$\widehat{D}_S\text{-}Closed$ Sets in Topological Spaces

S.Sumithra Devi¹ and L.Meenakshi Sundaram²

¹Research Scholar(Reg.No:20212232092008),PG and Research DepartmentofMathematics,V.O Chidambaram College,Tuticorin-628 008. Affliated by ManonmaniamSundaranar University, Tamil Nadu, India.

Mail Id: ssumithradevi27@gmail.com

²Assistant Professor,PG and Research Department of Mathematics,V.O Chidambaram College,Tuticorin-628 008. Affliated by ManonmaniamSundaranar University, Tamil Nadu, India.

Mail Id: lmsundar79@gmail.com

Article Info	Abstract:
Page Number: 10442-10449	In this paper, we introduce a new classes of sets called \hat{D}_{s} -Closed Sets in
Publication Issue:	Topological spaces and study some basic properties of \widehat{D}_{s} -Closed Sets.
Vol. 71 No. 4 (2022)	

Article History Article Received: 12 October 2022 Revised: 24 November 2022 Accepted: 18 December 2022

1.Introduction:

A topological space's basic elements are closed sets. The axioms for closed sets or the Kuratowski closure axioms, for instance, can be used to determine the topology on a set. 1970 saw the start of N. Levine's [10] investigation on so-called generalised closed sets. When $cl(A) \subset U$ whenever $A \subset U$ and U is open, a subset A of a topological space X is said to be generalised closed. Since generalised closed sets are not just straightforward extensions of closed sets, several topologists have focused a lot of their recent research on this idea. Furthermore, they provide a number of novel topological space features. In this study, we provide new classes of sets for topological spaces known as \widehat{D}_S -closed sets.

2. Preliminaries:

Definition 2.1.Let(X,)beatopologicalspace.AsubsetAofthespaceXissaidtobe

- 1. Preopen [11] if $A \subseteq int(cl(A))$ and preclosed if $cl(int(A)) \subseteq A$.
- 2. Semi-open [9] if $A \subseteq cl(int(A))$ and semi-closed if $int(cl(A)) \subseteq A$.
- 3. α -open [13] if A \subseteq int(cl(int(A))) and α -closed if cl(int(cl(A))) \subseteq A.
- 4. Semipreopen [1] if $A \subseteq cl(int(cl(A)))$ and semi-preclosed if $int(cl(int(A)))\subseteq A$.

5. Regular-open [16] if A=int(cl(A)) and regular closed if A=cl(int(A)).

Lemma 2.2([1]).For any subset A of X, the following relations hold.

- 1. $Scl(A)=A\cup int(cl(A)).$
- 2. $\alpha cl(A) = A \cup cl(int(cl(A))).$
- 3. Pcl(A)=AUcl(int(A)).
- 4. $Spcl(A)=A\cup int(cl(int(A))).$

Definition 2.3. A subset A of a space (X,τ) is called a

- 1. Generalized closed (g-closed) [10]if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ) .
- 2. generalized pre-closed (gp-closed) [14] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- generalizedsemipre-closed(gsp-closed)[6]ifspcl(A)⊆UwheneverA⊆UandUisopenin(X,τ)
- 4. generalized preregular closed (gprclosed) [7] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X,τ) .
- 5. pre-generalizedclosed(pg-closed)[12]ifpcl(A) \subseteq UwheneverA \subseteq UandUispre-openin(X, τ).
- 6. g^* -preclosed(g^*p -closed)[19]ifpcl(A) \subseteq UwheneverA \subseteq UandUisg-openin(X, τ).
- 7. μ -preclosed(μ p-closed)[20]ifpcl(A) \subseteq UwheneverA \subseteq UandUisga*-openin(X, τ).
- 8. *g-closed[18]ifcl(A) \subseteq UwheneverA \subseteq UandUis ω -openin(X, τ).
- 9. g-closed[8]ifcl(A) \subseteq UwheneverA \subseteq UandUis#gs-openin (X, τ).
- 10. ρ -closed[5]ifpcl(A) \subseteq int(U) whenever A \subseteq U and U is \tilde{g} -open in(X, τ).
- 11. ω -closed[17]ifcl(A) \subseteq UwheneverA \subseteq UandUissemi-openin(X, τ).
- 12. π gp-closed[15]ifpcl(A) \subseteq UwheneverA \subseteq UandUis π -openin(X, τ).
- 13. $\hat{\eta}$ -closed[2]ifspcl(A) \subseteq UwheneverA \subseteq UandUisan ω -open in(X, τ)
- 14. D-closed[3]ifpcl(A) \subseteq int(U)wheneverA \subseteq UandUis ω -open in(X, τ).
- 15. \widehat{D} -closed[4]ifs pcl(A) \subseteq int(U) whenever A \subseteq U and U is D open in(X, τ)

