# Detour Global Domination for k-Regular Graphs with Girth 3 Where k is Even

C. Jayasekaran<sup>1</sup>, S.V. Ashwin Prakash<sup>2</sup>

<sup>1</sup>Associate Professor, Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil - 629003, Tamil Nadu, India.
<sup>2</sup>Research Scholar, Reg. No.: 20113132091001, Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil - 629003, Tamil Nadu, India. Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012, Tamil Nadu, India. *email : jayacpkc@amail.com*<sup>1</sup>, *ashwinprakash00@amail.com*<sup>2</sup>

| Issue: Special Issue on<br>Mathematical Computation in<br>Combinatorics and Graph Theory<br>in Mathematical Statistician and<br>Engineering Applications<br>Article Info<br>Page Number: 308-314<br>Publication Issue:<br>Vol 71 No. 3s3 (2022) | Abstract<br>In this paper, we introduced the new concept detour<br>global domination number for $k$ -regular graph with girth 3,<br>where $k$ is even. First we recollect the concept of $k$ -regular<br>graphs and we produce some results based on the detour<br>global domination number for $k$ -regular graph with girth 3,<br>where $k$ is even. A set $S$ is called a <i>detour global</i><br><i>dominating set</i> of $G$ if $S$ is both detour and global<br>dominating set of $G$ . The <i>detour global domination number</i> is<br>the minimum cardinality of a detour global dominating set in<br>G. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Article History<br>Article Received: 31 July 2022<br>Revised: 05 August 2022<br>Accepted: 08 August 2022<br>Publication: 10 August 2022                                                                                                         | <i>Keywords:</i> Detour set, Dominating set, Detour<br>Domination, Global Domination, Detour Global Domination,<br>regular graphs.<br><i>Subject Classification Number: 05C12,05C69</i>                                                                                                                                                                                                                                                                                                                                                                                                                           |

#### 1 Introduction

By a graph G = (V, E) we mean a finite, connected, undirected graph with neither loops nor multiple edges. The order |V| and size |E| of G are denoted by p and qrespectively. For graph theoretic terminology we refer to West[9]. For vertices x and y in a connected graph G, the detour distance D(x, y) is the length of a longest x - y path in G[1]. An x - y path of length D(x, y) is called an x - y detour. The closed interval  $I_D[x, y]$ consists of all vertices lying on some x - y detour of G. For  $S \subseteq V, I_D[S] = \bigcup_{x,y \in S} I_D[x, y]$ . A set S of vertices is a detour set if  $I_D[S] = V$ , and the minimum cardinality of a detour set is the detour number dn(G). A detour set of cardinality dn(G) is called a minimum detour set [2].

A set  $S \subseteq V(G)$  in a graph G is a *dominating set* of G if for every vertex v in V-S, there exists a vertex  $u \in S$  such that v is adjacent to u. The *domination number* of G, denoted by  $\gamma(G)$ , is the minimum cardinality of a dominating set of G[3]. The complement  $\overline{G}$  of a graph G also has V(G) as its point set, but two points are adjacent in  $\overline{G}$  if and only if they are not adjacent in G. A set  $S \subseteq V(G)$  is called a *global dominating set* of G if it is a

dominating set of both G and  $\overline{G}$ [7].

A graph is *k*-regular if every vertex has degree k. The girth of a graph is the length of its shortest cycle.[5]

**Definition 1.1** Let G = (V, E) be a connected graph with atleast two vertices. A set  $S \subseteq V(G)$  is said to be a detour global dominating set of G if S is both detour and global dominating set of G. The detour global domination number, denoted by  $\overline{\gamma}_d(G)$  is the minimum cardinality of a detour global dominating set of G and the detour global dominating set with cardinality  $\overline{\gamma}_d(G)$  is called the  $\overline{\gamma}_d$ -set of G or  $\overline{\gamma}_d(G)$ -set.[4]

In 2015, N. Mohanapriya, et. Al. [6] investigated the domination number and its parameters for four regular graphs G(n) on n vertices with girth 3. In 2019, Primo Potocnik and Jano Vidali[8] studied girth regular graphs. In 2020, C. Jayasekaran, S. Delbin Prema and S.V. Ashwin Prakash[5] studied irredundance and domination number for six regular graph with girth 3. This motivated us to determine detour global domination number for k-regular graph with girth 3 where k is even.

In Section 2 we deal with the structure for 4 regular graph with girth 3 and 6 regular graph with girth 3.

In Section 3 we introduce detour global domination number for k-regular graph with girth 3 where k is even and condition for minimum number of detour global dominating set.

