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Abstract 

The Internet of Things (IoT) is quickly becoming a hot topic in the 

academic world. More and more devices are becoming internet-enabled, 

elevating the importance of IoT in people's day-to-day lives. In this paper, 

we take a look at how the Artificial neural network (ANN)-based 

supervised machine learning solution for attack detection can be the 

remedy for Intrusion Detection. If the rogue nodes can be identified in 

time, the network can be protected from the attack's devastating 

repercussions. Parameter adjustment has resulted in optimal values for the 

hyperparameters. This paper's model successfully identified each of the 

aforementioned attacks concurrently and separately. In addition to 

precision, this analysis considered recall, F1, and the Mathews correlation 

coefficient (MCC).   

Keywords: -Internet of Things, Security, AI,  

 

Introduction 

There were limited options for communication between patients and doctors prior to the 

advent of the Internet of Things. It would be impossible for hospitals and doctors to constantly 

assess patients' conditions and provide advice. 

As part of the Internet of Things (IoT), connected medical devices enable remote monitoring, 

improving patient safety and allowing for more effective treatment. As communication with 

doctors has become more streamlined and hassle-free, patient participation and satisfaction 

have increased. Long-term hospital stays can be cut short and unnecessary readmissions 

avoided with the use of remote patient monitoring. By connecting medical devices and other 

systems, IoT can both lower costs and boost the effectiveness of healthcare. 

Redefining health care 

The market potential for IoT solutions with a focus on healthcare is enormous. Health care 

could be significantly impacted by the information collected from these interconnected 

gadgets. The four-part structure of the Internet of Things (See Figure 1). Because of this 

interconnectedness between the four stages, information gathered or processed at any given 

phase can be used in subsequent ones. Opportunity and insight are increased when a 

company's values are fully integrated. 
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Figure 1: IoT Components 

First, equipment such as sensors, actuators, monitors, detectors, cameras, etc., must be set up. 

That's because they're information gatherers. 

Second, digital representations of the analog sensor and device data must be gathered and 

processed. 

After data is digitized and aggregated, it is preprocessed, standardized, and sent to a data 

center or the Cloud. 

Four, control and examine the completed data. Successful business decisions are aided by the 

actionable insights provided by advanced analytics. 

The current state of IoT security is inadequate to protect against the growing number of cyber 

threats targeting IoT devices and networks. IoT devices are vulnerable to attack due to their 

lack of security protocols, as well as their limited computing power and memory. As the 

number of IoT devices grows, so does the attack surface and the potential for malicious actors 

to exploit these devices. 

AI can be used to address this issue by providing a more robust level of security for IoT 

networks. AI-based security solutions can detect and prevent malicious activities, identify 

potential vulnerabilities, and respond to potential threats in real-time. These solutions can also 

be used to monitor and analyze network traffic to detect anomalies and suspicious behavior. 

Related Work: 

Literature Review: 

Security for the Internet of Things (IoT) is an area where several researchers have made 

reports. Each contributor has contributed something unique to the discussion of the Internet of 

Things security, and those contributions are listed below. The goals of the design and the 

routing requirements of the protocol were illustrated in a review of RPL by Gaddour et al. 

[12]. Energy usage, latency, and data loss have all been analyzed to gauge this protocol’s 

performance. Many intrusion detection systems and mitigation strategies, as well as a review 

of attacks applicable to RPL, were provided by Pongle et al. [13]. This disconnect between 

existing smart house utilities and their integration into IoT networks was brought to light by 
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Biljana et al. [14]. Additionally, a comprehensive model for various smart objects in a cloud-

oriented IoT scenario has been proposed. Machine learning (ML) techniques for Internet of 

Things (IoT) data analysis were described by Mahdavinejad et al. [15]. For smart cities, many 

ML approaches have been analyzed to determine which ones are most effective at fixing data-

related problems in the Internet of Things. For the first time, both the benefits and drawbacks 

of using ML algorithms to analyze IoT data are clear. In their explanation of a survey on 

intrusion detection in the IoT, Zarpelao et al. [16] highlighted major trends, unresolved issues, 

and prospects for future study. Khan et al. [17] presented research into vulnerabilities in IoT 

infrastructure. Security needs, obstacles, safety concerns, and blockchain support have all been 

specified. For the purpose of identifying attacks in the IoT, Costa et al. [18] offered an 

evaluation of IDS strategies based on machine learning. Many potential dangers in the Internet 

of Things setting were examined in this analysis. Attacks were categorized by Sengupta et al. 

