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1.Introduction:

A topological space's basic elements are closed sets. The axioms for closed sets or the
Kuratowski closure axioms, for instance, can be used to determine the topology on a set.
1970 saw the start of N. Levine's [10] investigation on so-called generalised closed sets.
When cl(A)c U whenever Ac U and U is open, a subset A of a topological space X is said to
be generalised closed. Since generalised closed sets are not just straightforward extensions of
closed sets, several topologists have focused a lot of their recent research on this idea.
Furthermore, they provide a number of novel topological space features.In this study, we
provide new classes of sets for topological spaces known as Ds -closed sets.

2. Preliminaries:

Definition 2.1.Let(X,)beatopologicalspace. AsubsetAofthespaceXissaidtobe
1. Preopen [11] if A < int(cl(A)) and preclosed if cl(int(A))<SA.

2. Semi-open [9] if A < cl(int(A)) and semi-closed if int(cl(A)) SA.

3. a-open [13] if AcCint(cl(int(A))) and a-closed if cl(int(cl(A)))SA.

4. Semipreopen [1] if A < cl(int(cl(A))) and semi preclosed if int(cl(int(A)))SA.
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Regular-open [16] if A=int(cl(A)) and regular closed if A=cl(int(A)).

Lemma 2.2([1]).For any subset A of X,the following relations hold.

1.

2.

3.

4.

Scl(A)=Auint(cl(A)).
acl(A)=Aucl(int(cl(A))).
Pcl(A)=Aucl(int(A)).

Spcl(A)=Auint(cl(int(A))).

Definition 2.3.A subset A of a space (X,t) is called a

1.

10.
11.
12.
13.
14.

15.

Generalized closed (g-closed) [10]if cl(A)SU whenever ACU and U is open in
(X,0).

generalizedpre-closed(gp-closed)[14]ifpcl(A)SUwheneverASUandU isopenin(X,t).

generalizedsemipre-closed(gsp-closed)[6]ifspcl(A)SUwhen-
everAcUandUisopenin(X,t)

generalized preregular closed (gprclosed) [7] if pcl(A)SU whenever ACU and U is
regular open in (X,1).

pre-generalizedclosed(pg-closed)[12]ifpcl(A)SUwheneverAcUandUispre-openin(X,t).
g*-preclosed(g*p-closed)[19]ifpcl(A)SUwheneverAcUandUisg-openin(X,t).
H-preclosed(pp-closed)[20]ifpcl(A)SUwheneverACUandUisga*-openin(X,t).
*g-closed[18]ifcl(A)=UwheneverAcUandUisw-openin(X,t).

g -closed[8]ifcl (A)=SUwheneverAcUandUis#gs-openin (X,1).

p-closed[5]ifpcl (A)<int(U)whenever AcUandUisg-open in(X,t).
w-closed[17]ifcl(A)=UwheneverAcUandUissemi-openin(X,t).
ngp-closed[15]ifpcl(A)SUwheneverAcUandUism-openin(X,1).

fi-closed[2]ifspcl (A)SUwhenever AcUandUisanw-open in(X,t)

D-closed[3]ifpcl (A)<Sint(U)wheneverAcUandUisw -open in(X,1).

D-closed[4]ifs pcl (A)<int(U)wheneverAcUandUisD -open in(X,t)

The complement of g-closed (resp.gp-closed,gsp-closed,gpr-closed,pg-closed,g*p-closed,go*-
closed,pp-closed,presemi-closed,*g-closed,#gs-closed,3-closed,p-closed,o-closed,d-
closed,ngp-closed,f-closed) setissaidtobeag-open(resp.gp-open,gsp-open,gpr-open,pg-open
g*p-open,go*-0pen, Lp-open, presemi-open, *g-open,#gs-open,open,p-open,-open,j-open,gp-
open,ij-open)set.
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3.Basic properties of Ds
Definition 3.1.

A subset A of (X; 1) is called an Ds -closed setif scl(A) ¢ U whenever A c U and U
is D- open in (X; 7). The class of all Ds-closed sets in (X; 1) is denoted by Dsc().

Thatis Dsc(t)= {A c X:Ais Ds-closed in (X; 1)}.
Theorem 3.2.

Every closed( resp. a-closed, semi-closed) set is Ds-closed.
Proof.

Let A be any closed set .Let A ¢ U and U is D-open set in X. Then cl(A) c U. But scl(A)

ccl(A cU. Thus A is Ds -closed. The proof follows from the facts that scl(A) cacl(A)c
cl(A).

Remark 3.3.
The converse of the above theorem need not be true as seen from the following example.
Example 3.4.

Let X = {a;b;c;d} and © = { ¢;{a};{a;d};{b;c};{a;b;c};X }. Then the set A = {b;d} is Ds -
closed but not closed( resp. a-closed, semi-closed) .

Theorem 3.5.
Every Ds -closed set is gsp-closed but not conversely.
Proof:

Let A be Ds -closed set. Let A ¢ U and U be any open set . Since every open set is D- open
and A is Ds —closed , scl(A) cU . Hence spcl(A) c U, which implies A is gsp -closed.

Theorem 3.6.
Every Ds -closed set is i*-closed but not conversely.

Proof:

Let A be Ds -closed set. Let A c U and U be any w-open set . Since every o-open set is D-
open and A is Ds —closed , scl(A) cU . Hence spcl(A) c U, which implies A is f* -closed.

Example 3.7.

Let X = {a;b;c;d} and t = { ¢;{c};{a;b};{a;b;c};X }.Then the set A = {a} is both gsp-closed
and fj*-closed but not Ds -closed .
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Remark 3.8 . Ds -closedness and pre-closedness are independent concepts as we illustrate by
means of the following examples.

Example 3.9.