### 2 Basic Definitions

**Definition 2.1** If  $v_1$  is adjacent with  $v_{n-1}, v_n, v_2, v_3; v_2$  is adjacent with  $v_n, v_1, v_3, v_4; v_i$  is adjacent with  $v_{i-2}, v_{i-1}, v_{i+1}, v_{i+2}$ , where i = 3 to n-2,  $v_{n-1}$  is adjacent with  $v_{n-3}, v_{n-2}, v_n, v_1$  and  $v_n$  is adjacent with  $v_{n-2}, v_{n-1}, v_1, v_2$  such that  $v_1v_2 \cdots v_n$  forms a cycle, then clearly each vertex is of degree 4. Hence, the graph has 2n edges. Thus, from the construction, we have a 4-regular graph of girth 3 with n vertices and 2n edges. In Figure 1, a four regular graph on n vertices with girth 3 is shown.



Figure 1: G(n, 4, 3)

**Definition 2.2** If  $v_1$  is adjacent with  $v_{n-2}$ ,  $v_{n-1}$ ,  $v_n$ ,  $v_2$ ,  $v_3$ ,  $v_4$ ;  $v_2$  is adjacent with  $v_{n-1}$ ,  $v_n$ ,  $v_1$ ,  $v_3$ ,  $v_4$ ,  $v_5$ ;  $v_i$  is adjacent with  $v_{i-3}$ ,  $v_{i-2}$ ,  $v_{i-1}$ ,  $v_{i+1}$ ,  $v_{i+2}$ ,  $v_{i+3}$ , where i = 3 to n-2,  $v_{n-1}$  is adjacent with  $v_{n-4}$ ,  $v_{n-3}$ ,  $v_{n-2}$ ,  $v_n$ ,  $v_1$ ,  $v_2$  and  $v_n$  is adjacent with  $v_{n-3}$ ,  $v_{n-2}$ ,  $v_n$ ,  $v_1$ ,  $v_2$  and  $v_n$  is adjacent with  $v_{n-3}$ ,  $v_{n-2}$ ,  $v_n$ ,  $v_1$ ,  $v_2$  and  $v_n$  is adjacent with  $v_n$ ,  $v_1$ ,  $v_2$ ,  $v_2$ ,  $v_1$ ,  $v_1$ ,  $v_2$ ,  $v_3$  such that  $v_1v_2 \cdots v_n$  forms a cycle, then clearly each vertex is of degree 6. Hence, the graph has 3n edges. Thus, from the construction, we have a 6-regular graph of girth 3 with n vertices and 3n edges. In Figure 2, a six regular graph on n vertices with girth 3 is shown.



Figure 2: G(n, 6, 3)

#### **3** Detour global domination number for *k*-regular graph with girth **3**

**Definition 3.1** If  $v_1$  is adjacent with  $v_{n-(\frac{k}{2}-1)}, \dots, v_{n-2}, v_{n-1}, v_n, v_2, v_3, \dots, v_{\frac{k}{2}+1}; v_2$  is adjacent with  $v_{n-(\frac{k}{2}-2)}, \dots, v_n, v_1, v_3, v_4, \dots, v_{\frac{k}{2}+2}; v_i$  is adjacent with  $v_{i-\frac{k}{2}}, \dots, v_{i-2}, v_{i-1}, v_{i+1}, v_{i+2}, \dots, v_{i+\frac{k}{2}}$  where i = 3 to n-2,  $v_{n-1}$  is adjacent with  $v_{n-(\frac{k}{2}+1)}, \dots, v_{n-3}, v_{n-2}, v_n, v_1, v_2, \dots, v_{\frac{k}{2}-1}$  and  $v_n$  is adjacent with  $v_{n-\frac{k}{2}}, \dots, v_{n-2}, v_{n-1}, v_1, v_2, \dots, v_{\frac{k}{2}}$  such that  $v_1v_2 \dots v_n$  forms a cycle, then clearly each vertex is of degree k. Hence, the graph has  $\frac{nk}{2}$  edges. Thus, from the construction, we have a k-regular graph of girth 3 with n vertices and  $\frac{nk}{2}$  edges where k is even. In this section we denote the k regular graph on n vertices with girth 3 as G(n, k, 3).

