Super Felicitous Difference Labeling of Special Types of Graphs

¹Dr. A. Punitha Tharani, ²E.S.R. Francis Vijaya Rani

¹Associate Professor, Department of Mathematics, St. Mary's College (Autonomous), Thoothukudi – 628 001, Affiliated to ManonmaniamSundaranar University, Abishekapatti, Tirunelveli – 627 012, Tamil Nadu, India

²Research Scholar, RegisterNo: 19122212092004, Department of Mathematics, St. Mary's College (Autonomous), Thoothukudi – 628 001. (Affiliated to ManonmaniamSundaranar University, Abishekapatti, Tirunelveli, TamilNadu, India)

Article Info Page Number: 525-535 Publication Issue: Vol. 72 No. 1 (2023) Article History Article Received: 15 October 2022 Revised: 24 November 2022 Accepted: 18 December 2022	Abstract A graph with p vertices and q edges is called super felicitous difference labeling graph if f: V (G) \rightarrow {1,2, p + q}is an injective map so that the induced edge labeling is defined byf*(e = uv) = (f(u) - f(v)) (mod p + q)andf(v(G)) \cup f*(e): e \in E(G) = {1,2,3 p + q}. A graph that admits a SuperFelicitous Difference Labeling (SFDL) is called Super Felicitous Difference Labeling Graph . In this paper, we investigate super felicitous difference labeling graph of special types of trees like the Jelly fish, thespider graph, the Globe graph Gl(n), the ladder graph, the $H_{n,n}$ graph, $S'(P_n)$, the $P_2(+)N_{2n}$ Graph and the Jewel graph. Keywords: Super Felicitous Difference Labeling (SFDL), Felicitous
	Keywords: Super Felicitous Difference Labeling (SFDL), Felicitous Difference labeling graph

I.INTRODUCTION

All graphs in this paper represent finite, undirected and simple one. The vertex set and the edge set of a graph G are denoted by V(G) and E(G) respectively. Terms and Notations not defined here are used in the sense of Harary[5].

A graph labeling is an assignment of integers to the vertices or edges or both vertices and edges subject to certain conditions. There are several types of graph labeling and a detailed survey is found in [6]. The notion of felicitous difference labeling was due to V. Lakshmi Alias Gomathi, A. Nagarajan and A. NellaiMurugan[8].

In this paper, we define super felicitous difference labeling graph and show that the Jelly fish, the spider graph, the Globe graphGl(n), the ladder graph, the $H_{n,n}$ graph, $S'(P_n)$ graph, the $P_2(+)N_{2n}$ and the Jewel Graph are super felicitous difference labeling graph. We use the following definitions in the subsequent section.

II. Preliminaries

Definition 2.1: The Jelly fish graph (m,n) is obtained from a $4 - \text{cycle}(v_1, v_2, v_3, v_4)$ together with an edge v_1, v_3 and appending m pendent edges to v_2 and n pendent edges to v_4 .

Definition 2.2: A Spideris a tree having a unique node e with degree greater than 2 and all the other nodes have degrees less than or equal to 2.

A Spiderwith k legs of length n_i : $1 \le i \le k$ is denoted by SP ($n_1, n_2, ..., n_k$). The graph SP (P_n , m)denotes a spider having a path P_n with m pendant vertices attached to one end vertex of P_n . A spider with k legs (paths) each of length n is called a regular spider and is denoted by SP (k, n).

Definition 2.3: A globe is a graph obtained from two isolated vertex are joined by n paths of length two. It is denoted by Gl(n).

Definition 2.4:The ladder L_n ($n \ge 2$) is the product graph $P_2 \times P_n$ which contains 2n vertices and 3n - 2 edges.

Definition 2.5: The graph $H_{n,n}$ is a special bipartite graph with the vertex set

V $(H_{n,n}) = \{u_i, v_i: 1 \le i \le n\}$ and edge set E $(H_{n,n}) = \{(u_i, v_i): 1 \le i \le n \text{ and } n - i + 1 \le j \le n\}$.

Definition 2.6: For a graph G, the Splitting graph which is denoted by Spl(G) is obtained by adding to each vertex u, a new vertex v' such that v' is adjacent to every vertex that is adjacent to v in G.

Definition 2.7: A Path P_n is a walk in which all the vertices are distinct.

Definition 2.8: The Jewel graph J_n is the graph with vertex set $V(J_n) = \{u, v, x, y, u_i/1 \le i \le n\}$ and edge set $E(J_n) = \{ux, uy, xv, yv, uu_i, vv_i/1 \le i \le n\}$.