Let X = {a;b;c;d} and T = { @;{c};{a;b};{a;b;c};X }. Then the set A = {a;b} is Ds -closed but
not preclosed . A= {a} is preclosed but not Ds -closed in (X, 7).

Remark 3.10. Ds -closedness and g,gp,gpr ,pg,*g,8,m, g*p, up , p, D ngp,ga*-closedness are
independent concepts as we illustrate by means of the following examples.

Example 3.11.

Let X = {a;b;c;d} and = { @;{c};{a;b};{a;b;c};X }. Then the set A = {a;b} is Ds -closed but
not g,gp,gpr ,pg,*9,8,m, g*p, up , p, D, ngp,ga*-closed .

A= {a;d} is 9,0p,0pr ,pg,*9,8,0, g*p, up , p, D, mgp, ga*-closed but not Ds -closed in (X, ).

Remark 3.12. From the above discussions and known results should be accompanied by
a reference we have the following implications A — B (A « B) represents A implies B
but not conversely (A and B are independent of each other). See Figure 1.

a-closed

closed g

i

closed

Figure 1: Implications.

Remark 3.13. The union of two Ds -closed sets need not be Ds —closed and the intersection
of two Ds -closed sets need not be Ds -closed.

Example 3.14.

Let X = {a, b, ¢, d} and T = {o, {c}, {a, b}, {a, b, c}, X}. Then the set A = {c} and B =
{a,b}.

Here A and B are Ds -closed sets. But AUB = {a, b, ¢} is not Ds -closed.
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Example 3.15.

Let X ={a, b, ¢, d} and t = {9, {a}, {a,d}, {b, c},{ab,c}, X}. Let A={b, c} and B = {b, d}.
Here A and B are Ds -closed sets. But A N B = {b} is not Ds -closed.

Definition 3.16. The intersection of all D-open subsets of (X,t) containing A is called D-
kernel of A and denoted by D—ker(A).

Theorem 3.17.
If a subset A of (X, 1) is Ds-closed then scl(A)=D-ker(A).
Proof.

Suppose that A is Ds -closed. Then scl(A) €U whenever A €U and U is D-open. Let x
escl(A). Suppose x & D— ker(A).Then there is an D-open set U containing A such that x ¢U.
Since U is an D-open set containing A, x ¢scl(A), which is a contradiction. Hence scl(A) €D-
ker(A). Conversely , suppose scl(A) €D-ker(A). Then scl(A) €nU; where Ui is a D- open set
containing A . Therefore scl(A) Ui whenever ACU and U is D- open. Hence A is Ds —
closed .

Theorem 3.18.
A set A is Ds -closed then scl(A) — A contains nonon-empty closed set.
Proof.

Let F Sscl(A) — A be a non-empty closed set. Then F € scl(A) and A €X. Since X — F is D-
open, we get scl(A) € X — F. Hence F =X — scl(A). Therefore F Sscl(A) N (X — scl(A)) = o,
which is a contradiction.

Remark 3.19. The converse of the above theorem need not be true as seen from the
following example:

Example 3.20.

Let X ={a, b, c,d} and T = { o, {c}, {a, b}, {a, b, c},X}. Let A = {a}. Then scl(A) — A =
{o}

contains no non-empty closed set. But A is not Ds -closed.

Theorem 3.21.

A set A is Ds -closed then scl(A) — A contains no non-empty D-closed set.
Proof.

It follows from theorem 3.18.
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Theorem 3.22.

Let A and B be any two subsets of (X, 7). If A is Ds -closed such that ASBE scl(A) then B is
Ds -closed.

Proof.

Let U be an D-open set of X and B €U. Then A cU. Since A is Ds -closed, scl(A) €U. Now
scl(B) cscl(scl(A)) = scl(A) €U. Hence B is Ds —closed.

Example 3.23.
Let X={a, b, c,d}and t= { ¢, {c}, {a, b}, {a, b, c},X}. Let A = {d} and B={c,d}. Then
A and B are Ds —closed sets but B is not a subset of scl(A).
Theorem 3.24.
If a subset A of (X, ) is D-open and Ds -closed then A is semi-closed in (X, 7).
Proof.

Since a subset A of (X, t) is D-open and Ds -closed, we get, scl(A) SA. But A cscl(A).
Hence A is semi-closed in (X, t).

Theorem 3.25.
A open set A of (X, 1) is g-closed then A is Ds -closed in (X, 7).
Proof.

Let A < U and U be D-open in (X, 7). Since A is open and g-closed we get A is closed. (i.e)
cl(A) € U. We know that scl(A) € cl(A)<S U. Hence A is Ds -closed.

Remark 3.26.
The converse of the above theorem need not be true as seen from the following example:
Example 3.27.

Let X ={a, b, ¢, d} and T = { o, {c}, {a, b}, {a, b, c},X}. Let A = {c}. Then A is open and
Ds —closed but not g- closed.

Theorem 3.28.
Let A be Ds -closed in (X, ). Then A is semi-closed if and only if scl(A) — A is D-closed.
Proof.

Let A be semi-closed. Then scl(A) = A. Hence scl(A)—A = ¢, which is D-closed. Conversely,
suppose scl(A)—A is D-closed. Since A is Ds -closed and by theorem 3.21, scl(A)-A = .
Then scl(A) = A. Hence A is semiclosed.
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Theorem 3.29.

In a topological space (X, 1), for each x €X, {x} is D-closed or its complement X — {x} is Ds
-closed in (X, 7).

Proof.

Suppose that {x} is not D-closed in (X, 7). Then X — {x} is not D-open. Hence the only D-
open set containing X — {x} is X. Thus scI(X — {x}) €X. Hence X—{x} is Ds -closed in (X,
7).
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