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1. Introduction

A decomposition of Gis a collection w, ={H;,H,....H,} such that H,are edge disjoint
and every edges in H; belongs to G. If each H; is a prime graphs, then v  is called a prime

decomposition of G . The minimum cardinality of a prime decomposition of G is called the prime

decomposition number of G and it is denoted by 7, (G).

2. Prime Decomposition

In this section we define graceful decomposition of a graph G(V,E)some and investigate some

bounds of graceful decomposition number inG(V,E) .
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Definition 2.1: [20] A prime labelling of a graph G is an injective function f :{1,2,3,..., [\/|} such

that for every pair of adjacent vertices u and v, gcd(f(u), f(v))=1. The graph admits prime

labeling is called a prime graph.
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Figure 2.1:Prime cordial labeling

Definition 2.3: Let w, ={H,,H,,....H,} be a decomposition of a graph G . If each H, is a
prime graphs, then w is called a prime decomposition of G. The minimum cardinality of a

graceful decomposition of G is called the prime decomposition number of G and it is denoted by
7, (G).

Definition 2.4: [35] Let G, =(V,,E,) and G, =(V,, E,) be two simple graphs. The join G, +G,of
G, and G, with disjoint vertex set V, &V, and the edge set E of G, +G, is defined by the two

vertices (u;,v;) if one of the following conditions are satisfied

) uv; e k.
i) uv; e E,.

i) u eV, &v; eV, , uyv; ek

3. Main Results

Theorem 3.1: A graph (P, +P,)is a join of two path prime graphs with (m<n) .The bounds of
prime decomposition number of the graph (P, +P,) is, 3< 7, (R, + P,) < (m(n+1) + (n—1)).
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Proof:Let P, and P, be two path prime graphs of order m and n (m> n)respectively and
(P,+P,)isajoin of P, and P, with edge set E. The graph (P, + P,) contains (m+n) vertices and
the edge setis E=E, WE, US(K,, ), Here S(K, ) is a size of a complete bipartite graph K_ ..
In the graph (P, +P,) there are graphs P, , P,and the complete bipartite graphs K . .Note that
P, and P, be two prime graphs and complete bipartite graphs K,  also prime graph. This implies
v, 2{uP, UP, UK, fand |y,|2[{UR, UP, UK, . Note that the graphs P, , P, and K, are

prime graphs. Hence 7, (P, +P,) > (3).

In (P, +P,) there are (m—1)+(n—1)+mn= m(n+1)+(n—1)edges. Note that every edge is a
prime  graph.  This implies 7 (P,+P)<(m(n+1)+(n-1). Hence we  get

3<z,(P,+P,) <(m(n+1)+(n-1))

Ilustration 3.2 The Join of two prime graphs P, &P, is given in figure.2.1
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Decomposition of the graph (P, +P;) in to minimum copies of prime graph
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There are ((3—1) +(2-1) +6) =9edges in (P, + ), this implies the bound of 7 (P, +P,) is

3<7,(P,+P,)<9.

Theorem 3.3. A graph (P, +C,)is a join of path prime graphs with (m<n) and cycle C,
The bounds of prime decomposition number of the ograph (P,+C,) s,

3<z,(P,+C)<(m(n+1+(n-1)).

Proof:Let P, and C, be two path prime graphs of order m and n (m> n)respectively and
(P, +C,)isajoinof P, and C with edge set E. The graph (P, +C,) contains (m+n) vertices and
the edge setis E=E, WE, US(K,,,), Here S(K,,) is a size of a complete bipartite graph K_ .
In the graph (P, +C,) there are graphs P, , P,and the complete bipartite graphs K .Note that
P, and C_ be two prime graphs and complete bipartite graphs K,  also prime graph. This implies
v, 2{UP, UC, UK, }and y,| 2 [{UP, UC, UK, . Note that the graphs P, , C, and K, are

prime graphs. Hence 7, (P, +C,) > (3).

In (P, +C,) thereare (m—1)+(n) +mn = n(m+1)+ (m—1) edges. Note that every edge is a prime
graph. This implies 7,(P,+P) < (n(m+1) +(m-1)). Hence we get

3<z,(P,+C,) <(n(m+1)+(m-1)).

