Decomposition of Various Graphs in to Prime Graphs

Dr. Rajeev Gandhi S
Head of the department Department of Mathematics (SF)
V H N Senthikumara Nadar College (Autonomous), Virudhunagar. rajeevgandhi@vhnsnc.edu.in

Article Info

Page Number: 10500-10514
Publication Issue:
Vol 71 No. 4 (2022)

Article History
Article Received: 15 September 2022
Revised: 25 October 2022
Accepted: 14 November 2022
Publication: 21 December 2022

1. Introduction

A decomposition of G is a collection $\psi_{p}=\left\{H_{1}, H_{2}, \ldots . . H_{r}\right\}$ such that H_{i} are edge disjoint and every edges in H_{i} belongs to G. If each H_{i} is a prime graphs, then ψ_{p} is called a prime decomposition of G. The minimum cardinality of a prime decomposition of G is called the prime decomposition number of G and it is denoted by $\pi_{p}(G)$.

2. Prime Decomposition

In this section we define graceful decomposition of a graph $G(V, E)$ some and investigate some bounds of graceful decomposition number in $G(V, E)$.

Definition 2.1: [20] A prime labelling of a graph G is an injective function $f:\{1,2,3, \ldots,|V|\}$, such that for every pair of adjacent vertices u and $v, \operatorname{gcd}(f(u), f(v))=1$. The graph admits prime labeling is called a prime graph.

Figure 2.1:Prime cordial labeling
Definition 2.3: Let $\psi_{P}=\left\{H_{1}, H_{2}, \ldots . . H_{r}\right\}$ be a decomposition of a graph G. If each H_{i} is a prime graphs, then ψ_{g} is called a prime decomposition of G. The minimum cardinality of a graceful decomposition of G is called the prime decomposition number of G and it is denoted by $\pi_{g}(G)$.

Definition 2.4: [35] Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two simple graphs. The join $G_{1}+G_{2}$ of G_{1} and G_{2} with disjoint vertex set $V_{1} \& V_{2}$ and the edge set E of $G_{1}+G_{2}$ is defined by the two vertices $\left(u_{i}, v_{j}\right)$ if one of the following conditions are satisfied
i) $\quad u_{i} v_{j} \in E_{1}$.
ii) $\quad u_{i} v_{j} \in E_{2}$.
iii) $\quad u_{i} \in V_{1} \& v_{j} \in V_{2}, u_{i} v_{j} \in E$

3. Main Results

Theorem 3.1: A graph $\left(P_{m}+P_{n}\right)$ is a join of two path prime graphs with $(m<n)$.The bounds of prime decomposition number of the graph $\left(P_{m}+P_{n}\right)$ is, $3 \leq \pi_{p}\left(P_{m}+P_{n}\right) \leq(m(n+1)+(n-1))$.

Proof:Let P_{m} and P_{n} be two path prime graphs of order m and $n(m>n)$ respectively and $\left(P_{m}+P_{n}\right)$ is a join of P_{m} and P_{n} with edge set E. The graph $\left(P_{m}+P_{n}\right)$ contains $(m+n)$ vertices and the edge set is $E=E_{1} \cup E_{2} \cup S\left(K_{m, n}\right)$, Here $S\left(K_{m, n}\right)$ is a size of a complete bipartite graph $K_{m, n}$. In the graph $\left(P_{m}+P_{n}\right)$ there are graphs P_{m}, P_{n} and the complete bipartite graphs $K_{m, n}$.Note that P_{m} and P_{n} be two prime graphs and complete bipartite graphs $K_{m, n}$ also prime graph. This implies $\psi_{p} \supseteq\left\{\cup P_{m} \cup P_{n} \cup K_{m n}\right\}$ and $\left|\psi_{p}\right| \geq \mid\left\{\cup P_{m} \cup P_{n} \cup K_{m n}\right\}$. Note that the graphs P_{m}, P_{n} and $K_{m, n}$ are prime graphs. Hence $\pi_{p}\left(P_{m}+P_{n}\right) \geq(3)$.

