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Abstract 

Abstract: In this paper we define prime decomposition and prime decomposition 

number 
)(Gp of a graph. Also investigate some bounds of 

)(Gp in product 

graphs like Cartesian product, composition etc. 
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1. Introduction 

A decomposition of G is a collection  rp HHH ,....., 21  such that iH are edge disjoint 

and every edges in iH  belongs to G . If each iH  is a prime graphs, then p is called a prime 

decomposition of G . The minimum cardinality of a prime decomposition of G  is called the prime 

decomposition number of G and it is denoted by ).(Gp  

2. Prime Decomposition 

In this section we define graceful decomposition of a graph ( , )G V E some and investigate some 

bounds of graceful decomposition number in ( , )G V E  . 
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Definition 2.1: [20] A prime labelling of a graph G is an injective function  Vf ,...,3,2,1: , such 

that for every pair of adjacent vertices vandu ,   1)(),(gcd vfuf . The graph admits prime 

labeling is called a prime graph.  

 

Figure 2.1:Prime cordial labeling 

Definition 2.3:  Let  rP HHH ,....., 21  be a decomposition of a graph G . If each 
iH  is a 

prime graphs, then g is called a prime decomposition of G . The minimum cardinality of a 

graceful decomposition of G  is called the prime decomposition number of G and it is denoted by 

).(Gg  

Definition 2.4: [35] Let ),( 111 EVG   and ),( 222 EVG  be two simple graphs. The join 21 GG  of

21 GandG with disjoint vertex set 21 &VV   and the edge set E of 21 GG   is defined by the two 

vertices ),( ji vu  if one of the following conditions are satisfied 

i) 1Evu ji  . 

ii) 2Evu ji  . 

iii) 21 & VvVu ji   , Evu ji   

 

3. Main Results 

Theorem 3.1:  A graph )( nm PP  is a join of two path prime graphs with )( nm   .The bounds of 

prime decomposition number of the graph )( nm PP   is,  .)1()1()(3  nnmPP nmp  
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Proof:Let 
mP  and 

nP   be two path prime graphs of order m and n )( nm  respectively and 

)( nm PP  is a join of 
mP  and 

nP with edge set E. The graph )( nm PP   contains )( nm  vertices and 

the edge set is )( ,21 nmKSEEE  , Here )( ,nmKS  is a size of a complete bipartite graph nmK , . 

In the graph )( nm PP   there are graphs 
mP  , 

nP and the complete bipartite graphs nmK ,  .Note that 

mP  and 
nP  be two prime graphs and complete bipartite graphs nmK , also prime graph. This implies 

 mnnmp KPP  and  mnnmp KPP  . Note that the graphs 
mP  , 

nP  and  nmK , are 

prime graphs. Hence ).3()(  nmp PP
 

In )( nm PP   there are  mnnm )1()1( )1()1(  nnm edges. Note that every edge is a 

prime graph. This implies  )1()1()(  nnmPP nmp . Hence we get

 .)1()1()(3  nnmPP nmp  

Illustration 3.2  The Join of two prime graphs 
32 &PP is given in figure.2.1 

 

Decomposition of the graph )( 32 PP  in to minimum copies of prime graph 

 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 
10503 

 
Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

 

 There are 9)6)12()13((  edges in )( 32 PP  , this implies the bound of )( 32 PPp   is 

.9)(3 32  PPp  

Theorem 3.3.  A graph )( nm CP  is a join of path prime graphs with )( nm    and cycle 
nC  

. The bounds of prime decomposition number of  the graph )( nm CP   is, 

 .)1()1()(3  nnmCP nmp .  

Proof:Let 
mP  and 

nC   be two path prime graphs of order m and n )( nm  respectively and 

)( nm CP  is a join of 
mP  and 

nC with edge set E. The graph )( nm CP   contains )( nm  vertices and 

the edge set is )( ,21 nmKSEEE  , Here )( ,nmKS  is a size of a complete bipartite graph nmK , . 

In the graph )( nm CP   there are graphs 
mP  , 

nP and the complete bipartite graphs nmK ,  .Note that 

mP  and 
nC  be two prime graphs and complete bipartite graphs nmK , also prime graph. This implies 

 mnnmp KCP  and  mnnmp KCP  . Note that the graphs 
mP  , 

nC  and nmK , are 

prime graphs. Hence ).3()(  nmp CP
 

In )( nm CP   there are  mnnm )()1( )1()1(  mmn edges. Note that every edge is a prime 

graph. This implies  )1()1()(  mmnPP nmp . Hence we get

 .)1()1()(3  mmnCP nmp  

Illustration 3.4: The Join of two prime graphs 32 &PP is given in figure.4.2.2 
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Decomposition of the graph )( 54 CP  in to minimum copies of prime graph 
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There are 28)205)14((  edges in )( 54 CP  , this implies the bound of )( 54 CPp   is 

.28)(3 54  CPp  

Theorem 3.5:  A graph  nm PP  is a Cartesian product of two prime graphs  nm PP   with order m 

and n. Then bounds of prime decomposition number of  the graph  nm PP   is, 

.)()(2)( nmmnPPnm nmp    

Proof:Let 
mP  and 

nP  be two path prime graphs of order m and n respectively and  nm PP  is a 

Cartesian product of 
mn PP & with edge set E. An edge   Eyyxx ))(( 2121  satisfies one of the 

following conditions 

i) 11 yx  and 22 , yx  are adjacent vertices in ),( 222 EVG  . 

ii) 22 yx  and 11, yx  are adjacent vertices in ),( 111 EVG  . 

