Detour Global Domination for \boldsymbol{k}-Regular Graphs with Girth 3 Where \boldsymbol{k} is Even

C. Jayasekaran ${ }^{1}$, S.V. Ashwin Prakash ${ }^{2}$
${ }^{1}$ Associate Professor, Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil - 629003, Tamil Nadu, India.
${ }^{2}$ Research Scholar, Reg. No.: 20113132091001, Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil - 629003, Tamil Nadu, India. Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012,Tamil Nadu, India. email : jayacpkc@gmail.com ${ }^{1}$, ashwinprakash00@gmail.com ${ }^{2}$

Issue: Special Issue on
Mathematical Computation in Combinatorics and Graph Theory in Mathematical Statistician and Engineering Applications

Article Info

Page Number: 308-314
Publication Issue:
Vol 71 No. $3 s 3$ (2022)

Article History

Article Received: 31 July 2022
Revised: 05 August 2022
Accepted: 08 August 2022
Publication: 10 August 2022

Abstract

In this paper, we introduced the new concept detour global domination number for k-regular graph with girth 3 , where k is even. First we recollect the concept of k-regular graphs and we produce some results based on the detour global domination number for k-regular graph with girth 3, where k is even. A set S is called a detour global dominating set of G if S is both detour and global dominating set of G. The detour global domination number is the minimum cardinality of a detour global dominating set in G.

Keywords: Detour set, Dominating set, Detour Domination, Global Domination, Detour Global Domination, regular graphs.

Subject Classification Number: 05C12,05C69

1 Introduction

By a graph $G=(V, E)$ we mean a finite, connected, undirected graph with neither loops nor multiple edges. The order $|V|$ and size $|E|$ of G are denoted by p and q respectively. For graph theoretic terminology we refer to West[9]. For vertices x and y in a connected graph G, the detour distance $D(x, y)$ is the length of a longest $x-y$ path in $G[1]$. An $x-y$ path of length $D(x, y)$ is called an $x-y$ detour. The closed interval $I_{D}[x, y]$ consists of all vertices lying on some $x-y$ detour of G. For $S \subseteq V, I_{D}[S]=\cup_{x, y \in S} I_{D}[x, y]$. A set S of vertices is a detour set if $I_{D}[S]=V$, and the minimum cardinality of a detour set is the detour number $d n(G)$. A detour set of cardinality $d n(G)$ is called a minimum detour set [2].

A set $S \subseteq V(G)$ in a graph G is a dominating set of G if for every vertex v in $V-S$, there exists a vertex $u \in S$ such that v is adjacent to u. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G [3]. The complement \bar{G} of a graph G also has $V(G)$ as its point set, but two points are adjacent in \bar{G} if and only if they are not adjacent in G. A set $S \subseteq V(G)$ is called a global dominating set of G if it a
dominating set of both G and $\bar{G}[7]$.
A graph is k-regular if every vertex has degree k. The girth of a graph is the length of its shortest cycle.[5]

Definition 1.1 Let $G=(V, E)$ be a connected graph with atleast two vertices. A set $S \subseteq$ $V(G)$ is said to be a detour global dominating set of G if S is both detour and global dominating set of G. The detour global domination number, denoted by $\bar{\gamma}_{d}(G)$ is the minimum cardinality of a detour global dominating set of G and the detour global dominating set with cardinality $\bar{\gamma}_{d}(G)$ is called the $\bar{\gamma}_{d}$-set of G or $\bar{\gamma}_{d}(G)$-set.[4]

In 2015, N. Mohanapriya, et. Al. [6] investigated the domination number and its parameters for four regular graphs $G(n)$ on n vertices with girth 3. In 2019, Primo Potocnik and Jano Vidali[8] studied girth regular graphs. In 2020, C. Jayasekaran, S. Delbin Prema and S.V. Ashwin Prakash[5] studied irredundance and domination number for six regular graph with girth 3. This motivated us to determine detour global domination number for k-regular graph with girth 3 where k is even.

In Section 2 we deal with the structure for 4 regular graph with girth 3 and 6 regular graph with girth 3 .

In Section 3 we introduce detour global domination number for k-regular graph with girth 3 where k is even and condition for minimum number of detour global dominating set.