[19] based on the vulnerabilities of the items and the various tiers of generalized IoT 

architecture. Resources, topology, and traffic were the primary areas of inquiry for the RPL 

attacks presented by Verma et al. [20]. In particular, protective measures against RPL in the 

network layer have been laid out in detail. A comprehensive overview of RPL attack 

mitigation strategies was provided by Avila et al. [21]. The investigation here has concentrated 

on the supervision of networks, the selection of parental nodes, and authentication. A study of 

RPL in terms of available resources, network topology, traffic, and various attacks was 

presented by Almusaylim et al. [22]. Destination-oriented directed acyclic graph (DODAG) 

construction was the focus of Simha et al.’s [23] research into RPL and the Contiki operating 

system. Contiki and Cooja’s suitability for RPL implementation has been discussed. 

Attacks and Mitigation Schemes 

The next part details researchers’ assaults and mitigation measures. Wallgren et al. [24] 

showed many security threats on RPL-based IoT networks. A lightweight heartbeat protocol 

protects against potential attackers. Sehgal et al. [25] analysed DODAG inconsistency attacks 

and their consequences. Mayzaud et al. [26] studied DODAG version attacks. Attacks 

increased overhead by 18%, doubled delay, and lowered delivery ratio by 30%. Mayzaud et al. 

[27] researched on topological inconsistency attack mitigation. Mayzaudet al.[28] clarified 

RPL naming conventions, research, and countermeasures. Ahmed et al. [29] describe two 

methods for avoiding blackhole attacks. Thanigaivelan et al. [30] recently described a 

distributed Internet of Things anomaly detection approach. Network fingerprinting is used to 

detect topological alterations. Aris et al. [31] studied version number attacks in RPL-based IoT 

networks, focusing on fixed and mobile nodes of different criticality. Diro et al. [32] shown 

deep learning’s value in spotting threats. Perazzo et al. [33] researched wormhole attacks in 

IEEE 802.15.4 sensor networks. Jyothisreeet al.[34] reported blackhole and version number 

attacks. Both types of assaults have detection and preventive techniques. Ahutu et al. [35] 

suggested a MAC-centralized routing protocol to  ecentral WSN worm-hole attacks (MCRP).  

Sahay et al. [36] illustrated increased version attacks with sky motes and measured legitimate 

and malicious node energy usage. Pu et al. [37] analysed Sybil attacks on RPL-based IoT 

networks and suggested defences. SMLC for intrusion detection. SMLC highlighted partially 

labelled data learning and performance.  
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Intrusion Detection Schemes 

Multiple intrusion IDS have been proposed by researchers. New instruction detection for RPL 

assaults was provided by Raza et al. [38] using the SVELTE method. Attacks such as 

spoofing, sinkholes, and selective forwarding routing are all spotted by these IDS systems. 

Attacks have not been 100% successful in their detection, though. In reference [39, 40], an 

improved IDS was developed for detecting a denial-of-service attack in networks based on 

6LoWPAN. The IDS was built by Kasinathan et al. [39] using the ebbits network model, and 

it was tested using a penetration testing method to ensure its accuracy. But the important 

statistics for issues including the type of detection method, characteristics, and deployed 

agents were provided by Rghioui et al. [40]. In [41], Pongle et al. described a method for 

detecting intrusion and wormhole attacks in the Internet of Things in real-time. Using the 

node’s neighbor information, this model detected the wormhole assault and the attacker. The 

given model consumes low amounts of power and a constant number of UDP packets when 

performing attack recognition. When it comes to the Internet of Things (IoT) security, 

Sheikhan et al. [42] detailed a hybrid IDS that makes use of the MapReduce policy. Mediating 

agents have made it possible to distinguish anomalies and misuse. When an internal attack 

occurs, an unsupervised optimal path forest (OPF) approach is used to determine the source. A 

specification-based intrusion detection system (IDS) was proposed by Le et al. [43]. This IDS 

was inspired by a profiling technique that creates a summary of network events at a high level 

to verify node actions. The presented IDS was able to identify RPL topological assaults in the 

simulation. When it comes to detecting intrusions, Jarrah et al. [44] discussed a semi-

supervised multilayered clustering model (SMLC). This study compared the SMLC’s 

performance to that of the tri-training, random forest, bagging, and AdaboostM1 models, all of 

which were found to be superior at learning from partially labeled data. With only 80% of the 

training data labeled, SMLC was able to achieve the same level of detection accuracy as tri-

training. Four different kinds of ANN models were analyzed by Lee et al. [45] and compared 

to the multinomial logit model (MNL) in terms of their ability to make accurate predictions. 