Illustration 3.4: The Join of two prime graphs P, &P, is given in figure.4.2.2
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There are((4-1)+5+20)=28edges in(P,+C;), this implies the bound of 7z (P,+C,) is

3<7,(P,+C,) <28

Theorem 3.5: A graph (P, x P, )is a Cartesian product of two prime graphs (P, x P,) with order m
and n. Then bounds of prime decomposition number of  the graph (Pm X Pn) IS,

m+n<z, (P,xP,)<2(mn)—(m+n).

Proof:Let P, and P, be two path prime graphs of order m and n respectively and (Pm X Pn)is a

Cartesian product of P, & P,with edge set E. An edge ((xlxz)(ylyz))e E satisfies one of the

following conditions

) X, = y,andX,, y, are adjacent vertices in G, =(V,,E,).

i) X, =Yy,and X, y, are adjacent vertices in G, =(V,,E,).
Case (i): If x, =y, and X,, Y, are adjacent vertices in G, =(V,,E,)

If X, =y, and Xx,, Yy, are adjacent vertices in P, . Let the sub graph H,is isomorphic to the
graph P, . In (P, xP,) there are ‘m’ copies of graph P, and it is prime graph .This implies H,is

also aprime graph. This implies H, cy
Case (ii): If x, =y,and x,, Yy, are adjacent vertices in P,

If x,=y,and x,,Y, are adjacent vertices in B, . Note that the sub graph H is isomorphic
to the graph P, . In (P, xP,) there are ‘n’ copies of graph P, and it is prime graph This implies

H ; is also aprime graph. This implies H;, cy .
From case (i) and (ii), we get l//Z{(_kalHij u(&lHjj} this  implies
i= Jj=

|w|:iHi+Zn:Hj =m+n.
i1 =1

In (P, xP,) there are n(m—1) + m(n—1) = 2(nm) — (m+n) edges. Note that every edge is a prime

graph. This implies 7, (P, +P,) <2(nm-1). Hence we getm + n< 7z (P, + P,) <2(nm) — (m +n).
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Ilustration 3.6: The Cartesian product of two graceful graphs P, & P;is given in Figure 3.2.3
X1 X2 X3
8 " 4
P3
¥ y2 y3 Y4 VE ga
L) L) #§ ] 4
Pe
>‘(1y1 x1yz X1y3 X1y4 X1ys X1y6
X2y 8 X2Yy2 X2Y3 X2ya X2Ys X2y
x: y1 xa=yz X3 ;/3 x3-y4 X3 ;5 xa;s
(P3 x Pg)
6 copies of P,
X 2 X1y4 X1ys X1yeé
.WW X;y_ xys 5 .y ‘.Y
X2 Y1 @ AV leys & 9%V gxaye
* ° ° ] ° .o
XYl x3Y2  x3y3 X3y4  X3ys X3ys
3 copies of P,
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X1y1 X1y2 X1y3 X1y4 X1ys X1y6é
® ® ® ® ] ®
X2y2 X2Yy3 X2 Y4 X2Ys
X2yl e ,’y .-y .—y [ J ®X2Y6
® ® [ ] [ ] ® [ ]
X3y1 X3 Y2 X3y3 X3 V4 X35 X3Ye

There are(2(18)-(9)=27edges in(P, +C;), this implies the bound of 7z (P+FR) is

9< 7, (P, +Py) <27,

Theorem 3.7: A graph (P, xC, ) is a Cartesian product of two prime graphs (P, xC.) with order
m and n. Then bounds of prime decomposition number of the graph (P,xC.) Is,

m+n<z, (P,xC,)<2(nm-1).

Proof:Let P, and C, be two path prime graphs of order m and n respectively and (Pm an)is a
Cartesian product of P, & C_ with edge set E. An edge ((x,x,)(y,Y,))<€ E satisfies one of the

following conditions

1) X, = y,and x,, y, are adjacent vertices in G, =(V,,E,) .

i) X, =Y,and X, y, are adjacent vertices in G, =(V,,E,).
Case (i): If x, =y, and X,,Y, are adjacent vertices in C,.

If X, =y, and X,,y, are adjacent vertices in C_ . Let the sub graph H,is isomorphic to the
graph C,. In (P, xC, ) there are ‘m’ copies of graph C, and it is prime graph .This implies H,is

also aprime graph. This implies H, cy
Case (ii): If x, =y,and x,, Y, are adjacent vertices in P,

If X, =y,and x,,y, are adjacent vertices in B, . Note that the sub graph H is isomorphic
to the graph P, . In (P, xC,) there are ‘n’ copies of graph P, and it is prime graph This implies
H ; is also aprime graph. This implies H; cy .
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From case (i) and (ii), we get w = {[HHJ U(}jHij} this implies [y|=> H;+ > H;=m+n.

i=1 j=1

In (P, an) there are n(m—1)+m(n) = 2(nm) —1edges. Note that every edge is a prime graph.