The complement of g-closed (resp.gp-closed,gsp-closed,gpr-closed,pg-closed,g*p-closed,ga*closed,µp-closed,presemi-closed,*g-closed,#gs-closed,g-closed, ω -closed, \hat{g} closed, π gp-closed, $\hat{\eta}^*$ -closed) setissaidtobeag-open(resp.gp-open,gsp-open,gpr-open,pg-open g*p-open,ga*-open,µp-open,presemi-open,*g-open,#gs-open,open, ω -open, \hat{g} -open, π gpopen, $\hat{\eta}^*$ -open)set.

3.Basic properties of \widehat{D}_S

Definition 3.1.

A subset A of $(X; \tau)$ is called an \widehat{D}_S -closed set if $scl(A) \subset U$ whenever $A \subset U$ and U is \widehat{D} - open in $(X; \tau)$. The class of all \widehat{D}_S -closed sets in $(X; \tau)$ is denoted by $\widehat{D}_Sc(\tau)$.

That is $\widehat{D}_{S}c(\tau) = \{A \subset X : A \text{ is } \widehat{D}_{S}\text{-closed in } (X; \tau)\}.$

Theorem 3.2.

Every closed(resp. α -closed, semi-closed) set is \widehat{D}_{S} -closed.

Proof.

Let A be any closed set .Let $A \subset U$ and U is \widehat{D} -open set in X. Then $cl(A) \subset U$. But $scl(A) \subset cl(A \subset U$. Thus A is \widehat{D}_S -closed. The proof follows from the facts that $scl(A) \subset acl(A) \subset cl(A)$.

Remark 3.3.

The converse of the above theorem need not be true as seen from the following example.

Example 3.4.

Let $X = \{a;b;c;d\}$ and $\tau = \{\phi;\{a\};\{a;d\};\{b;c\};\{a;b;c\};X\}$. Then the set $A = \{b;d\}$ is \widehat{D}_S - closed but not closed(resp. α -closed, semi-closed).

Theorem 3.5.

Every \widehat{D}_S -closed set is gsp-closed but not conversely.

Proof:

Let A be \widehat{D}_S -closed set. Let $A \subset U$ and U be any open set . Since every open set is \widehat{D} - open and A is \widehat{D}_S -closed, scl(A) $\subset U$. Hence spcl(A) $\subset U$, which implies A is gsp -closed.

Theorem 3.6.

Every \widehat{D}_S -closed set is $\widehat{\eta}^*$ -closed but not conversely.

Proof:

Let A be \widehat{D}_S -closed set. Let $A \subset U$ and U be any ω -open set . Since every ω -open set is \widehat{D} -open and A is \widehat{D}_S -closed, scl(A) $\subset U$. Hence spcl(A) $\subset U$, which implies A is $\widehat{\eta}^*$ -closed.

Example 3.7.

Let $X = \{a;b;c;d\}$ and $\tau = \{\phi; \{c\}; \{a;b\}; \{a;b;c\}; X\}$. Then the set $A = \{a\}$ is both gsp-closed and $\hat{\eta}^*$ -closed but not \widehat{D}_s -closed.

Remark 3.8 . \widehat{D}_S -closedness and pre-closedness are independent concepts as we illustrate by means of the following examples.

Example 3.9.

Let $X = \{a;b;c;d\}$ and $\tau = \{\phi; \{c\}; \{a;b\}; \{a;b;c\}; X\}$. Then the set $A = \{a;b\}$ is \widehat{D}_S -closed but not preclosed . A= $\{a\}$ is preclosed but not \widehat{D}_S -closed in (X, τ) .