**Theorem 3.2** For any integer  $n \ge k+1$ ,  $\bar{\gamma}_d(G(n,k,3)) = \begin{cases} n & \text{if } n = k+1 \\ \left\lceil \frac{n}{k+1} \right\rceil & \text{for } n \ge k+2 \end{cases}$ 

Vol. 71 No. 3s3 (2022) http://philstat.org.ph *Proof.* Let  $v_1, v_2, v_3, \dots, v_n$  be the vertices of G(n, k, 3) such that  $v_1v_2v_3 \dots v_nv_1$  forms a cycle. Now consider for n = k + 1, G(k + 1, k, 3) is isomorphic to  $K_{k+1}$ . We know that all the vertices are isolated vertices in the complement graph of G(k + 1, k, 3). Therefore, the detour global dominating set must contain all the vertices of G(k + 1, k, 3) and so, for n = k + 1,  $\bar{\gamma}_d(G(k + 1, k, 3)) = k + 1$ .

Now consider for  $n \ge k+2$ , starting with the vertex  $v_i$  for  $1 \le i \le n$   $N[v_i] = \{v_{i-\frac{k}{2}}, \cdots, v_{i-2}, v_{i-1}, v_i, v_{i+1}, v_{i+2}, \cdots, v_{i+\frac{k}{2}}\}$  where the suffices modulo n and  $|N[v_i]| = k + 1$ . Now, we choose the next vertex to be  $v_{i+k+1}$  where,  $N[v_{i+k+1}] = \{v_{i+\frac{k}{2}+1}, \cdots, v_{i+k-1}, v_{i+k}, v_{i+k+1}, v_{i+k+2}, v_{i+k+3}, \cdots, v_{i+\frac{3k}{2}+1}\}$ . Clearly,  $N[v_i] \ne N[v_{i+k+1}]$ . Proceeding like this we obtain a set  $S = \{v_i, v_{i+k+1}, v_{i+2(k+1)}, \cdots, v_{i+(\lceil\frac{n}{k+1}\rceil-1)(k+1)}\}$  which dominates every vertices in G(n, k, 3). Also,  $v_i - v_{i+k+1}$  detour path covers all the vertices of G(n, k, 3). As a result, S is a minimum detour dominating set. We now show that S is a global dominating set of G(n, k, 3). In  $\overline{G(n, k, 3)}$ ,  $N[v_i] \cup N[v_{i+k+1}] = V(G(n, k, 3))$ . Since  $v_i, v_{i+k+1} \in S$ , S is a dominating set of  $\overline{G(n, k, 3)}$ . Therefore,  $S = \{v_i, v_{i+k+1}, v_{i+2(k+1)}, \cdots, v_{i+(\lceil\frac{n}{k+1}\rceil-1)(k+1)}\}$  is a minimum detour global dominating set for  $1 \le i \le n$  and the suffices modulo n and hence,  $\overline{\gamma}_d(G(n, k, 3)) = |S| = \lceil\frac{n}{k+1}\rceil$  for  $n \ge k+2$ .

**Example 3.3** Consider the graph *G*(12,8,3) given in Figure 3. for which the minimum detour global dominating sets are  $\{v_1, v_{10}\}, \{v_2, v_{11}\}, \{v_3, v_{12}\}, \{v_4, v_1\}, \{v_5, v_2\}, \{v_6, v_3\}, \{v_7, v_4\}, \{v_8, v_5\}, \{v_9, v_6\}, \{v_{10}, v_7\}, \{v_{11}, v_8\}$  and  $\{v_{12}, v_9\}$  and hence by Theorem 3.2,  $\bar{\gamma}_d(G(12,8,3)) = \left[\frac{12}{9}\right] = 2.$ 



Figure 3: G(12, 8, 3)

**Theorem 3.4** In G(n, k, 3), for n > k + 1 and if n is a multiple of k + 1, then G(n, k, 3) contains only k + 1 minimum detour global dominating set.

*Proof.* Let G(n,k,3) be a k-regular graph with girth 3 where k is even and n be a multiple of k + 1. Then n = (k + 1)m where  $m \ge 1$ . If m = 1, then  $G(n,k,3) = G(k + 1,k,3) \cong K_{k+1}$  which contains every vertices of G(k + 1,k,3). Hence, for n = k + 1 there exists only one minimum detour global dominating set. Now consider for  $n = (k + 1)m, m \ge 2$  where the minimum detour global dominating sets is  $S = \{v_i, v_{i+k+1}, v_{i+2(k+1)}, \cdots, v_{i+(\lceil \frac{n}{k+1} \rceil - 1)(k+1)}\} =$ 

 $\{v_i, v_{i+k+1}, v_{i+2(k+1)}, \cdots, v_{i+(m-1)(k+1)}\} = \{v_i, v_{i+k+1}, v_{i+2(k+1)}, \cdots, v_{i+n-(k+1)}\}$  for  $1 \le i \le n, m \ge 2$  and the suffices modulo n.

