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1. INTRODUCTION

Fractional calculus is the field of mathematical analysis, which deals with the investigation
and applications of integrals and derivatives of any arbitrary real or complex order, which
unify and extend the notions of integrals and derivatives. It has gained significance and
recognition over the last four decades, especially because of its enormous capacity of tested
programs in diverse seemingly expanded fields of science, applied mathematics and
engineering.

Recently, Sharma [10] introduced and studied a new special function called as K-function,
which is a particular case of the Wright generalized hypergeometric function
pWq(.)andFox’sH-function. K-function is interesting because the Mittag-Leffler function

follows as its particular cases, and these functions have recently found essential applications
in solving problems in physics, biology, engineering and applied sciences. For more detail
study of K-function and its special cases, we refer to cited these references [12,13,14].

The function is defined for a,B,y € C,R(a) > 0,a;,b; € R(—00,0), a;,b;#0;(i=
1,2,...,p;j=12,..,q) as:

@n - (3p), (W x"
(b ) (bq)n I'(an + B) n!’

@B YKg(X) = 57" Kq (a3, a3 by, oo b x) = )
P n=0
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where (a;) and (b;) are Pochhammer symbols. If any numerator parameter (a;) is a
negative integer or zero, then the series terminates to a polynomial in x. The series (1.1) is

defined when none of parameters (aj)nj = 1,2,...q is a negative integer or zero. From the
ratio test it is evident that the series is convergent for all x if p > q+ 1. Whenp =q+ 1 and
|x|] = 1, the series can converge in some cases. Let y = Z].p=1a]- — ].q=1b]-. It can be shown
that when p = q + 1 the series is absolutely convergent for |x| = 1 if f(y) < 0, conditionally
convergent for x = —1if 0 < R(y) < 1 and divergent for |x| = 1 if R(y) > 1.

Some important special cases of K-function are enumerated below:

(1) For p = q = 0, the K-function is the generalization of the Mittag-Leffler function [6] and
its generalized form [8] .

SRS
g'B’yKo(—; —x) = __\n

& T(an+ Hnl E) (),

(2) For y = 1in (1.2), then K-function is the generalized Mittag-Leffler function [5] .

® n

@Bl CeW) — X _ il _

o Ko(——x)= Z) Tantp) Eqp(®) = Eqg(®),
n=

(3) For B = 1 in (1.3), we get Mittag-Leffler function [5] .

1,1 N X"
S K (— %) = EO Ty = a9 = B (09 = Ea(),
n=

(4) For a = 1 in (1.4), which is the exponential function [9] denoted by e*.

o "Ko(——%) = Z = E11(x) = E11 (%) = E1 (%)
0 i S T+D '
n=

On 1994, Chaudhary and Zubair [3] and in 1997 Chaudhry et al. [1] extended the domain of
gamma and beta function to the entire complex plane by inserting a regularization factor:

(o]

I,(x) = j t*" e t=0/Oqdt, R(v) > 0.
0

1
B,(x,y) = f t*-1(1 — £)Y~Le~/tI-D)dt, R(v) > 0.
0

The Beta [11] , Mellin and Laplace transforms [4] of a function are defined respectively as

1

B{f(z);x,y} = fo zX71(1 — 2)Y"(2)dz

L{f(z);s} = J e %*f(z)dz; R(s) >0

0
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o)

M{f(z); s} =f 25 (z)dz

0

We also use the following equalities in our proofs:

B{z4;x,y} = BA+xy), RA+x)>0,R(y) >0
L{z}s} = sTUr+ 1), RQ) = 0,R(s) > 0
M{Bp(x,y);s} =T(s)B(x+ s,y +5s)

(R(s) > 0, R(x+5) > 0,R(y +5) > 0)

2. Generalized K-function and their Properties

Motivated by the above works, we introduce the generalized K-function by using the
extended beta function. We also obtain its certain properties such as integral representation,
recurrence relation, derivative formulas, Beta, Laplace and Mellin transforms.