Remark 3.10. \hat{D}_s -closedness and g,gp,gpr ,pg,*g, \tilde{g} , ω , g*p, μp , ρ , D π gp,g α *-closedness are independent concepts as we illustrate by means of the following examples.

Example 3.11.

Let $X = \{a;b;c;d\}$ and $\tau = \{\phi; \{c\}; \{a;b\}; \{a;b;c\}; X\}$. Then the set $A = \{a;b\}$ is \widehat{D}_S -closed but not g,gp,gpr, pg,*g, $\widetilde{g}, \omega, g^*p, \mu p, \rho, D, \pi gp, g\alpha^*$ -closed.

A= {a;d} is g,gp,gpr,pg,*g, \tilde{g} , ω , g*p, μ p, ρ , D, π gp, g α *-closed but not \widehat{D}_S -closed in (X, τ).

Remark 3.12. From the above discussions and known results should be accompanied by a reference we have the following implications $A \rightarrow B$ ($A \nleftrightarrow B$) represents A implies B but not conversely (A and B are independent of each other). See Figure 1.

Figure 1: Implications.

Remark 3.13. The union of two \hat{D}_S -closed sets need not be \hat{D}_S –closed and the intersection of two \hat{D}_S -closed sets need not be \hat{D}_S -closed.

Example 3.14.

Let X = {a, b, c, d} and $\tau = \{\phi, \{c\}, \{a, b\}, \{a, b, c\}, X\}$. Then the set A = {c} and B = {a,b}.

Here A and B are \widehat{D}_S -closed sets. But $A \cup B = \{a, b, c\}$ is not \widehat{D}_S -closed.

Vol. 71 No. 4 (2022) http://philstat.org.ph

Example 3.15.

Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{a,d\}, \{b, c\}, \{a,b,c\}, X\}$. Let $A = \{b, c\}$ and $B = \{b, d\}$. Here A and B are \widehat{D}_S -closed sets. But $A \cap B = \{b\}$ is not \widehat{D}_S -closed.

Definition 3.16. The intersection of all \widehat{D} -open subsets of (X,τ) containing A is called \widehat{D} -kernel of A and denoted by \widehat{D} -ker(A).

Theorem 3.17.

If a subset A of (X, τ) is \widehat{D}_S -closed then $scl(A) \subseteq \widehat{D}$ -ker(A).

Proof.

Suppose that A is \widehat{D}_S -closed. Then scl(A) $\subseteq U$ whenever A $\subseteq U$ and U is \widehat{D} -open. Let x \in scl(A). Suppose x $\notin \widehat{D}$ -ker(A). Then there is an \widehat{D} -open set U containing A such that x $\notin U$. Since U is an \widehat{D} -open set containing A, x \notin scl(A), which is a contradiction. Hence scl(A) $\subseteq \widehat{D}$ -ker(A). Conversely, suppose scl(A) $\subseteq \widehat{D}$ -ker(A). Then scl(A) $\subseteq \cap U_i$ where U_i is a \widehat{D} - open set containing A. Therefore scl(A) $\subseteq U_i$ whenever $A \subseteq U$ and U is \widehat{D} - open. Hence A is \widehat{D}_S - closed.

Theorem 3.18.

A set A is \widehat{D}_S -closed then scl(A) – A contains nonon-empty closed set.

Proof.

Let $F \subseteq scl(A) - A$ be a non-empty closed set. Then $F \subseteq scl(A)$ and $A \subseteq X$. Since X - F is \widehat{D} -open, we get $scl(A) \subseteq X - F$. Hence $F \subseteq X - scl(A)$. Therefore $F \subseteq scl(A) \cap (X - scl(A)) = \varphi$, which is a contradiction.

Remark 3.19. The converse of the above theorem need not be true as seen from the following example:

Example 3.20.

Let X = {a, b, c, d} and $\tau = \{ \phi, \{c\}, \{a, b\}, \{a, b, c\}, X\}$. Let A = {a}. Then scl(A) – A = {b}

contains no non-empty closed set. But A is not \widehat{D}_S -closed.

Theorem 3.21.

A set A is \widehat{D}_S -closed then scl(A) – A contains no non-empty \widehat{D} -closed set.