In $\left(P_{m}+P_{n}\right)$ there are $(m-1)+(n-1)+m n \Rightarrow m(n+1)+(n-1)$ edges. Note that every edge is a prime graph. This implies $\pi_{p}\left(P_{m}+P_{n}\right) \leq(m(n+1)+(n-1))$. Hence we get $3 \leq \pi_{p}\left(P_{m}+P_{n}\right) \leq(m(n+1)+(n-1))$.

Illustration 3.2 The Join of two prime graphs $P_{2} \& P_{3}$ is given in figure.2.1

Decomposition of the graph $\left(P_{2}+P_{3}\right)$ in to minimum copies of prime graph

There are $((3-1)+(2-1)+6)=9$ edges in $\left(P_{2}+P_{3}\right)$, this implies the bound of $\pi_{p}\left(P_{2}+P_{3}\right)$ is $3 \leq \pi_{p}\left(P_{2}+P_{3}\right) \leq 9$.

Theorem 3.3. A graph $\left(P_{m}+C_{n}\right)$ is a join of path prime graphs with ($m<n$) and cycle C_{n} . The bounds of prime decomposition number of the graph $\left(P_{m}+C_{n}\right)$ is, $3 \leq \pi_{p}\left(P_{m}+C_{n}\right) \leq(m(n+1)+(n-1))$.

Proof:Let P_{m} and C_{n} be two path prime graphs of order m and $\mathrm{n}(m>n)$ respectively and $\left(P_{m}+C_{n}\right)$ is a join of P_{m} and C_{n} with edge set E. The graph $\left(P_{m}+C_{n}\right)$ contains $(m+n)$ vertices and the edge set is $E=E_{1} \cup E_{2} \cup S\left(K_{m, n}\right)$, Here $S\left(K_{m, n}\right)$ is a size of a complete bipartite graph $K_{m, n}$. In the graph $\left(P_{m}+C_{n}\right)$ there are graphs P_{m}, P_{n} and the complete bipartite graphs $K_{m, n}$.Note that P_{m} and C_{n} be two prime graphs and complete bipartite graphs $K_{m, n}$ also prime graph. This implies $\psi_{p} \supseteq\left\{\cup P_{m} \cup C_{n} \cup K_{m n}\right\}$ and $\left|\psi_{p}\right| \geq\left|\left\{\cup P_{m} \cup C_{n} \cup K_{m n}\right\}\right|$. Note that the graphs P_{m}, C_{n} and $K_{m, n}$ are prime graphs. Hence $\pi_{p}\left(P_{m}+C_{n}\right) \geq(3)$.

In $\left(P_{m}+C_{n}\right)$ there are $(m-1)+(n)+m n \Rightarrow n(m+1)+(m-1)$ edges. Note that every edge is a prime graph. This implies $\pi_{p}\left(P_{m}+P_{n}\right) \leq(n(m+1)+(m-1))$. Hence we get $3 \leq \pi_{p}\left(P_{m}+C_{n}\right) \leq(n(m+1)+(m-1))$.

Illustration 3.4: The Join of two prime graphs $P_{2} \& P_{3}$ is given in figure.4.2.2

Decomposition of the graph $\left(P_{4}+C_{5}\right)$ in to minimum copies of prime graph

There are $((4-1)+5+20)=28$ edges in $\left(P_{4}+C_{5}\right)$, this implies the bound of $\pi_{p}\left(P_{4}+C_{5}\right)$ is $3 \leq \pi_{p}\left(P_{4}+C_{5}\right) \leq 28$.

Theorem 3.5: A graph $\left(P_{m} \times P_{n}\right)$ is a Cartesian product of two prime graphs $\left(P_{m} \times P_{n}\right)$ with order m and n . Then bounds of prime decomposition number of the graph $\left(P_{m} \times P_{n}\right)$ is, $m+n \leq \pi_{p}\left(P_{m} \times P_{n}\right) \leq 2(m n)-(m+n)$.