2.1. Generalized K-function: We introduced (presumably new) the generalized K-function as
g'B'YKq(Z; V) = g’B’YKq(al, wr@p; by, o, by 25 v)

B — (@2)n(ap) By(a; +nb;—a;) (Y "
~ 4 (bpn . (bg), Blybi—a) T(an+p)n!’

where R(a) > 0,R(v) > 0,R(b;) > R(a;) > 0. The series (2.1) is defined when none of
parameters a;,,j = 1,2, ..., q is a negative integer or zero. From the ratio test it is evident that

the series is convergent for all x if p > q+ 1. When p = q+ 1 and |x| = 1, the series can

converge in some cases. Let y = Zleaj — ].qzlbj. It can be shown that when p = q + 1 the

series is absolutely convergent for |x| = 1 if R(y) < 0, conditionally convergent for x = —1
if 0 < R(y) < 1anddivergent for |x| = 1if R(y) = 1.

When, we take v = 0, then equation (2.1) takes the equation (1.1).
Also v # 0, then we obtain some special cases are as below.

e For a=B=y=p=q=1, then we obtain confluent hypergeometric function
which is defined in Chaudhary et al [2] as:

o B,(a+n,b—a)z"
IMIca-he 7 v) — 'b:z) = v T
1M1(a, b; ZI V) d)V(a’ b’ Z) Z B(a' b - a) n!’

n=0

where R(b) > R(a) > 0. - For p = q = 2, then we obtain generalization of Mittag-Leffler
function which is denied in Ozarslan and Yilmaz [7] as:

%Mg(al, bl; b]_; 1; Z; V)

_ Eal:bl(z v) = Z By(a; +n,b; —a;) (by)y i
@ ' B(a;,b; —a;) T(an+B)n!’

n=0
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where R(v) > 0 and R(b,) > R(a;) > 0.

2.2. Properties: Further, we obtain its certain properties such as integral representation,
recurrence relation, derivative formulas, Beta, Laplace and Mellin transforms.

2.0.1. Integral representation:

Theorem 2.1. The following integral representation of generalized K-function are valid:

1
By
Kq(z;v) =
P q(Z ") B(a;, by —ay)
XJ-oo 31_1(1+ )_bl —v(u+n? B K ( b b Zu ) d
u u e uw qp —1\az,*r,ap; D2, , Dg; u.
o p—ly q-1 2 p’r Y2 q 14u

Proof: Now we take the equation (2.1) and we get
- (aZ)n (ap)n Bv(al + n, b1 — al) (Y)nZn
L (by)y (bq)n B(a;, by —a;) TI'(an + B)n!

_ 1 - (@z)n - (ap)n (y)nzn
= Bl b —ap) L (by), -+ (bq)n ['(an + B)n!

g'B'YKq(Z; V) =

B,(a; +n, by —ay).

Now, using equation (1.7) in the above equation, we get

1 - (@z)n - (ap)n (y)nzn
B(ay, by —ay) i (bo)p - (bq)n I'(an + B)n!

g'B'YKq(z; v) =

1 .
X ta1+n—1 1—t b1—31_1e((1-t)dt =T
~[0 ( ) B(a;,b; —ay)

1 -v
f [ta1—1(1 — t)P1ma1-1eG-0p — 1Kq_4 “'B'V(az, -, ap; by, -+, by Zt)] dt.
0

du

. u t
Apply the transformations t = — so that u = —, dt = R

t=0>u=0,t=1=>u-=

oo, we have

zZu du
Xp-1Kq-1 (az, i piba, e b u)] (14 u)?

—U

(Y’B"y lole} (11—1 bl—al—l
" 1 u u u (l— u )
K v — P 2 1+u 1+u
p q(Z’ ) B(a;, bj—ay) \f(\) l( 1+u) (1 1+u) €™ "

—V(u+1)2

= 1 JOO [uUr=1(1 4u)™Pe™ u
B(aj, by —ay) 0

p-1Kg-1 (az,---,ap;bz,---,bq;1Z_Il_lu)] du.

which yields the result.
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2.0.2. Recurrence relation:
Theorem 2.2. For the generalized K-function, the following recurrence relation holds true

o,By a

bl_ 1
P Kq(zv) = b—lpKZ’B’Y(al,az, ~+,ap; by + 1,by, -+, bg; V)

d
by
Kl + 1, aZ,"',ap; b1 + 1, bz,"',bq; Z, V).