III. Main Results

Definition 3.1: A graph with p vertices and q edges is called super felicitous difference labeling graph if f: V (G) \rightarrow {1,2, ..., p + q}is an injective map so that the induced edge labeling is defined by $f^*(e = uv) = (f(u) - f(v)) \pmod{p + q}$ and $f(v(G)) \cup f^*(e): e \in E(G) = \{1,2,3..., p + q\}$. A graph that admits a **SuperFelicitous Difference Labeling**(SFDL) is called **Super Felicitous Difference Labeling Graph**.

Theorem 3.2: The Jelly fish J(m,2n) is SFDL graph for all m and n .

Proof: Let G be the graph J(m,2n).

Let V (G)= ${\binom{u, v, x, y, u_i, v_j}{1 \le i \le m, 1 \le j \le 2n}}$ and

E (G) ={xu, xv, yu, yv, xy} \cup { $uu_i/_{1 \le i \le m$ } \cup { $vv_j/_{1 \le j \le 2n$ } Then |V(G)| = m+n+4 and |E(P_n)| = m+n+5.

Define f: V (G) \rightarrow {1,2,3(m + n + 1) + 3,3(m + n + 1) + 6} as follows:

f(u) = 1f(v) = 2f(x) = 3(m + n + 1) + 3

Mathematical Statistician and Engineering Applications ISSN: 2094-0343 2326-9865

$$f(y) = 3(m + n + 1) + 6$$

$$f(u_i) = \{2k + 1, 2 \le k \le m + 1$$

$$f(v_1) = f(u_m) + 3$$

$$f(v_{2k+1}) = f(v_{2k+1-2}) + 4, \quad 1 \le k \le m - 1$$

$$f(v_2) = f(u_m) + 4$$

$$f(v_{2k}) = f(v_{2k-2}) + 4, \quad 2 \le k \le m - 1$$

let f^* be the induced edge labeling of f. Then

$$f^*(uu_i) = 2k \qquad 2 \le k \le m + 1$$

$$f^*(vv_j) = f(v_j) - f(v) \le j \le 2n$$

$$f^*(xu) = 3(m + n + 1) + 2$$

$$f^*(xv_j) = 3(m + n + 1) + 1$$

 $f^{*}(xv) = 3(m + n + 1) + 1$ $f^{*}(yu) = 3(m + n + 1) + 5$ $f^{*}(yv) = 3(m + n + 1) + 4$ $f^{*}(xy) = 3$

Then the induced edge labels are all distinct. Hence from the above labeling pattern, the Jelly fish graph J(m,2n) admits Super felicitous difference labeling graph.

Example 3.2.1: The SFD labeling graph of J(3,6) is given in fig.1

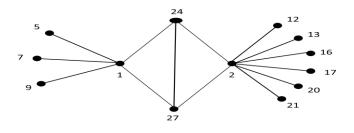


Fig. 1

Theorem 3.3: Spider SP $(P_m, k_{1,n})$ is a SFDL graph for all m,n.

Proof: Let V (SP
$$(P_m, k_{1,n})$$
) = ${\binom{u_i}{1 \le i \le m}} \cup {\binom{v_j}{1 \le j \le n}}$ and
E (SP $(P_m, k_{1,n})$) = ${\binom{u_i u_{i+1}}{1 \le i \le m-1}} \cup {\binom{v_0 v_j}{1 \le j \le n}}$

Let $u_m = v_0$ be the centre vertex of $k_{1,n}$.

Define f: V (SP $(P_m, k_{1,n})$) \rightarrow {1,2,2m + 2n - 3,2m + 2n - 1} as follows:

Vol. 72 No. 1 (2023) http://philstat.org.ph

$$f(v_j) = 2m + 2n - 1 - 2j$$
 $0 \le j \le m - 1$

Case (i): when m is odd

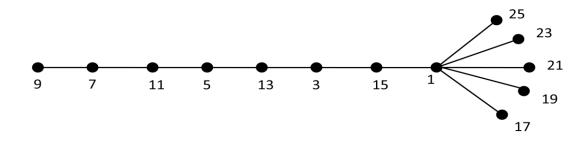
$$f(u_{2i+1}) = m - 2i$$
 $0 \le i \le \frac{m+1}{2}$
 $f(u_{2i}) = m + 2i$ $0 \le i \le \frac{m-1}{2}$

Case (ii): when m is even

 $f(u_{2i+1}) = (m+1) + 2i \qquad 0 \le i \le \frac{m}{2}$ $f(u_{2i}) = (m-1) - 2i \quad 0 \le i \le \frac{m}{2}$

Then the induced edge labels are distinct. Hence from the above labeling pattern the graph SP $(P_m, k_{1,n})$ admits Super Felicitous Difference labeling graph.