Hold-out and tenfold cross-validation, as well as sensitivity analysis, have been used to assess 

the predictive efficacy of four ANNs. Through a multilayer perceptron, Anitha et al. [46] 

analysed an artificial neural network (ANN)-based intrusion detection system (ANNIDS) for 

Internet of Things (IoT) networks (MLP). These IDS were mostly concerned with detecting 

DIS attacks and versions attacks. In order to detect wormhole attacks in RPL-based IoT, 

Bhosale et al. [47] suggested an intrusion detection system that relies on the critical metric 

RSSI (received signal strength indicator). This defence mechanism has been implemented to 

prevent wormhole attacks by balancing the two main types of security measures,  ecentraliz 

and  ecentralized. About 90% of the assault was spotted. For three common RPL attacks, 

Kfoury et al. [48] introduced an IDS based on self-organizing maps (SOM). SOM has been 

applied to categorical problems as an unsupervised machine learning approach. The expected 

IDS used a visual representation of a map to classify the varied RPL attacks. To study the 

effects on cyber-physical systems, Sharma et al. [49] simulated four different RPL attacks. 

With a random forest classifier, the proposed model accurately predicted and classified the 

four attacks 99.33% of the time. A new two-part design, involving threshold modulation and 

attack detection, was presented by Qureshi et al. [50]. With the current architecture in place, 
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we can successfully identify four distinct RPL assaults. Higher delivery rates with lower 

latency and packet loss were found in simulations. 

Artificial Neural Networks 

Scientists have proposed alternative intrusion IDSs. Raza et al. [38] used SVELTE to detect 

RPL assaults. IDS can detect spoofing, sinkholes, and selective forwarding routing. Attacks 

are usually detected, but not always. Better IDS was built to detect DoS attacks on 6LoWPAN 

networks (references [39, 40]).  Kasinathan et al. [39] built the IDS using the ebbits network 

model and tested it through penetration testing. Rghioui et al. [40] provided statistics on 

detection methods, agent characteristics, and deployment. Pongle et al. [41] reported a strategy 

for real-time infiltration and wormhole assaults in IoT. This approach identified the attacker 

by studying the node’s neighbours. The model employs a consistent quantity of UDP packets 

and little power during attack recognition. Sheikhan et al. [42] presented an IoT-protecting 

hybrid IDS that uses MapReduce. With intermediates, abnormalities and misuse can be 

identified and addressed. Unsupervised OPF is used to trace an inside attack. Le et al. [43] 

recommended a specification-based IDS. This IDS was inspired by a method of  ecentral 

network events to validate node actions. The simulation IDS detected RPL topological 

assaults. Jarrah et al. [44] discussed semi-supervised multilayered clustering for intrusion 

detection. (SMLC). In this paper, the SMLC’s performance was compared against tri-training, 

random forest, bagging, and AdaboostM1 models, all of which were superior at learning from 

partially labelled data. SMLC matched tri-detection training’s accuracy  ecentral only 80% of 

labelled training data. Lee et al. [45] compared four ANN models to the multinomial logit 

model (MNL).  Four ANNs were assessed using hold-out, tenfold, and sensitivity cross-

validation. Anitha et al. [46] studied an ANN-based intrusion detection system for IoT 

networks (MLP).  These IDS focused on DIS and version attacks. Bhosale et al. [47] 

suggested an RSSI-based IoT wormhole intrusion detection system (received signal strength 

indicator).  This protection mechanism balances  ecentraliz and  ecentralized security to 

prevent wormhole attacks. The attack was uncovered 90%. Kfoury et al. [48] presented a self-

organizing-maps-based IDS for RPL assaults (SOM).  Categorical unsupervised machine 

learning uses SOM. The imagined IDS grouped RPL attacks by map. Sharma et al. [49] 

simulated four RPL assaults on cyber-physical systems. The suggested model used a random 

forest classifier, which classified the four attacks with 99.33% accuracy. Qureshi et al. [50] 

introduced a two-part architecture with threshold modulation and attack detection. Current 

infrastructure can identify four RPL attacks. Simulations showed improved delivery rates, 

decreased latency, and packet loss. Number of classes needed to accurately classify dataset 

instances. Varied challenges may require a different number of hidden layers. Each unit-to-

unit relationship is valued. This measures the original unit’s force.  