2 Basic Definitions

Definition 2.1 If v_{1} is adjacent with $v_{n-1}, v_{n}, v_{2}, v_{3} ; v_{2}$ is adjacent with $v_{n}, v_{1}, v_{3}, v_{4} ; v_{i}$ is adjacent with $v_{i-2}, v_{i-1}, v_{i+1}, v_{i+2}$, where $i=3$ to $n-2, v_{n-1}$ is adjacent with $v_{n-3}, v_{n-2}, v_{n}, v_{1}$ and v_{n} is adjacent with $v_{n-2}, v_{n-1}, v_{1}, v_{2}$ such that $v_{1} v_{2} \cdots v_{n}$ forms a cycle, then clearly each vertex is of degree 4 . Hence, the graph has $2 n$ edges. Thus, from the construction, we have a 4-regular graph of girth 3 with n vertices and $2 n$ edges. In Figure 1, a four regular graph on n vertices with girth 3 is shown.

Definition 2.2 If v_{1} is adjacent with $v_{n-2}, v_{n-1}, v_{n}, v_{2}, v_{3}, v_{4} ; v_{2}$ is adjacent with $v_{n-1}, v_{n}, v_{1}, v_{3}, v_{4}, v_{5} ; v_{i}$ is adjacent with $v_{i-3}, v_{i-2}, v_{i-1}, v_{i+1}, v_{i+2}, v_{i+3}$, where $i=3$ to $n-2, \quad v_{n-1}$ is adjacent with $v_{n-4}, v_{n-3}, v_{n-2}, v_{n}, v_{1}, v_{2}$ and v_{n} is adjacent with $v_{n-3}, v_{n-2}, v_{n-1}, v_{1}, v_{2}, v_{3}$ such that $v_{1} v_{2} \cdots v_{n}$ forms a cycle, then clearly each vertex is of degree 6. Hence, the graph has $3 n$ edges. Thus, from the construction, we have a 6-regular graph of girth 3 with n vertices and $3 n$ edges. In Figure 2, a six regular graph on n vertices with girth 3 is shown.

Figure 2 : $G(n, 6,3)$

3 Detour global domination number for \boldsymbol{k}-regular graph with girth 3

Definition 3.1 If v_{1} is adjacent with $v_{n-\left(\frac{k}{2}-1\right)}, \cdots, v_{n-2}, v_{n-1}, v_{n}, v_{2}, v_{3}, \cdots, v_{\frac{k}{2}+1} ; v_{2}$ is adjacent with

$$
v_{n-\left(\frac{k}{2}-2\right)}, \cdots, v_{n}, v_{1}, v_{3}, v_{4}, \cdots, v_{\frac{k}{2}+2} ; v_{i}
$$

with $v_{i-\frac{k}{2}}, \cdots, v_{i-2}, v_{i-1}, v_{i+1}, v_{i+2}, \cdots, v_{i+\frac{k}{2}}$, where $i=3$ to $n-2, v_{n-1}$ is adjacent with $v_{n-\left(\frac{k}{2}+1\right)}, \cdots, v_{n-3}, v_{n-2}, v_{n}, v_{1}, v_{2}, \cdots, v_{\frac{k}{2}-1}$ and v_{n} is adjacent with $v_{n-\frac{k}{2}}, \cdots, v_{n-2}, v_{n-1}, v_{1}, v_{2}, \cdots, v_{\frac{k}{2}}$ such that $v_{1} v_{2} \cdots v_{n}$ forms a cycle, then clearly each vertex is of degree k. Hence, the graph has $\frac{n k}{2}$ edges. Thus, from the construction, we have a k-regular graph of girth 3 with n vertices and $\frac{n k}{2}$ edges where k is even. In this section we denote the k regular graph on n vertices with girth 3 as $G(n, k, 3)$.
Theorem 3.2 For any integer $n \geq k+1, \bar{\gamma}_{d}(G(n, k, 3))= \begin{cases}n & \text { if } n=k+1 \\ {\left[\frac{n}{k+1}\right\rceil} & \text { for } n \geq k+2\end{cases}$

Proof. Let $v_{1}, v_{2}, v_{3}, \cdots, v_{n}$ be the vertices of $G(n, k, 3)$ such that $v_{1} v_{2} v_{3} \cdots v_{n} v_{1}$ forms a cycle. Now consider for $n=k+1, G(k+1, k, 3)$ is isomorphic to K_{k+1}. We know that all the vertices are isolated vertices in the complement graph of $G(k+1, k, 3)$. Therefore, the detour global dominating set must contain all the vertices of $G(k+1, k, 3)$ and so, for $n=k+1$, $\bar{\gamma}_{d}(G(k+1, k, 3))=k+1$.