Proof:Let P_{m} and P_{n} be two path prime graphs of order m and n respectively and $\left(P_{m} \times P_{n}\right)$ is a Cartesian product of $P_{n} \& P_{m}$ with edge set E. An edge $\left(\left(x_{1} x_{2}\right)\left(y_{1} y_{2}\right)\right) \in E$ satisfies one of the following conditions
i) $\quad x_{1}=y_{1}$ and x_{2}, y_{2} are adjacent vertices in $G_{2}=\left(V_{2}, E_{2}\right)$.
ii) $\quad x_{2}=y_{2}$ and x_{1}, y_{1} are adjacent vertices in $G_{1}=\left(V_{1}, E_{1}\right)$.

Case (i): If $x_{1}=y_{1}$ and x_{2}, y_{2} are adjacent vertices in $G_{2}=\left(V_{2}, E_{2}\right)$

If $x_{1}=y_{1}$ and x_{2}, y_{2} are adjacent vertices in P_{n}. Let the sub graph H_{i} is isomorphic to the graph P_{n}. In $\left(P_{m} \times P_{n}\right)$ there are ' m ' copies of graph P_{n} and it is prime graph .This implies H_{i} is also aprime graph. This implies $H_{i} \subset \psi$

Case (ii): If $x_{2}=y_{2}$ and x_{1}, y_{1} are adjacent vertices in P_{m}

If $x_{2}=y_{2}$ and x_{1}, y_{1} are adjacent vertices in P_{m}. Note that the sub graph H_{j} is isomorphic to the graph P_{m}. In $\left(P_{m} \times P_{n}\right)$ there are ' n ' copies of graph P_{m} and it is prime graph This implies H_{j} is also aprime graph. This implies $H_{j} \subset \psi$.

From case (i) and (ii), we get $\psi=\left\{\left(\bigcup_{i=1}^{m} H_{i}\right) \cup\left(\bigcup_{j=1}^{n} H_{j}\right)\right\}$ this implies $|\psi|=\sum_{i=1}^{m} H_{i}+\sum_{j=1}^{n} H_{j}=m+n$.

In $\left(P_{m} \times P_{n}\right)$ there are $n(m-1)+m(n-1) \Rightarrow 2(n m)-(m+n)$ edges. Note that every edge is a prime graph. This implies $\pi_{p}\left(P_{m}+P_{n}\right) \leq 2(n m-1)$. Hence we get $m+n \leq \pi_{p}\left(P_{m}+P_{n}\right) \leq 2(n m)-(m+n)$.

Illustration 3.6: The Cartesian product of two graceful graphs $P_{3} \& P_{6}$ is given in Figure 3.2.3

6 copies of P_{3}

3 copies of P_{6}

There are $\left(2(18)-(9)=27\right.$ edges in $\left(P_{4}+C_{5}\right)$, this implies the bound of $\pi_{p}\left(P_{3}+P_{6}\right)$ is $9 \leq \pi_{p}\left(P_{3}+P_{6}\right) \leq 27$.

Theorem 3.7: A graph $\left(P_{m} \times C_{n}\right)$ is a Cartesian product of two prime graphs $\left(P_{m} \times C_{n}\right)$ with order m and n . Then bounds of prime decomposition number of the graph $\left(P_{m} \times C_{n}\right)$ is, $m+n \leq \pi_{p}\left(P_{m} \times C_{n}\right) \leq 2(n m-1)$.

Proof:Let P_{m} and C_{n} be two path prime graphs of order m and n respectively and $\left(P_{m} \times C_{n}\right)$ is a Cartesian product of $P_{m} \& C_{n}$ with edge set E. An edge $\left(\left(x_{1} x_{2}\right)\left(y_{1} y_{2}\right)\right) \in E$ satisfies one of the following conditions
i) $\quad x_{1}=y_{1}$ and x_{2}, y_{2} are adjacent vertices in $G_{2}=\left(V_{2}, E_{2}\right)$.
ii) $\quad x_{2}=y_{2}$ and x_{1}, y_{1} are adjacent vertices in $G_{1}=\left(V_{1}, E_{1}\right)$.