Proof.

It follows from theorem 3.18.

Theorem 3.22.

Let A and B be any two subsets of (X, τ) . If A is \hat{D}_S -closed such that $A \subseteq B \subseteq scl(A)$ then B is \hat{D}_S -closed.

Proof.

Let U be an \widehat{D} -open set of X and B \subseteq U. Then A \subseteq U. Since A is \widehat{D}_S -closed, scl(A) \subseteq U. Now scl(B) \subseteq scl(scl(A)) = scl(A) \subseteq U. Hence B is \widehat{D}_S -closed.

Example 3.23.

Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{c\}, \{a, b\}, \{a, b, c\}, X\}$. Let $A = \{d\}$ and $B = \{c, d\}$. Then

A and B are \widehat{D}_S –closed sets but B is not a subset of scl(A).

Theorem 3.24.

If a subset A of (X, τ) is \widehat{D} -open and \widehat{D}_S -closed then A is semi-closed in (X, τ) .

Proof.

Since a subset A of (X, τ) is \widehat{D} -open and \widehat{D}_S -closed, we get, $scl(A) \subseteq A$. But $A \subseteq scl(A)$. Hence A is semi-closed in (X, τ) .

Theorem 3.25.

A open set A of (X, τ) is g-closed then A is \widehat{D}_S -closed in (X, τ) .

Proof.

Let $A \subseteq U$ and U be \widehat{D} -open in (X, τ) . Since A is open and g-closed we get A is closed. (i.e) $cl(A) \subseteq U$. We know that $scl(A) \subseteq cl(A) \subseteq U$. Hence A is \widehat{D}_S -closed.

Remark 3.26.

The converse of the above theorem need not be true as seen from the following example:

Example 3.27.

Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{c\}, \{a, b\}, \{a, b, c\}, X\}$. Let $A = \{c\}$. Then A is open and \widehat{D}_S –closed but not g- closed.

Theorem 3.28.

Let A be \widehat{D}_S -closed in (X, τ) . Then A is semi-closed if and only if scl(A) - A is \widehat{D} -closed.

Proof.

Let A be semi-closed. Then scl(A) = A. Hence $scl(A)-A = \varphi$, which is \widehat{D} -closed. Conversely, suppose scl(A)-A is \widehat{D} -closed. Since A is \widehat{D}_S -closed and by theorem 3.21, $scl(A)-A = \varphi$. Then scl(A) = A. Hence A is semiclosed.

Theorem 3.29.

In a topological space (X, τ) , for each $x \in X$, $\{x\}$ is \widehat{D} -closed or its complement $X - \{x\}$ is \widehat{D}_S -closed in (X, τ) .

Proof.

Suppose that $\{x\}$ is not \widehat{D} -closed in (X, τ) . Then $X - \{x\}$ is not \widehat{D} -open. Hence the only \widehat{D} -open set containing $X - \{x\}$ is X. Thus $scl(X - \{x\}) \subseteq X$. Hence $X - \{x\}$ is \widehat{D}_S -closed in (X, τ) .