Proposed ANN-Based IDS 

To detect the three security assaults depicted in Fig. 2, this section details the ANN-based 

system proposed for doing so. The Cooja [56] simulator is included in the Contiki [55] OS. 

Then, the three security attacks—hello flood, raised version and decreased rank attack—are 

implemented using the RPL assaults framework [57]. All nodes’ estimated energy usage is 
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calculated using the Cooja simulator’s power tracker module. There are four distinct ways in 

which each node consumes energy: “ON” (idle but powered), “TX” (transmitting data), “RX” 

(receiving data), and “INT” (entering or leaving a network) (interference). These four 

measurements are normalized to the node’s vitality. This is done so that the relative energy 

usage of each node may be calculated. When running a simulation, the RPL assaults 

framework generates DODAG graphs, graphs of power usage, and packet capture files. The 

outputs of the RPL assaults framework accurately depict how the network operates with and 

without the attack. To begin, Cooja simulations are run for each of the three attacks 

independently. The next step is to run a simulation while simultaneously launching all of the 

attacks. The packet capture files (pcap) are then converted to comma-separated values (csv) 

using the Wireshark program after the necessary simulations have been run. Spyder is used to 

import these CSV files into a Python data frame. After that, the python data frame undergoes 

preprocessing in preparation for the ANN’s training and testing phases. The preparation stage 

entails addressing any gaps in the data, extracting any necessary features, and standardizing 

the information. In addition, the dataset is used for training and testing the ANN model’s 

ability to detect attacks. Through weight modification via backpropagation, the training 

optimizes the final model. The testing phase involves validating the trained model’s ability to 

accurately detect attacks. Both the hold-out and k-fold cross-validation techniques are used to 

determine how accurate the predicted model is. 

Parameter tuning is used to fine-tune the ANN learning hyperparameters. ANN is trained 

using the following assumptions about the sizes of the input, hidden, and output layers: p, q, 

and r. This suggests that the number of components in each layer can vary. 

 

Figure 2: Simulation Model 
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ANN Based Solution for Security exploits 

This section describes the ANN-based approach for detecting Figure 2's three security 

exploits. Contiki [55]'s initial configuration includes Cooja [56]. Hello flood, raised version, 

and decreased rank attack are implemented using the RPL assaults framework [57]. Cooja's 

power tracker module estimates node energy usage. Each node utilises energy in four ways: 

ON, TX, RX, and INT (interference).  All four indicators are based on a node's health. This 

calculates each node's energy usage. During simulation, RPL assaults generates DODAG, 

power, and packet capture files. All RPL attacks framework outputs show network behaviour 

during an attack. First, three Cooja simulations are run. Next, all attacks are simulated in 

parallel. Wireshark transforms packet capture files (pcap) into csv after simulations. Spyder 

converts CSV files into a Python data frame. The Python data frame is then ready for ANN 

training and testing. Preprocessing includes missing data, feature extraction, and data 

normalisation. ANN is trained and assessed using the dataset to detect assaults. 

Backpropagation modifies model weights during training. The testing verifies the trained 

model's capacity to detect attacks accurately. Hold-out and k-fold cross-validation evaluate the 

projected model's accuracy.  

Tuning maximises ANN learning hyperparameters. Figure 3's ANN has p, q, and r input, 

hidden, and output units. This shows that layer counts may be different.  

Results and discussions 

This section displays the outcomes of the four simulation scenarios. Individual hello flood 

simulation is Scenario 1. Scenarios 2 and 3 simulate Man in Middle and Increased Version, 

respectively. Scenario 4 included all three attacks simultaneously. Figure 3  illustrates the 

network configurations for scenarios 1, 2, 3, and 4.   

 

Figure 3: Network Configuration 
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Figure 4: Characteristics of Network 

Figure 4 displays the Network configuration. Figure 4a, b, and c represent, Hops, Num of 

Neighbor and Avg_power for scenarios 1, 2, 3, and 4. Fig 4 d, e and f represent the timings of 

the Routing Metric, Beacon Interval and Warning Impulse. 