Now consider for $n \geq k+2$, starting with the vertex v_{i} for $1 \leq i \leq n \quad N\left[v_{i}\right]=$ $\left\{v_{i-\frac{k}{2}}, \cdots, v_{i-2}, v_{i-1}, v_{i}, v_{i+1}, v_{i+2}, \cdots, v_{i+\frac{k}{2}}\right\}$ where the suffices modulo n and $\left|N\left[v_{i}\right]\right|=k+1$. Now, we choose the next vertex to be v_{i+k+1} where, $N\left[v_{i+k+1}\right]=$ $\left\{v_{i+\frac{k}{2}+1}, \cdots, v_{i+k-1}, v_{i+k}, v_{i+k+1}, v_{i+k+2}, v_{i+k+3}, \cdots, v_{i+\frac{3 k}{2}+1}\right\}$. Clearly, $N\left[v_{i}\right] \neq N\left[v_{i+k+1}\right]$. Proceeding like this we obtain a set $S=\left\{v_{i}, v_{i+k+1}, v_{i+2(k+1)}, \cdots, v_{i+\left(\left[\frac{n}{k+1}\right]-1\right)(k+1)}\right\}$ which dominates every vertices in $G(n, k, 3)$. Also, $v_{i}-v_{i+k+1}$ detour path covers all the vertices of $G(n, k, 3)$. As a result, S is a minimum detour dominating set. We now show that S is a global dominating set of $G(n, k, 3)$. In $\overline{G(n, k, 3)}, \quad N\left[v_{i}\right] \cup N\left[v_{i+k+1}\right]=V(G(n, k, 3))$. Since $v_{i}, v_{i+k+1} \in S \quad S \quad$ is a dominating set of $\overline{G(n, k, 3)}$. Therefore, $S=$ $\left\{v_{i}, v_{i+k+1}, v_{i+2(k+1)}, \cdots, v_{i+\left(\left|\frac{n}{k+1}\right|-1\right)(k+1)}\right\}$ is a minimum detour global dominating set for $1 \leq$ $i \leq n$ and the suffices modulo n and hence, $\bar{\gamma}_{d}(G(n, k, 3))=|S|=\left\lceil\frac{n}{k+1}\right\rceil$ for $n \geq k+2$.

Example 3.3 Consider the graph $G(12,8,3)$ given in Figure 3. for which the minimum detour global dominating sets are $\left\{v_{1}, v_{10}\right\},\left\{v_{2}, v_{11}\right\},\left\{v_{3}, v_{12}\right\},\left\{v_{4}, v_{1}\right\},\left\{v_{5}, v_{2}\right\},\left\{v_{6}, v_{3}\right\}$, $\left\{v_{7}, v_{4}\right\},\left\{v_{8}, v_{5}\right\},\left\{v_{9}, v_{6}\right\},\left\{v_{10}, v_{7}\right\},\left\{v_{11}, v_{8}\right\}$ and $\left\{v_{12}, v_{9}\right\}$ and hence by Theorem 3.2, $\bar{\gamma}_{d}(G(12,8,3))=\left\lceil\frac{12}{9}\right\rceil=2$.

Figure 3: $G(12,8,3)$

Theorem 3.4 In $G(n, k, 3)$, for $n>k+1$ and if n is a multiple of $k+1$, then $G(n, k, 3)$ contains only $k+1$ minimum detour global dominating set.

Proof. Let $G(n, k, 3)$ be a k-regular graph with girth 3 where k is even and n be a multiple of $k+1$. Then $n=(k+1) m$ where $m \geq 1$. If $m=1$, then $G(n, k, 3)=G(k+1, k, 3) \cong$ K_{k+1} which contains every vertices of $G(k+1, k, 3)$. Hence, for $n=k+1$ there exists only one minimum detour global dominating set. Now consider for $n=(k+1) m, m \geq 2$ where the minimum detour global dominating sets is $S=\left\{v_{i}, v_{i+k+1}, v_{i+2(k+1)}, \cdots, v_{i+\left(\left[\frac{n}{k+1}\right]-1\right)(k+1)}\right\}=$ $\left\{v_{i}, v_{i+k+1}, v_{i+2(k+1)}, \cdots, v_{i+(m-1)(k+1)}\right\}=\left\{v_{i}, v_{i+k+1}, v_{i+2(k+1)}, \cdots, v_{i+n-(k+1)}\right\} \quad$ for $\quad 1 \leq i \leq$ $n, m \geq 2$ and the suffices modulo n.