Case (i): If $x_{1}=y_{1}$ and x_{2}, y_{2} are adjacent vertices in C_{n}.

If $x_{1}=y_{1}$ and x_{2}, y_{2} are adjacent vertices in C_{n}. Let the sub graph H_{i} is isomorphic to the graph C_{n}. In $\left(P_{m} \times C_{n}\right)$ there are ' m ' copies of graph C_{n} and it is prime graph .This implies H_{i} is also aprime graph. This implies $H_{i} \subset \psi$

Case (ii): If $x_{2}=y_{2}$ and x_{1}, y_{1} are adjacent vertices in P_{m}

If $x_{2}=y_{2}$ and x_{1}, y_{1} are adjacent vertices in P_{m}. Note that the sub graph H_{j} is isomorphic to the graph P_{m}. In $\left(P_{m} \times C_{n}\right)$ there are 'n' copies of graph P_{m} and it is prime graph This implies H_{j} is also aprime graph. This implies $H_{j} \subset \psi$.

From case (i) and (ii), we get $\psi=\left\{\left(\bigcup_{i=1}^{m} H_{i}\right) \cup\left(\bigcup_{j=1}^{n} H_{j}\right)\right\}$ this implies $|\psi|=\sum_{i=1}^{m} H_{i}+\sum_{j=1}^{n} H_{j}=m+n$.

In $\left(P_{m} \times C_{n}\right)$ there are $n(m-1)+m(n) \Rightarrow 2(n m)-1$ edges. Note that every edge is a prime graph. This implies $\pi_{p}\left(P_{m} \times C_{n}\right) \leq 2(n m)-1$. Hence we get $m+n \leq \pi_{p}\left(P_{m} \times C_{n}\right) \leq 2(n m)-1$.

Illustration 3.8: \quad The Cartesian product of two Prime graphs $P_{3} \& C_{6}$ is given in Figure.2.3

Prime decomposition $P_{3} \& C_{6}$

C6

6 copies of P_{3}

3 copies of C_{6}

There are $2(18)-1=35$ edges $\operatorname{in}\left(P_{4} \times C_{5}\right)$, this implies the bound of $\pi_{p}\left(P_{3} \times C_{6}\right)$ is $9 \leq \pi_{p}\left(P_{3} \times C_{6}\right) \leq 35$.

Theorem 3.9: In a ladder graph L_{n}, the bounds of prime decomposition number is, $(n+2) \leq \pi_{p}\left(L_{n}\right) \leq(3 n-2)$.

Proof: The ladder graph L_{n} constructed by graphs P_{2} and P_{n}. The composition of the graphs P_{2} and P_{n}. From theorem 2.3, the bounds of the graph $\left(P_{m} \times P_{n}\right)$ is, $m+n \leq \pi_{p}\left(P_{m} \times P_{n}\right) \leq 2(n m-1)$. In ladder graph $m=2, n=n$ this implies we get $(n+2) \leq \pi_{p}\left(L_{n}\right) \leq n(2-1)+2(n-1)=3 n-2$.

Illustration 4.2.5: \quad The ladder graph L_{n} is given in Figure

Ladder Graph Ln (or) $\left(\mathrm{P}_{2} \times \mathrm{P}_{\mathrm{n}}\right)$

There are $3(n)-2$ edges inThe ladder graph L_{n}, this implies the bound of $\pi_{p}\left(L_{n}\right)$ is $(n+2) \leq \pi_{p}\left(L_{n}\right) \leq(3 n-2)$.

Theorem 3.10: In a Brush graph B_{n}, the bounds of prime decomposition number is, $(n+1) \leq \pi_{p}\left(B_{n}\right) \leq(2 n-1)$.