References

- 1. D.Andrijevic. Semi- preopen sets, Mat. Vesnik, 38 (1), 24-32. 1986.
- Antony Rex Rodrigo.J, Some Characterizations of [^]η*-closed setsand [^]η*-continuous maps in topological and bitopologicalspaces,Ph. D., Thesis, Alagappa University, Karaikudi (2007).
- 3. J.Antony Rex Rodrigo and K.Dass, A New type of generalized closed sets, IJMA, 3(4)(2012), 1517-1523.
- 4. K. Dass and G. Suresh, D-Closed sets in Topological Spaces, Malaya Journal of Matematik, Vol. S, No. 1, 265-269, 2021
- 5. Devamanoharan.C, Pious Missier.S and Jafari.S, ρ-closed sets intopological spaces accepted for publication in the European Journal of Pure and Applied Mathematics, ISSN 1307-5543.
- 6. J. Dontchev. On generalizing semi-preopen sets, Mem.Fac.sci. Kochi Univ.Ser.A.Maths 16, 35-48. 1995.
- 7. Y. Gnanambal. Generalized Pre-regular closed sets in topological spaces, Indian J. PureAppl. Maths., 28 (3), 351-360. 1997.
- 8. S. Jafari, T. Noiri, N. Rajesh and M.L. Thivagar. Another generalization of closed sets, KochiJ.Math, 3, 25-38. 2008.
- 9. N. Levine. Semi-open sets, semi-continuity in topological spaces, Amer Math, Monthly, 70, 36-41. 1963.
- N. Levine. Generalized closed sets in topology, Rend circ. Math Palermo, 19 (2). 89-96. 1970.
- 11. A.S. Mashour, M.E. Abd El- Monsef and S.N. El-Deep. On Precontinuous and weak precontinuous mappings, Proc, Math, Phys. Soc. Egypt., 53, 47-53. 1982.
- 12. H. Maki, J. Umehara and T. Noiri. Every topological space in Pre- T1/2 ,Mem.Fac.Sci, KochiUnivSer.A.Maths. (17). 33-42. 1996.
- 13. O. Njastad. On some classes of nearly open sets, Pacific J. Math. 15, 961-970. 1965.
- 14. T.Noiri, H.Maki and J.Umehara. Generalized preclosed functions, Mem.Fac.Sci. Kochi.Univ.SerA.Maths., 19.13-20. 1998.
- 15. J.H. Park. On π gp-closed sets in topological spaces, Indian J.Pure Appl. Math (to appear).
- 16. M.H.Stone. Application of the Theory Boolean rings to general topology, Trans. Amer. Math. Soc., 41, 375-381. 1937.
- 17. Sundaram.P and Sheik John.M, On ω -closed sets in topology,ActaCienc. Indica Math. 4 (2000), 389-392.
- 18. Veerakumar.M.K.R.S, Beetween g*-closed and g-closed sets, Antarctica J. Maths 3(1)(2006) 43–65.
- 19. M.K.R.S Veerakumar. g*-preclosedsets,ActaCienciaIndica(mathematics) Meerut,

XXVIII(M) (1). 51-60. 2002.

- 20. Veerakumar.M.K.R.S, µp-closed sets in topological spaces, Antarctica.J.Mat 2(1),(2005) 31-52.
- 21. Ravi, R Senthil Kumar, A Hamari Choudhi, <u>Weakly ⊐ g-closed sets</u>, BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE, 4, Vol. 4(2014), 1-9
- 22. Ravi, R Senthil Kumar, <u>Mildly Ig-closed sets</u>, Journal of New Results in Science, Vol3,Issue 5 (2014) page 37-47
- 23. Ravi, A senthil kumar R & Hamari CHOUDHİ, <u>Decompositions of Ï g-Continuity via</u> <u>Idealization</u>, Journal of New Results in Science, Vol 7, Issue 3 (2014), Page 72-80.
- 24. Ravi, A Pandi, R Senthil Kumar, A Muthulakshmi, Some decompositions of π gcontinuity, International Journal of Mathematics and its Application, Vol 3 Issue 1 (2015) Page 149-154.
- 25. S. Tharmar and R. Senthil Kumar, Soft Locally Closed Sets in Soft Ideal Topological Spaces, Vol 10, issue XXIV(2016) Page No (1593-1600).
- 26. S. Velammal B.K.K. Priyatharsini, R.SENTHIL KUMAR, New footprints of bondage number of connected unicyclic and line graphs, Asia Liofe SciencesVol 26 issue 2 (2017) Page 321-326
- 27. K. Prabhavathi, R. Senthilkumar, P.Arul pandy, $m-I_{\pi g}$ -Closed Sets and $m-I_{\pi g}$ -Continuity, Journal of Advanced Research in Dynamical and Control Systems Vol 10 issue 4 (2018) Page no 112-118
- 28. K. Prabhavathi, R. Senthilkumar, I. Athal, M. Karthivel, A Note on Iβ * g Closed Sets, Journal of Advanced Research in Dynamical and Control Systems11(4 Special Issue), pp. 2495-2502.
- 29. K PRABHAVATHI, K NIRMALA, R SENTHIL KUMAR, WEAKLY (1, 2)-CG-CLOSED SETS IN BIOTOPOLOGICAL SPACES, Advances in Mathematics: Scientific Journal vol 9 Issue 11(2020) Page 9341-9344