+—p.Kg VY

Proof. By using equation (2.5), we can write as below

1
B(all bl

1 -V
a, B, yKq(zv) = — )f [ta1-1(1 — P17 1(1 — t + )eGCD
p a1) Jo

By
Xp_l K- 1q(az,"',ap; bz,“‘,bq; Zt) dt

1

B B(a;, by —ay)

1 v By
_|_f lta1(1 _ t)b1—a1—1e(1—t)p —1 K q—1(32' e ap; bz: ,qu Zt)l dt}
0

Using K-function defined in equation (1.1), we have
1
a#v) = B(ay, by —ay)
(1 - ety 20 (@0)y ()"
L (b,) - (bg) Tan+p)n!

v @ (ap) (), ()
a1 (1 — \b1—a1—-1,a—¢ n n
t21(1—t) el )n=0 (b)) (bq)n ['(an + B)n!

aBy
D K

Changing the order of integration and summation, we obtain

dt}.
1 {‘” @n(ap) (y)nz"

a, E YKa@V) = g =25 i (by)n++ (bg) Tan + B)n!

l ~ By i BB
P =D M0y K el o s Gpibes 7, Bgat) | dE
0
1 v
xf [tal+“‘1(1 —t)bl‘alera-t)] dt
0

N ) (az)n... (ap)n (y)nzn
s (bz)y - (bq)n I'(an + B)n!

1 —v
J [taﬁ“(l — t)bl‘al‘leﬁ] dt}.
0
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Further, using equation (1.7) and multiplying the terms in numerator and denominator with

B(a;,b; +1 —a;) and B(a; + 1,b; — a;) respectively, we get

1
B(aj, by — 31)

S'B’qu(Z; V) =
o @ (@), @
i (by)y - (bq)n T(an + B)n!

- (@z)n (ap)n (Y)nZk
+
e (by)g (bq)n '(an + B)n!

By(a; +n,b; +1 —a,)dt

Bv(al + 1 + n, bl - al)dt}

Using the known property of gamma and beta function, we obtain

& (@z)n (ap)n (Y)nz" By(a;+n,b;+1—a;)b; —ay

P (V) = {

+ —dt
= (b2)p - (bq)n [(an+B)n! B(a;+1,b;—a;) by
b; —a

= 1b—11 g'B‘YKq(al,az,---,ap;bl +1,by, -+, bg; z;v)

a
+b—1p, B,qu(al + 1,a;,--,ap; by + 1, by, -+, bg; Z; v)
1

> (ag)y (ap)n (Ynz" By(a;+1+4+n,b; —a;)a; }

which yields the result.

= (by)p - (bq)n [(an+ B)n!  B(ay,b; +1—ay) by

dt

2.2.3. Derivative formulas: Now, we investigate the derivative formulas of the generalized K-

function.

Theorem 2.3. The following derivative formula holds true:

d ¢ 4 -
TEm 5 KO )] = 2P PR Oz ),

Proof. We know that the formula in term of gamma function

(A + 1)

dk A A-k
a2 ):r(x—k+ D’

Now, differentiate with respect to z in order to k™ derivative of equation (2.1) yields
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d (5 L
d_{ YK (7\2 V)}
B d_k B-1 (az)n - (ap)n By(a; + n,b; —a;) (y)n(Az*)"
= 1K £ (b)y - (bg) ~ Blayby—a;) T(om+B)n!
(aZ)n (ap)n Bv(al +n,b; — al) (Y)n}\n dk {an+B—1}

0 (bz)n (bq)n B(al; b; — 31) F(O(n + B)n! dzk

_ Bk > (ag)y (ap)n By(a; +n,b; —a;) (y)a(Az9)"
= s (by), (bq)n B(a;,b; —a;) T(ak+ B —Kk)n!

—k—1 @Bk,
= zB-k 138 qu()\Za;V).

which yields the result.

2.0.3. Beta transform:

Theorem 2.4. The Beta transform of generalized K-function is

a.B,y a.B+L.y

Bi K, (xz™; ©v); B, Cp =L ) ,Kq (X570,

where R(B) > 0,R(Q) > 0.