Now we consider the following two cases for $m=2$ and $m>2$.
Case 1. $m=2$
Here, $G(n, k, 3)=G(2(k+1), k, 3)$. Then The minimum detour global dominating sets are $\left\{v_{1}, v_{k+2}\right\},\left\{v_{2}, v_{k+3}\right\},\left\{v_{3}, v_{k+4}\right\}, \cdots,\left\{v_{k}, v_{2 k+1}\right\}$ and $\left\{v_{k+1}, v_{2 k+2}\right\}$. Thus, $G(n, k, 3)$ contains only $k+1$ minimum detour global dominating sets.

For example consider the graph $G(n, 6,3)=G(14,4,3)$, given in Figure 4. The minimum detour global dominating sets are $\left\{v_{1}, v_{8}\right\},\left\{v_{2}, v_{9}\right\},\left\{v_{3}, v_{10}\right\},\left\{v_{4}, v_{11}\right\},\left\{v_{5}, v_{12}\right\}$ and $\left\{v_{6}, v_{13}\right\}$. Thus, $G(n, 6,3)$ contains only 7 minimum detour global dominating sets.

Figure 4 : $G(14,6,3)$
Case 2. $m>2$
The minimum detour global dominating sets are $S_{i}=\left\{v_{i}, v_{i+k+1}, \cdots, v_{i+n-(k+1)}\right\}$ where
$1 \leq i \leq n \quad$ and the suffices modulo n. Here, $S_{1}=\left\{v_{1}, v_{k+2}, \cdots, v_{n-k}\right\}, S_{2}=$ $\left\{v_{2}, v_{k+3}, \cdots, v_{n-(k-1)}\right\}, \cdots, S_{k}=\left\{v_{k}, v_{2 k+1}, \cdots, v_{n-1}\right\}$, and $\quad S_{k+1}=\left\{v_{k+1}, v_{2(k+1)}, \cdots, v_{n}\right\}$. Proceeding like this we get $S_{p}=\left\{v_{p}, v_{p+k+1}, \cdots, v_{p+n-(k+1)}\right\}$ for $k+2 \leq p \leq n$. Since the suffices are modulo n, S_{p} is either S_{1} or S_{2} or $\cdots S_{k}$ or S_{k+1} according as $p \equiv 1(\bmod$ $(k+1))$ or $p \equiv 2(\bmod (k+1))$ or $\cdots p \equiv k(\bmod (k+1))$ or $p \equiv 0(\bmod (k+1))$, respectively. Thus, $G(n, k, 3)$ contains only $k+1$ minimum detour global dominating sets.

The theorem follows from cases 1 and 2.
Example 3.5 Consider the graph $G(27,8,3)$ given in Figure 5 where the minimum detour global dominating sets are $\left\{v_{1}, v_{10}, v_{19}\right\},\left\{v_{2}, v_{11}, v_{20}\right\},\left\{v_{3}, v_{12}, v_{21}\right\},\left\{v_{4}, v_{13}, v_{22}\right\}$, $\left\{v_{5}, v_{14}, v_{23}\right\},\left\{v_{6}, v_{15}, v_{24}\right\},\left\{v_{7}, v_{16}, v_{25}\right\},\left\{v_{8}, v_{17}, v_{26}\right\}$ and $\left\{v_{9}, v_{18}, v_{27}\right\}$. Thus, by Theorem 3.4, there is only 9 minimum detour global dominating sets.

Figure 5 : $G(27,8,3)$

References

[1] F.Buckley and F.Harary, Distance in Graphs, Addison-Wesley, Redwood City (1990).
[2] G. Chartrand, N. Johns and P. Zang, Detour Number of a graph, Util. Math. 64, 97-113 (2003).
[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
[4] C. Jayasekaran, S.V. Ashwin Prakash, Detour global domination number of some graphs, Malaya Journal of Matematik, S(1), 552-555 (2020).
[5] C. Jayasekaran, S. Delbin Prema and S.V. Ashwin Prakash, Relations on irredundance and domination numberfor six regular graph with girth 3, Malaya Journal of Matematik, 8(3), 856861 (2020).
[6] N. Mohanapriya, S. Vimal Kumar, J. Vernold Vivin and M. Venkatachalam, Domination in 4Regular Graphs with Girth 3, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 85, 259-264 (2015).
[7] E. Sampath Kumar, The Global Domination Number of a Graph, Journal of Mathematical and Physical Sciences, 23(5),377-385 (1989).
[8] Primož Potocnik and Janoš Vidali, Girth-regular graphs, Ars Mathematica Contemporanea, 17, 349-368 (2019).
[9] D.B. West, Introduction to Graph Theory,Second Ed., Prentice-Hall, Upper Saddle River, NJ (2001).