This implies 7, (R, xC,) <2(nm)-1. Hence we getm+n <7 (P, xC,) <2(nm)-1.

Illustration 3.8: The Cartesian product of two Prime graphs P, &C;is given in Figure.2.3

y1

x e [ ]
Y4
P3 Cs
X1y1 x1yz2 X1y3 X1ya X1ys X1Y6
X2y2 X2Yy3 X2y4 X2Ys
X2 y1 i - ® X2y
—_|
/ ®. ®. ®.
X3yt X3y2 X3y3 X3 Y4 X3 Y5 X3Y6

(P3x Cs)

Prime decomposition P, &C;

yi
x4 /.\
yo @ @)

ys.\ /. '
)
y4
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6 copies of P,
J‘UY‘ xw’)‘z >fly] :“)M Xw. 5 X‘wyu
X2y @ SRAN AR LS A S P
* [} L L] .. .
x3Yi X3 V2 X3Y3 X3y4  X3Ys x3ye

3 copies of Cg

X1y1
X1ye x1y2
X1ys X1y3
X1ya
X2 y1 X3 y1
X2ye x2y2 X3y6 x3y2
xX2ys X2Y3 x3ys X3y3
X2y4 X3y4

There are2(18)-1=35edges in(P,xC;), this implies the bound of 7z (P,xC;) is

9<7,(R,xCy)<35.

Theorem 3.9: In a ladder graph L,, the bounds of prime decomposition number is,

(n+2) <7, (L,)<(@n-2).

Proof: The ladder graph L, constructed by graphs P, and P, . The composition of the graphs P,
and P, . From theorem 2.3, the bounds of the graph (P, xP,) is, m+n<z (P, xP)<2(nm-1).

In ladder graph m=2,n=n this implies we get (n+2) <7z, (L,)<n(2-1)+2(n-1)=3n-2.

Illustration 4.2.5:  The ladder graph L, is given in Figure
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uivi uivza uivs uiv4 u1vs U1vn-1 Uivn
@ ———r— g~ ® @ — = == @ ®
u2vi uz2vz u2vs3 uz2v4 u2vs u2vn-1 uz2vn

Ladder Graph Ln (or) (P2 X Pn)

There are3(n)—2edges inThe ladder graph L, this implies the bound of 7z, (L)) is
(n+2) <7, (L,)<(@Bn-2).

Theorem 3.10: In a Brush graph B,, the bounds of prime decomposition number is,

(n+1) <z, (B,) < (2n-1).

Proof: The Brush graph B, constructed by graphs P, and K, . The Brush graph B, contains (2n)
vertices and the edge set E is E=E, U(K,,K,,K,,..ntimes) , E,is set of edges in the path P, .
Note that P, and complete bipartite graphs K, are also prime graph. This implies

v, 2P, UK, UK, U..ntimesjand v, >|P, UK,; UK,  U..ntimes|. Hence (n+1) <z, (B,).

In Brush graph B, there are n+(n—1) = 2n—1edges. Note that every edge is a prime graph. This

implies 7,(B,) <2(n)-1. Hence we get(n+1) <7 (B,) <(2n-1).

llustration 3.11: The brush graph B, is given in Figure.

ui 2 u's ua4 us U n-1 Un
V1 V2 \E] V4 Vs Vn-1 Vn

Brush Graph Bn
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° ° > ) @ — - =-—= @ ®
V1 v2 Vi V4 Vs V-1 Vn
P
(Wl u-2 us L4 us U n-i
° ® | ] un
g 9 l l [ ]
V1 V2 V3 V4 s V-1 wyp

N copies of K},

There are 2(n) —1edges in(B,) , this implies the bound of 7,(B,) is (n+1) <z, (B,) <(2n-1).

4. Conclusion

In this chapter, we define prime decomposition and prime decomposition number 7 ,(G) of graphs.

Also investigate some bounds of 7 (G) in product graphs like Cartesian product, composition etc.

In future we will investigate the decomposition number various labeling in graphs.
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