Proof. Using beta transform equation (1.8) and (2.1), we have

1
B{ BV o (x2% v); B, :f P71 (1 — 2", B, YKo (x2%; v)dz
p

o /. (az)n (ap)n By(a; + n,by —ay) (yY)n(xz®)"
j (zB1(1 -z 12 4 (b)n - (bg), Blarbs —ap) lﬂ(oerB)n!dz

After changing the order of the integration with summation and using the equality (1.11), we
get

(@2)n - (ap)n By(a; +n,by —a;)  (Y)nx"
s (b (bq)n B(aj,b; —a;) T'(an+ B)n!

1
xf (z9)B-1(1 — z%)5 1z dz
0

_ (@z)n - (ap)n By(a; + n,by —a;)  (¥)nx"
Lt (b)), (bg), Blapbi—a)) T(an+B)n!

B{ “BYR ((x2%v); B, C} =

B{z*"; B; ¢}
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_ (@z)n - p) By(a; + n,b; —ay) (Y)nx"
=IG )Z (by), (bq) B(a;,b; —a;) T(an+ B+ Qn!
aB+gy

=T@ K, (5V).
p

2.0.4. Laplace transform:

Theorem 2.5. The Laplace transform of generalized K-function is

(Y,ﬁ,’)/ 1 Q’B’y X
L qu(-xZ; U)’ S¢ =S p+1Kq(a1a"' > Up, L by, s, bqv}a U)

where R(s) > 0.

Proof. Using Laplace transform equation (1.9) and generalized K-function (2.1), we have

~ .foo o 2, (ay)y (ap)n By(a; + n,b; —a;) (y)n(xz)" .
-, 4 (by)n (bq)n B(a;,b; —a;) [I(an+ B)n!

After changing the order of the integration with summation and using the equality (1.12), we
obtain

(@z)n - (ap)n B,(a; +n,b; —a;) (y)x"
. (by)y - (bq)n B(a;,b; —a;) T'(an+ B)n!

L{ g’B’YKq (xz;v); s} =

[o/0)
X ] e S2zhdz
0

(@z)n - (ap)n By(a; +n,b; —a;)  (y)ux"
4 (by)p - (bq)n B(a;, by —a;) T(an+ B)n!
1

=5 gflyK (X )

X
- a:BJYK (all...ia ﬂl;blﬂ'“)b ;_;V)-
b+ q p q S

a.B.y < Wa,,B,y
LA e (XZ5 W) G 8 p = & “aK, (xz; v)dz
0

2.0.5. Mellin transform:

s~ (ML (n+ 1)

Theorem 2.6. The Mellin transform of the generalized K-function is

B(a; +s, by —a; +5s)
B(ay, by —ay)
Xp Kq(a1 + 5,2y, ap; b; + 2s,b,, - ,bq; z).

M{a' S'YKq(Z; v); s} =T(s)
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where R(s) > 0.

Proof. Using Mellin transform equation (1.10) and (2.1), we have

]V[{ g'B'qu(z; v); s} = J;) z571 S'B’YKQ(Z; v)dz

_ f°° . @D (ap) By(a +nby—a)  (¥)az”
o = (bz)n - (bq)n B(a;,b; —a;) T'(an+ B)n! z

After changing the order of the integration with summation and using the equality (1.13), we
have

e (@), 1 s
n=0 (bz)n (bq)n B(a;,b; —a;) I'(an + B)n!

]V[{ g’B'qu(Z; v); s} =

X foo z571B,(a; + n,b; — a,)z"dz
0
_\ @2 (@), 1 Mn
) i (by)n - (bg) B(as, by —ay) Ian + Bn!

_ I'(s) C @n(ap) ()2
B(a;, by —a;) £ (by)n (bq)n I'(an + B)n!

M{z"By(a; + n,b; —a;);s}

B(a; +s+n,b; —a; +5s)

B(a;+s,by—a;+s)

B(a;+s,b;—a;+s)’ we obtain

After multiplying with

_T(s)B(a; +s, by —a; +9)
B(ay, by —ay)

g'ﬁ'YKq(a1 +5,a5,+,ap; by + 25,by,++, by; 2).

3. Conclusion

In this article, we established a new definition of the function which is called generalized K-
function. Further, we represented the function in the integral and recurrence form and
evaluated nth order derivative. Also, evaluated the Beta, Laplace and Mellin transforms of the
newly defined function. Also, some deductions from results of this paper are connected with
already published results if we use y = 1.
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