 

where R, ρ, Vw are the wind turbine radius, air mass density, and wind speed, respectively. CP is the wind 

turbine power coefficient which is a function of the tip speed ratio 

= R / Vw the pitch angle of the turbine blades,  . For a high-power wind turbine, the maximum mechanical 

power captured at opt ranges from 6 to 8. Theoretically, it can be shown  

CP < 0.6 and practically at CP is about 0.5 for high-power wind turbines. 

 

IV. MULTIVARIABLE CONTROLLER DESIGN FOR A 

DFIG WIND TURBINE GENERATOR 

Fig. 3 depicts the suggested multivariable feedback control system for the machine- and grid-side control 

schemes. In this scheme, the control inputs of the linearized model of the system are (urd, urq) to control 

real/reactive power of the rotor; and (ugd, ugq)  to adjust the dc-link voltage and injected reactive power to the 

system. The feedback control system includes six compensators which are used in two nested loops. The inner 

loops consist of GPs, GQs, GPg and  GQg  where the required reactive power of the machine and grid are directly 

controlled via GQs and GQg control loops as shown Fig. 3. The outer control loops include Gr for regulating the 

rotor speed and Gdc for adjusting the dc-link voltage level. 
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Fig. 3. Schematic diagram of the feedback control system for the machine-side and grid-side converters. 

 

The sequential loop closing (SLC) method is adopted to design six controllers based on the multivariable model 

of the system developed in Section III. In the SLC method, based on physical relevance of the inputs and 

outputs, the input-output pairs are determined. Then, a controller is designed for the first pair of the input-output 

by treating the system as a single-input single-output (SISO) system.  

 Design of Controllers 

1) Stator Real and Reactive Power Controllers: Considering  as the first pair in and, thus, 

imposing Urq=0, we obtain the first SISO subsystem for controller design as 

                         (31) 

The first controller to be designed is 

         (32) 

Substituting from (32) in (31), the closed-loop model of the first subsystem in Laplace domain is 

         (33) 

Thus, GPs must be designed so that all poles of (33) remain in the left-half plane (LHP). The design of GPs can 

be simply performed via SISO system design methods, such as frequency response or root locus. To design GQs 

for reactive power control, the first controller GPs is considered as a part of the system, then by substituting for 

 and qs)in                    (34) 

The closed-loop model of the second subsystem is obtained 

         (35) 

 
Thus, GQs must be designed so that the second subsystem in (35) remains stable. 

2) Rotor Speed Controller: Speed control of the turbine-generator rotor is performed via control of the real 

power of the stator. Therefore, the speed controller Gr uses ps
 as the control input. Using the control scheme 

of Fig. 3, ps
is 

           (36) 

Embedding GPs and GQs controllers in the model of the system, the transfer function of rotor speed can be 

calculated as 

                   (37) 
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Substituting ps
 for from (36) in (37) yields 

     (38) 

Thus, Gr must be designed so that the subsystem in (38) remains stable. 

 

V. MODEL VALIDATION AND PERFORMANCE EVALUATION OF THE MULTIVARIABLE 

CONTROL              SYSTEM 

Fig. 4 shows the schematic of a study system for validation of the proposed modeling and control approaches. 

The study system includes a 1.5-MW DFIG wind turbine-generator connected to a grid. The electrical and 

mechanical parameters of the turbine generator are adopted from and summarized below. 

 
Fig. 4. Schematic diagram of the study system. 

 

This system was tested under the following conditions: 

1) Rated Power   1.5 [MW] 

2) Rated Voltage (line to line) 0.575 [kv] 

3) Rated Frequency  60 [Hz] 

4) Rated Wind Speed  12.0 [m/s] 

5) Stator Resistance  1.4 [mΩ] 

6) Rotor Resistance  0.99 [mΩ] 

7) Stator leakage inductance 89.98 [μH] 

8) Rotor leakage inductance 82.08 [μH] 

9) Magnetization inductance 1.526 [mH] 

10) Stator/rotor turns ratio  1 

Using the proposed designed method; the following per-unitized controllers were designed for the study system. 

 
The performance of these controllers was investigated based on time-domain simulations of the study system 

using the Matlab/ Simulink software tool. 
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VI. MATLAB MODELLING AND SIMULATION RESULTS 

The simulation diagram for DFIG based wind energy system is shown in below fig 5. The stator of the wound 

rotor induction machine is connected to the three-phase grid and the rotor side is fed via the back-to-back IGBT 

voltage-source inverters with a common DC bus. The grid side converter controls the power flow between the 

DC bus and the AC side and allows the system to be operated in sub synchronous and super synchronous speed. 

 

 
Fig. 5. Simulation diagram of DFIG based wind energy system 

 
Fig. 6. Simulation diagram of DFIG controllers based on svpwm technique 

 
Fig. 7. Schematic representation of State Vector PWM 
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Fig 7. Shows the Space Vector PWM generation module accepts modulation index commands and generates the 

appropriate gate drive waveforms for each PWM cycle. The maximum achievable modulation (Umag_L) in the 

linear operating range is given by: 

 

 
Over modulation occurs when modulation Umag>Umag_L. This corresponds to the condition where the voltage 

vector in increases. Under such circumstance, the Space Vector PWM algorithm will rescale the magnitude of 

the voltage vector to fit within the limit. However, the phase angle (θ) is always preserved. The transfer gain of 

the PWM modulator reduces and becomes non-linear in the over modulation region. 

 
Fig. 8. Reference commands for wind and the stator reactive power. 

Fig. 8(a) and 8(b) shows a trapezoidal pattern for wind speed and a step change in the reactive reference which 

are applied to the controllers of the study system. The trapezoidal pattern was selected to examine the system 

behavior following variation in the wind speed with both negative and positive slopes. Fig. 9 compares 

real/reactive power quantities of the DFIG against their command signals. Due to the coupling phenomenon, the 

variation of each power quantity can be considered as a disturbance to the other one. 

 
Fig. 9. Tracking performance of real and reactive stator powers 
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For instance, the effect of coupling can be seen in Fig. 9(a) at t=3 sec, where the step command in reactive 

power causes a small deviation in real power. However, as Fig. 9 shows, both real and reactive power quantities 

accurately track their command signals which mean the controllers successfully mitigate the impact of coupling 

effect in the tracking of commands signals. 

 

 
Fig. 10. RMS values of the stator voltage and currents. 

Fig. 10(a) and (b) depicts the dc-link voltage and the rms values of the machine voltage/current quantities. These 

figures show that the stator and rotor currents are changing as the real/reactive power changes whereas the dc 

link and stator voltages remained fixed as expected from the control strategy. Specifically, the IS and Ir current 

curves. 

 

VII. CONCLUSION 

From the simulation behavior of the actual DFIG. It is shown that the DFIG model approaches  in order to fully 

evaluate the fault degrees when designing protection schemes and also for future research on improved control 

strategies and the fault ride through capability for DFIG-based wind power generation systems. The waveforms 

of the power components remain intact at different reference frames and can be easily calculated using the phase 

voltages and currents. Therefore, this approach facilitates the implementation of the controllers and improves 

the robustness of the control system.  

The proposed approach is verified using the time-domain simulation of a study system for DFIG wind energy 

systems. The simulation results show that the suggested model and control scheme can successfully track the 

rotor speed reference for capturing the maximum power and maintain the dc-link voltage of the converter 

regardless of disturbances due to changes in real and reactive power references. 
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