Proof: The Brush graph B_{n} constructed by graphs P_{n} and $K_{1,1}$. The Brush graph B_{n} contains (2n) vertices and the edge set E is $E=E_{1} \cup\left(K_{1,1}, K_{1,1}, K_{1,1} \ldots n\right.$ times $), E_{1}$ is set of edges in the path P_{n}. Note that P_{m} and complete bipartite graphs $K_{1,1}$ are also prime graph. This implies $\psi_{p} \supseteq\left\{P_{n} \cup K_{1.1} \cup K_{1.1} \cup \ldots n\right.$ times $\}$ and $\psi_{p} \geq \mid P_{n} \cup K_{1.1} \cup K_{1.1} \cup \ldots n$ times \mid. Hence $(n+1) \leq \pi_{p}\left(B_{n}\right)$.

In Brush graph B_{n} there are $n+(n-1) \Rightarrow 2 n-1$ edges. Note that every edge is a prime graph. This implies $\pi_{p}\left(B_{n}\right) \leq 2(n)-1$. Hence we get $(n+1) \leq \pi_{p}\left(B_{n}\right) \leq(2 n-1)$.

Illustration 3.11: \quad The brush graph B_{n} is given in Figure.

There are $2(n)-1$ edges in $\left(B_{n}\right)$, this implies the bound of $\pi_{p}\left(B_{n}\right)$ is $(n+1) \leq \pi_{p}\left(B_{n}\right) \leq(2 n-1)$.

4. Conclusion

In this chapter, we define prime decomposition and prime decomposition number $\pi_{p}(G)$ of graphs. Also investigate some bounds of $\pi_{p}(G)$ in product graphs like Cartesian product, composition etc. In future we will investigate the decomposition number various labeling in graphs.