Now we consider the following two cases for m = 2 and m > 2.

Case 1. m = 2

Here, G(n, k, 3) = G(2(k + 1), k, 3). Then The minimum detour global dominating sets are  $\{v_1, v_{k+2}\}, \{v_2, v_{k+3}\}, \{v_3, v_{k+4}\}, \dots, \{v_k, v_{2k+1}\}$  and  $\{v_{k+1}, v_{2k+2}\}$ . Thus, G(n, k, 3) contains only k + 1 minimum detour global dominating sets.

For example consider the graph G(n, 6,3) = G(14,4,3), given in Figure 4. The minimum detour global dominating sets are  $\{v_1, v_8\}, \{v_2, v_9\}, \{v_3, v_{10}\}, \{v_4, v_{11}\}, \{v_5, v_{12}\}$  and  $\{v_6, v_{13}\}$ . Thus, G(n, 6,3) contains only 7 minimum detour global dominating sets.



Figure 4: G(14, 6, 3)



$$\begin{split} &1\leq i\leq n \quad \text{and the suffices modulo} \quad n \quad \text{Here,} \quad S_1=\{v_1,v_{k+2},\cdots,v_{n-k}\}, S_2=\\ &\{v_2,v_{k+3},\cdots,v_{n-(k-1)}\},\cdots,S_k=\{v_k,v_{2k+1},\cdots,v_{n-1}\}, \quad \text{and} \quad S_{k+1}=\{v_{k+1},v_{2(k+1)},\cdots,v_n\} \quad \text{Proceeding like this we get } S_p=\{v_p,v_{p+k+1},\cdots,v_{p+n-(k+1)}\} \text{ for } k+2\leq p\leq n. \text{ Since the suffices are modulo } n, \ S_p \text{ is either } S_1 \text{ or } S_2 \text{ or } \cdots S_k \text{ or } S_{k+1} \text{ according as } p\equiv 1(mod \ (k+1)) \text{ or } p\equiv 2(mod \ (k+1)) \text{ or } \cdots p\equiv k(mod \ (k+1)) \text{ or } p\equiv 0(mod \ (k+1)), \text{ respectively. Thus, } G(n,k,3) \text{ contains only } k+1 \text{ minimum detour global dominating sets.} \end{split}$$

The theorem follows from cases 1 and 2.

**Example 3.5** Consider the graph G(27,8,3) given in Figure 5 where the minimum detour global dominating sets are  $\{v_1, v_{10}, v_{19}\}, \{v_2, v_{11}, v_{20}\}, \{v_3, v_{12}, v_{21}\}, \{v_4, v_{13}, v_{22}\}, \{v_5, v_{14}, v_{23}\}, \{v_6, v_{15}, v_{24}\}, \{v_7, v_{16}, v_{25}\}, \{v_8, v_{17}, v_{26}\}$  and  $\{v_9, v_{18}, v_{27}\}$ . Thus, by Theorem 3.4, there is only 9 minimum detour global dominating sets.



Figure 5: G(27, 8, 3)

## References

[1] F.Buckley and F.Harary, *Distance in Graphs, Addison-Wesley, Redwood City (1990).* 

[2] G. Chartrand, N. Johns and P. Zang, Detour Number of a graph, Util. Math. 64, 97-113 (2003).

[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater *Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).* 

[4] C. Jayasekaran, S.V. Ashwin Prakash, Detour global domination number of some graphs, Malaya Journal of Matematik, S(1), 552-555 (2020).

[5] C. Jayasekaran, S. Delbin Prema and S.V. Ashwin Prakash, *Relations on irredundance and domination numberfor six regular graph with girth 3, Malaya Journal of Matematik, 8(3), 856-861 (2020).* 

[6] N. Mohanapriya, S. Vimal Kumar, J. Vernold Vivin and M. Venkatachalam, *Domination in 4-Regular Graphs with Girth 3, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 85, 259–264 (2015).* 

[7] E. Sampath Kumar, The Global Domination Number of a Graph, Journal of Mathematical and Physical Sciences, 23(5),377-385 (1989).

[8] Primož Potocnik and Janoš Vidali, *Girth-regular graphs*, Ars Mathematica Contemporanea, 17, 349–368 (2019).

[9] D.B. West, Introduction to Graph Theory, Second Ed., Prentice-Hall, Upper Saddle River, NJ (2001).