Example 3.3.1: The SFD labeling graph of SP (P_8 , $k_{1,5}$) is given in fig. 2.



Theorem 3.4: Globe Gl(n) is SFDL graph for all m and n.

Proof: Let V (Gl(n)){ $u, v, w_i: 1 \le i \le n$ } and E (Gl(n)) = ${{{uw_i} / 1 \le i \le n} \cup {{vw_i} / 1 \le i \le 2n}}$

Define f: V (Gl(n)) \rightarrow {1,2,3*n* + 2} as follows:

f(u) = 1

f(v) = 2

 $f(w_i) = 3n + 2 - 3h, \ 0 \le h \le \frac{2n-2}{2}$

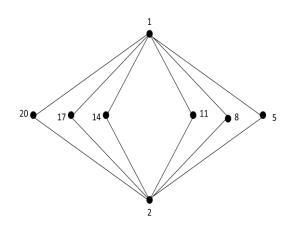
let f^* be the induced edge labels

Vol. 72 No. 1 (2023) http://philstat.org.ph

$$f^{*}(uw_{i}) = 3n + 1 - 3h, \quad 0 \le h \le \frac{2n - 2}{2}$$
$$f^{*}(vw_{i}) = 3n - 3h, \quad 0 \le h \le \frac{2n - 2}{2}$$

Then the induced edge labels are distinct. Hence from the above labeling pattern, the graph Gl(n)admits super felicitous difference labeling graph.

Example 3.4.1: The SFD labeling graph of Gl(6) isgiven in fig 3 respectively.



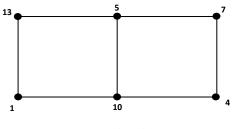
Theorem 3.5: Ladders $n \le 5$ are Super Felicitous Difference Labeling Graph.

Proof: Assume $n \le 3$				
Case (i):				
let V(L _n)	=	$\{u_iv_j=1\leq i\leq n\}$ and		
E(L _n)	=	$\{u_iv_j=1\leq i\leq n\}$		
Define $f: v(Ln) \rightarrow \{1, 2, \dots, 5n-2\}$ is defined as follows				
f(u ₁)	=	1,		
$f(v_i) = 5n\text{-}2\text{-}3h \ 0 \le h \le n\text{-}1$				
f(u ₂)	=	2,		
f(u ₃)	=	3,		
let f * be the induced edge labelsof f. Then				
$f * (u_i v_j)$	=	5n-2-1		
$f * (u_i v_j)$	=	$f^*(f^*\;(u_{i\text{-}1}v_{j\text{-}1})-(2{+}i)$	$2 \le i \le 3$	
f * (u ₁ u ₂)	=	5n-4		

Vol. 72 No. 1 (2023) http://philstat.org.ph $f * (u_2v_3) = 5n-10$ $f * (u_1v_2) = 5n-6$ $f * (u_2u_3) = 5n-9$

Then the induced edges are all. Distinct. Hence from the above labeling pattern, the graph L_n admits super felicitous difference labeling graph.

Example 3.5.1: The SFD labeling graph of l_3 is given in fig 4 respectively.



Case (ii): Assume $n \le 5$

Let $V(L_n) = \{u_i v_j / 1 \le i \le n, 1\}$ and

 $E \ (L_n) \ = \ \{ u_i v_j \ / \ 1 \leq i \leq n \}$

Define f: $v(L_n) \rightarrow \{1, 2, \dots, 5n - 2\}$ is defined as follows:

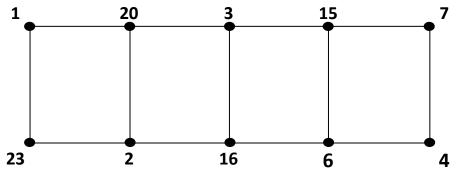
let f* be the induced edge labels

$f^{*}(u_{1}v_{1})$	=	5n-2-i	
$f^{*}(u_{2i}, v_{2j})$	=	$\{u_{2j+1},v_{2j+1})-4,$	$0\leq i\leq 1,1\leq i\leq 2$
$f^{\ast}\left(u_{2i+1},v_{2j+1}\right) =$	$\{u_{2i}, v_{2i}\}$	$V_{2j}) - 5, 0 \le i \le 1, 1 \le 1$	$i \leq 2$
f* (v ₁ , u ₂)	=	5n - 6	
f* (u ₂ , v ₃)	=	$f^{*}\left(v_{1},u_{2}\right)-2$	
f* (v ₃ , u ₄)	=	$f * (u_2, v_3) - 5$	

f* (u ₄ , v ₅)	=	$f * (u_3, v_4) - 4$
f* (u ₁ , v ₂)	=	5n - 4
f* (v ₂ , u ₃)	=	$f * (u_1, v_2) - 7$
f* (u ₃ , v ₄)	=	$f * (v_2, u_3) - 4$
f* (v4, u5)	=	f * (u ₃ , v ₄) – 5

Then the induced edge labels are all distinct. Hence from the above labeling pattern, the graph L_n admits SFDL graph.

Example 3.5.2: The SFD labeling graph of l_5 is given in fig 5 respectively.



Theorem 3.6: $H_{n,n}$ is Super Felicitous Difference Labeling graph for all n.

Proof: Let V ($H_{n,n}$) = { u_i : $1 \le i \le n$ } \cup { v_j : $1 \le j \le n$ }and

 $E(H_{n,n}) = \{ u_i v_j \colon 1 \le i \le n \text{ and } 1 \le j \le n \}.$ $Define f: V(H_{n,n}) \rightarrow \{ 1, 2, \dots, \frac{n^2 + 5n}{2} \} \text{ as follows}$ $f(u_i) = i \quad 1 \le i \le n$ $f(v_1) = \frac{n^2 + 5n}{2}$ $f(v_{j+1}) = f(v_{j+1-1}) - (j+1), 1 \le j \le n$

Then the induced edge labels are all distinct. Hence from the above labeling pattern the graph admits $H_{n,n}$ SFDL graph.

Example 3.6.1: The SFD labeling graph of $H_{5,5}$ is given in fig 6 respectively.

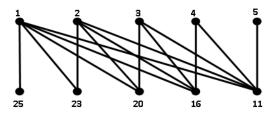


Fig. 6

Theorem3.7: The splitting graph of star Spl (K₁, n) is SFDL graph for all n.

Proof: Let $V(G) = \{u, v, u_i, v_i / 1 \le i \le n\}$ and

 $E(G) = \{uu_i, uv_i, vv_i / 1 \le i \le n\}$

Then |V(G)| = 2n + 2, and |E(G)| = 3n

Define f: V(G) \rightarrow {1, 2, 5n+2} as follows.

f(u) = 4n + 1

 $f\left(u_{i}\right) \quad = n{+}i \qquad \qquad 1 \leq i \leq n$

- $f\left(v_{i}\right) \hspace{0.1 in} = i \hspace{1.1 in} 1 \leq i \leq n$
- f(v) = 5n + 2

Letf * be the induced edge labeling of f. Then

$f^{*}(uu_{i})$	= 3n - j	$0\!\leq\!j\!\leq\!n-1$
$f^{\ast}\left(vv_{i}\right)$	= 5n + 1 - j	$0\!\leq\!j\!\leq\!n\!-\!1$
f [*] (uv _i)	= 4n - j	$0 \le j \le n - 1$

Then the induced edge labels are all distinct. Hence from the above labeling pattern, the splittinggraphs admits SFDL graph.

Example 3.7.1: The SFD labeling graph of Spl(K₁,4) is given in fig 7 respectively.

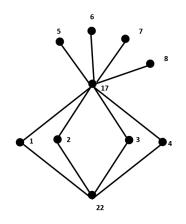


Fig. 7

Theorem 3.8: $P_2(+)N_{2n}$ is a SFDL graph.

Proof: Let V $(P_2(+)N_{2n}) = \{u, v\} \cup {\binom{u_i}{1 \le i \le n}}$ and E $(P_2(+)N_{2n}) = \{(u, v)\} \cup \{(u, u_i) \cup (v, u_i)/1 \le i \le n\}.$ Define f: V $(P_2(+)N_{2n}) \rightarrow \{1, 2, \dots, 2n + 2, 2n + 3\}$ by f(u) = 3n + 3 f(v) = 2n + 2 $f(u_i) = i$ $1 \le i \le n$ The indexed edge are so follows

The induced edges are as follows

$$f^{*}(uv) = n + 1$$

$$f^{*}(uu_{i}) = 3n + 3 - i, \qquad 1 \le i \le n$$

$$f^{*}(vu_{i}) = 2n + 2 - i, \qquad 1 \le i \le n$$

Then the induced edge labels are all distinct. Hence from the above labeling pattern, the graph $P_2(+)N_{2n}$ admits SFDL graph.