Reference

1. J. Abrham, Graceful 2-regular graphs and Skolem sequences, Discrete Math. 93 (1991) 115121.
2. J. Abrham, Existence theorems for certain types of graceful valuations of snakes, Cong. Numer. 93 (1991) 17-22.
3. J. Abrham and A. Kotzig, Graceful valuations of 2-regular graphs with two components, Discrete Math. 150 (1996) 3-15.
4. J.Abrham and A. Kotzig, On the missing value in graceful numbering of a 2-regular graph, Cong. Numer. 65 (1988) 261-266.
5. J. Abrham and A.Kotzig, Extensions of graceful valuations of 2-regular graphs consisting of 4gons, ArsCombin. 32 (1991) 257-262.
6. J.Abrham, A. Kotzig and P.J. Laufer, Perfect systems of difference sets with a small number of components, Cong. Numer. 39 (1983) 45-68. Introduction to Graceful Graphs.
7. B.D. Acharya and M.K. Gill, On the index of gracefulness of a graph and the gracefulness of two- dimensional square lattice graphs, Indian J. Math. 23 (1981) 81-94.
8. B.D. Acharya and S. M. Hegde. Arithmetic graphs. Journal of Graph Theory, 14:275-299, 1990.
9. B.D. Acharya and S.M. Hegde. Strongly indexable graphs. Discrete Mathematics, (93):123129, 1991.
10. B.D. Acharya, S. Arumugam, and A. Rosa, Labeling of Discrete Structures and Applications, Narosa Publishing House, New Delhi, 2008, 1-14.
11. S. Arumugam and K.A. Germina. On indexable graphs. Discrete Mathematics, (161):285-289, 1996.
12. J. Ayel and O. Favaron, Helms are graceful, Progress in Graph Theory, Academic Press, Toronto, Ontario (1984) 89-92.
13. O. Baudon, J. Bensmail, J. Przybyło, and M. Woźniak. On decomposing regular graphs into locally irregular subgraphs. European J. Combin., 49:90-104, 2015
14. J. Barát and D. Gerbner. Edge-decomposition of graphs into copies of a tree with four edges. Electr. J. Comb., 21:P1.55, 2014.
15. J.C. Bermond and D. Sotteau, Graph decompositions and G-designs, Proc. 5th British Combint. Conf. (1975) 53-72.
16. J. Bensmail, M. Merker, and C. Thomassen. Decomposing graphs into a constant number of locally irregular subgraphs.
17. G.S. Bloom. Applications of numbered undirected graphs. Proc. IEEE, 65(4):562-570, 1977.
18. O Ravi, R Senthil Kumar, A Hamari Choudhi, Weakly 그 g-closed sets, BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE, 4, Vol. 4(2014), 1-9
19. O Ravi, R Senthil Kumar, Mildly Ig-closed sets, Journal of New Results in Science, Vol3,Issue 5 (2014) page 37-47
20. O Ravi, A senthil kumar R \& Hamari CHOUDHİ, Decompositions of Ï g-Continuity via Idealization, Journal of New Results in Science, Vol 7, Issue 3 (2014), Page 72-80.
21. O Ravi, A Pandi, R Senthil Kumar, A Muthulakshmi, Some decompositions of $\pi \mathrm{g}$-continuity, International Journal of Mathematics and its Application, Vol 3 Issue 1 (2015) Page 149-154.
22. S. Tharmar and R. Senthil Kumar, Soft Locally Closed Sets in Soft Ideal Topological Spaces, Vol 10, issue XXIV(2016) Page No (1593-1600).
23. S. Velammal B.K.K. Priyatharsini, R.SENTHIL KUMAR, New footprints of bondage number of connected unicyclic and line graphs, Asia Liofe SciencesVol 26 issue 2 (2017) Page 321326
24. K. Prabhavathi, R. Senthilkumar, P.Arul pandy, $m-I_{\pi g}$-Closed Sets and $m-I_{\pi g}$-Continuity, Journal of Advanced Research in Dynamical and Control Systems Vol 10 issue 4 (2018) Page no 112-118
25. K. Prabhavathi, R. Senthilkumar, I. Athal, M. Karthivel, A Note on I β * g Closed Sets, Journal of Advanced Research in Dynamical and Control Systems11(4 Special Issue), pp. 2495-2502.
26. K PRABHAVATHI, K NIRMALA, R SENTHIL KUMAR, WEAKLY (1, 2)-CG-CLOSED SETS IN BIOTOPOLOGICAL SPACES, Advances in Mathematics: Scientific Journal vol 9 Issue 11(2020) Page 9341-9344
27. D Little Femilin Jana, R Jaya, M Arokia Ranjithkukar, S Krishnakumar, R Senthil Kumar, RESOLVING SETS AND DIMENSION IN SPECIAL GRAPHS, Advances and Application of Mathematical Sciences Vol 21 issue 7 (2022) Page 3709-3717
28. D Little Femilin Jana, Ltt Gunasekar, Rajeev Gandhi, R Senthil Kumar, RELATION BETWEEN RESOLVING SET AND DOMINATING SETS IN VARIOUS GRAPHS, Advances and Application of Mathematical Sciences, Vol 21, Issue 7 (2022) Page 3795-3803
29. G.S. Bloom and D. F. Hsu, On graceful digraphs and a problem in network addressing, Congr. Numer., 35 (1982) 91-103.
30. G.S. Bloom and S. W. Golomb, Applications of numbered undirected graphs, Proc. IEEE, 65 (1977) 562-570.
31. J. Bondy and U. Murty, Graph Theory with Applications, North-Holland, New York (1979).
32. F. Botler, G.O. Mota, M.T.I. Oshiro, and Y. Wakabayashi. Decomposing highly edgeconnected graphs into paths of any given length. J. Combin. Theory Ser. B, 2016.
33. F. Botler, G.O. Mota, M.T.I. Oshiro, and Y. Wakabayashi. Decompositions of highly connected graphs into paths of length five. Discrete Applied Mathematics, 2016. To appear.
34. S. Cabaniss, R. Low, and J. Mitchem, On edge-graceful regular graphs and trees, ArsCombin., 34 (1992) 129-142.
35. C. Delorme, Two sets of graceful graphs, J. Graph Theory 4 (1980) 247-250.
36. C. Delorme, M. Maheo, H.Thuillier, K.M. Koh, and H.K. Teo, Cycles with a chord are graceful, J. Graph Theory 4 (1980) 409-415.
37. R.W. Frucht, Graceful numbering of wheels and related graphs, Ann. NY Acad. of Sci. 319 (1979) 219-229.