 

Fig 5, Energy Levels 
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As depicted in Figure 5a, the hello flood malicious node spends the greatest energy. It 

increases the neighbors’ electricity consumption. Figure 5b illustrates how the fraudulent node 

in Scenario 2 leads other nodes to consume more electricity. In case 3, as depicted in Figure 

5c, the fake node has no influence on network power consumption. Figure 5d demonstrates 

that all attacks impact the power consumption of the nodes.  

Number is the serial number of the packet and is used to index the dataframe. The 'Time' and 

'Length' parameters represent the time and size of a packet. Four qualities are qualitative 

independent variables. Source and Destination define the source and destination IP addresses, 

respectively. Protocol displays the pertinent protocol, whereas Info represents metadata. An 

output-dependent variable differentiates fraudulent and ordinary packets.   

 

Figure 6 DODAG Graphs generated in each scenario 

Figure 6 indicates that false nodes generate the most packets during a hello flood assault. 

Malicious nodes generate many DIS messages as opposed to only one. In the improved 

version of the attack, malicious nodes encourage other nodes to generate additional packets. 

This occurs as a result of the deceitful node initiating global DODAG repairs. The misleading 

node of a lower-rank assault transmits the fewest packets. Due to this, attacks with a low rank 

do not do damage to the network. It is capable of eavesdropping on downward DODAG node 

transmission. All nodes in scenarios 1, 2, 3, and 4 generated 38,365, 50,414, 28,376, and 

53,684 packets, as depicted in Figure 6. Due to late source or destination information, ACK 

packets are omitted in the packet capture. In scenarios 1, 2, and 3, malicious nodes transmit a 

total of 15,508, 2672, and 630 packets, respectively. Scenario 4 false nodes generate 12,790, 

3559, and 2342 packets, respectively, for hello flood, increased version, and decreased rank 

attacks.  
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ANN has data that has been preprocessed. The proposed ANN included hidden, input, and 

output layers. Adding additional hidden layers does not increase the performance of the 

model. In the first three instances, the output layer only has a single unit due to fraudulent and 

legitimate packets. The fourth scenario contains four outcomes. One is for no assault and three 

are for each attack. Scenario 4 contains four output units. Similarly, the input layer unit count 

for each scenario was optimized. Similar to case 1, 'Protocol' only has one value. There are 

currently only three category variables in the dataset. There are 12, 9, and 12 observations for 

'Source,' 'Destination,' and 'Info,' correspondingly. 

Conclusion 

In this study, supervised machine learning was utilized to identify three phenomena: hello 

flood, Mam In Middle, and Increased Version. Artificial neural networks and machine 

learning are used in this study. Three security attacks across four scenarios were utilized to 

illustrate this topic. Individual assaults were used in the first three scenarios. Every single one 

of them is based on the fourth simulation scenario. It has been demonstrated through 

simulations that security attacks have an impact on the DODAG graph, energy consumption, 

and traffic production. The malicious hello flood node generates the greatest traffic. 

Points of connection in a network Although it has no effect on the DODAG building, it 

increases energy expenses for nearby residents. The false node has effects on DODAG and 

energy consumption, just like the upgraded version attack. This occurred because of the 

presence of other network nodes, which generate more packets than the original network. The 

fake node in a ranked-down attack broadcasts the fewest messages. Effective for spying and 

decreasing DODAG. A program based on artificial neural networks was able to spot the 

threats in each scenario. 

The proposed model achieves optimal results in terms of accuracy, recall, F1, and the 

Matthews correlation coefficient (MCC). Modifying parameters improves performance by 

maximizing batch size, epochs, and the optimizer. 

Future Scope 

The integration of AI and IoT is a powerful tool for mitigating security risks. AI can 

effectively monitor and detect any suspicious activities, and can quickly respond to security 

threats. This can help businesses protect sensitive data, maintain compliance, and reduce the 

cost of responding to security incidents. Additionally, AI can be used to automate security 

processes such as patching, vulnerability remediation, and access control. Furthermore, AI can 

be used to further enhance the security of IoT networks by monitoring network traffic and 

identifying malicious activities. As IoT technology continues to grow and evolve, AI will play 

an increasingly important role in providing secure and reliable IoT solutions. 
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