Example 3.8.1: The SFD labeling graph of $P_2(+)N_8$ are given in fig 8 respectively.

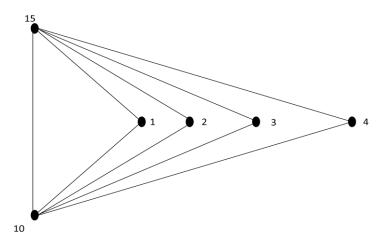


Fig. 8

Theorem 3.9: Jewel graph *J*_n is a SFDL graph.

Proof: Let V $(J_n) = \{u, v, x, y, w_i/1 \le i \le n\}$ and

 $\mathbb{E}(J_n) = \{ux, vx, uy, vy, uw_i, vw_i/1 \le i \le n\}. \text{ Then } |V(G)| = n + 4, \text{ and } |\mathbb{E}(G)| = 2n + 4.$

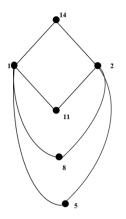
Define f: V $(J_n) \rightarrow \{1, 2, \dots, 3n + 8\}$ by

$$f(u) = 1 \qquad \qquad f(v) = 2$$

Vol. 72 No. 1 (2023) http://philstat.org.ph f(x) = 3n + 8 f(y) = 3n + 5 $f(w_i) = f(y) - 3i \qquad 1 \le i \le n$ Let f*be the induced edge label of f. then $f^*(ux) = 3n + 7$ $f^*(vx) = 3n + 6$ $f^*(vy) = 3n + 3$ $f^*(uy) = 3n + 4$ $f^*(uw_i) = f^*(uy) - 3i, \qquad 1 \le i \le n$ $f^*(vw_i) = f^*(vy) - 3i, \qquad 1 \le i \le n$

Then the induced edge labels are all distinct. Hence from the above labeling pattern, the graph J_n admits SFDL graph.

Example 3.9.1: The SFD labeling graph of J_2 are given in fig 9 respectively.



IV. Conclusion

In this paper, we investigated the Super Felicitous Difference Labeling of some special types of graphs. We have already investigated graphs which are SFDL graph only for certain cases[3]and have planned to investigate the SFD labeling of some special cases of cycle related graphs in our next paper.

References:

1. A. Punitha Tharani, E.S.R. Francis Vijaya Rani, *Felicitous Difference Labeling Graph*, Journal of Research & Development' A Multidisciplinary International Level Referred and Peer Reviewed Journal, ISSN: 2230 – 9578, May – 2021, Volume – 11, Issue – 13.

- 2. A. Punitha Tharani and E.S.R. Francis Vijaya Rani, *Felicitous Difference Labeling of Special Types of Trees*, Tumbe Group of International Journal, A Peer Reviewed Multidisciplinary Journal, Vol. 4, Issue 2, May August 2021, ISSN: 2581 8511.
- 3. Dr.A. Punitha Tharani and E.S.R. Francis Vijaya Rani, *Near Felicitous Difference Labeling Graphs*, Design Engineering, Year 2021, ISSN: 0011-9342, Pages 5050 5056, Issue 9.
- Dr.A. Punitha Tharani and E.S.R. Francis Vijaya Rani, Super Felicitous Difference Labeling Graphs, SpecialusisUgdymas/Special Education, Year 2022, ISSN: 1392 – 5369, Pages – 4479 – 4484.
- 5. F. Harary(2001) Graph Theory, Narosa Publishing House, New Delhi.
- 6. J.A. Gallian (2008), *A Dynamic Survey of Graph Labeling*, The Electronic Journal of Combinatorics, 15,# DS6.
- 7. S. Shenbaga Devi, A. Nagarajan, Near *Skolem Difference Mean Labeling of Special Types of Trees*, IJMTT Volume 52 Number 7 December 2017.
- 8. V. Lakshmi Alias Gomathi, A. Nagarajan and A. NellaiMurugan, *On Felicitous Labeling of Special Classes of Graphs*, Outreach, A Multidisciplinary Referred Journal (accepted for Publication).