Case (i): If 11 yx   and 22 , yx  are adjacent vertices in ),( 222 EVG   

 If 11 yx   and 22 , yx  are adjacent vertices in 
nP  . Let the sub graph 

iH is isomorphic to the 

graph nP . In  nm PP   there are ‘m’ copies of graph nP  and it is prime graph .This implies iH is 

also aprime graph. This implies iH  

Case (ii): If 22 yx  and 11, yx  are adjacent vertices in mP  

 If 22 yx  and 11, yx  are adjacent vertices in mP  . Note that the sub graph jH is isomorphic 

to the graph mP .  In  nm PP   there are ‘n’ copies of graph mP  and it is prime graph This implies 

jH is also aprime graph. This implies jH . 

 From case (i) and (ii), we get 




























j

n

j
i

m

i
HH

11
  this implies 

nmHH
n

j

j

m

i

i  
 11

 .  

In )( nm PP   there are  )1()1( nmmn )()(2 nmnm  edges. Note that every edge is a prime 

graph. This implies )1(2)(  nmPP nmp . Hence we get .)()(2)( nmnmPPnm nmp  
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Illustration 3.6:  The Cartesian product of two graceful graphs 
63 & PP is given in Figure 3.2.3 

 

 

6 copies of 3P  

 

3 copies of 6P  
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There are 27)9()18(2(  edges in )( 54 CP  , this implies the bound of )( 63 PPp   is 

.27)(9 63  PPp  

Theorem 3.7:  A graph )( nm CP  is a Cartesian product of two prime graphs )( nm CP   with order 

m and n. Then bounds of prime decomposition number of the graph )( nm CP   is, 

.)1(2)(  nmCPnm nmp  

Proof:Let 
mP  and 

nC  be two path prime graphs of order m and n respectively and  nm CP  is a 

Cartesian product of 
nm CP & with edge set E. An edge   Eyyxx ))(( 2121  satisfies one of the 

following conditions 

i) 11 yx  and 22 , yx  are adjacent vertices in ),( 222 EVG  . 

ii) 22 yx  and 11, yx  are adjacent vertices in ),( 111 EVG  . 

Case (i): If 11 yx   and 22 , yx  are adjacent vertices in .nC  

 If 11 yx   and 22 , yx  are adjacent vertices in nC  . Let the sub graph iH is isomorphic to the 

graph nC . In  nm CP   there are ‘m’ copies of graph nC  and it is prime graph .This implies iH is 

also aprime graph. This implies iH  

Case (ii): If 22 yx  and 11, yx  are adjacent vertices in mP  

 If 22 yx  and 11, yx  are adjacent vertices in mP  . Note that the sub graph jH is isomorphic 

to the graph mP .  In  nm CP   there are ‘n’ copies of graph mP  and it is prime graph This implies 

jH is also aprime graph. This implies jH . 
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From case (i) and (ii), we get 












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

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

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n

j
i

m

i
HH

11
  this implies nmHH

n

j

j

m

i

i  
 11

 .  

In  nm CP   there are  )()1( nmmn 1)(2 nm edges. Note that every edge is a prime graph. 

This implies 1)(2)(  nmCP nmp . Hence we get .1)(2)(  nmCPnm nmp  

Illustration 3.8:  The Cartesian product of two Prime graphs 
63 &CP is given in Figure.2.3 

 

 

Prime decomposition 63 &CP
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6 copies of
3P  

 

3 copies of 
6C  

 

There are 351)18(2  edges in )( 54 CP  , this implies the bound of )( 63 CPp   is 

.35)(9 63  CPp  

Theorem 3.9:  In a ladder graph nL , the bounds of prime decomposition number is, 

.)23()()2(  nLn np  

Proof: The ladder graph nL  constructed by graphs 2P and nP . The composition of the graphs 2P

and nP . From theorem 2.3, the bounds of  the graph )( nm PP   is, .)1(2)(  nmPPnm nmp  

In ladder graph nnm  ,2  this implies we get .23)1(2)12()()2(  nnnLn np  

Illustration 4.2.5:  The ladder graph nL is given in Figure 
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There are 2)(3 n edges inThe ladder graph 
nL , this implies the bound of )( np L  is 

.)23()()2(  nLn np  

Theorem 3.10:  In a Brush graph 
nB , the bounds of prime decomposition number is, 

.)12()()1(  nBn np  

Proof: The Brush graph 
nB   constructed by graphs 

nP and 1,1K . The Brush graph 
nB contains )2( n  

vertices and the edge set E is )...,,( 1,11,11,11 timesnKKKEE  , 1E is set of edges in the path 
nP . 

Note that mP  and complete bipartite graphs 1,1K are also prime graph. This implies 

 timesnKKPnp ...1.11.1  and timesnKKPnp ...1.11.1  . Hence .)()1( np Bn   

In Brush graph nB  there are 12)1(  nnn edges. Note that every edge is a prime graph. This 

implies 1)(2)(  nBnp . Hence we get .)12()()1(  nBn np  

Illustration 3.11:  The brush  graph nB is given in Figure. 
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There are 1)(2 n edges in )( nB , this implies the bound of )( np B  is .)12()()1(  nBn np  

4. Conclusion 

In this chapter, we define prime decomposition and prime decomposition number )(Gp of graphs. 

Also investigate some bounds of )(Gp in product graphs like Cartesian product, composition etc. 

In future we will investigate the decomposition number various labeling in graphs. 
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