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Abstract 

The present study aims to design an Artificial Neural Network (ANN) to estimate the 

mole fractions resulting from the non-catalytic esterification process of Free Fatty 

Acids (FFA) that compose Karanja oil. The ANN was designed in the MATLAB 

program based on 100 pairs of data samples generated by a simulation validated in 

the free software DWSIM. Through a sensitivity analysis, it was determined that the 

inputs of the ANN were: the water mole fraction of stream 1C (1C-Xa), the oleic acid 

mole fraction of stream 3C (3C-Xo), the percentage conversion of the chemical 

reaction (%C), and the pressure drop in the reactor (-p). The methyl oleate mole 

fraction (9C-XM-O), methanol mole fraction (9C-Xm), triolein mole fraction 

(9C-XOOO), and trilinolein mole fraction (9C-XLLLL) from the liquid stream are 

established as outputs of the ANN. The mole fraction of methanol (10C- Xm) and the 

mole fraction of water (10C- Xa) from the gaseous stream. The ANN was trained and 

validated with a Bayesian regularization algorithm (30 hidden neurons) from which a 

mean squared error (MSE) = 0.00000411 and a total regression coefficient (R) of 

0.99 were found. With these results and through the application of an ANOVA-type 

statistical analysis, it was determined with 95% reliability that the ANN has a good 

predictive capacity, which can be applied in the prediction of free fatty acids in the 

production of second-generation biodiesel (FAME). 

Keywords: Chemical Engineering Sciences and Technology; Free Fatty Acids 

(FFA); Oleic Acid (O); Methyl Oleate (MO); DWSIM; MATLAB; Artificial 

Neuronal Networks (ANN) 

 

1. 1. Introduction 17 

For decades, oil and non-renewable energies have been the basis of the world’s energy structure; due 18 

to their high level of consumption, they have become the main driving force in both developed and 19 

developing countries. For example, according to statistics, in the European Union (EU), 30% of 20 

unprocessed energy, i.e., primary energy, is used for transportation and 98% of this depends on fossil 21 

hydrocarbons (1). 22 
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Luque and Melero (1) mention that EU countries have established regulations that encourage the use 23 

of biofuels, and the results were significant since greenhouse gases decreased by 80% when using 24 

non-edible oil residues, i.e., second-generation materials, in contrast to pollutant emissions that are 25 

less than 50%, if only first generation raw materials are used. In this aspect, fatty acid metal esters 26 

(FAME) become an alternative source of energy (green fuels) which are obtained from renewable 27 

sources, such as the oily composition of vegetable and animal oils and fats (2). Romero (3) argues that 28 

FAME is characterized by being renewable, biodegradable, and having lower toxicity than table salt; 29 

its high lubricity and its intrinsically sulfur-free content, compared to diesel, favors the energy 30 

efficiency of combustion and doubles the life of engines, without requiring any modification in them 31 

(4). Low-sulfur diesel is usually mixed with a certain amount of FAME to improve its lubricating 32 

power. In countries such as Colombia, for example, the government created Law 939 in 2004, which 33 

establishes that diesel fuel must initially be of type B05, i.e., the FAME content in diesel fuel must be 34 

5% (5). India has also implemented a program for large-scale production of FAME with a 20% 35 

gasoline blend (6).   36 

1.1. FAME Production Processes 37 

This study will focus on producing a second-generation long-chain ester compound (C14-C24), 38 

which means that it can be obtained from non-edible oils or from commercial or domestic oil residues 39 

that are processed to take maximum advantage of its composition (7). In this case, the starting point 40 

will be inedible oil.  41 

Singh et al. (8) state that there are several methods to obtain FAME, among them thermal cracking, 42 

based on any raw material of different generations. FAME has high ash and carbon residues, 43 

exceeding the acceptable margin. In addition, the thermal requirement makes the process inefficient. 44 

The current technology for obtaining FAME is the transesterification of non-edible vegetable oils, 45 

together with alkalis, including potassium hydroxides, sodium hydroxides and compounds known as 46 

alcoholates (1,9).  47 

Using homogeneous alkaline catalysts involves certain drawbacks in producing FAME because it 48 

cannot be reused. Ultimately, it separates into 2 phases (glycerol and soap). Therefore, it hinders the 49 

purification of glycerol and decreases the yield of FAME production (10).  50 

Lee et al. (11) determined that the production of FAME on an industrial scale is preferably carried out 51 

from heterogeneous alkaline catalysts, especially when the oil is of high purity and contains low 52 

portions of free fatty acids (FFA), due to their faster reaction speeds, about the acid catalysts. 53 

Moreover, heterogeneous alkaline catalysts are ideal for synthforizing FAME concerning 54 

homogeneous alkaline catalysts (8). 55 

1.2. Karanja Oil 56 

Orange oil is rich in free fatty acids (FFA), which are exploited through transesterification processes 57 

by catalytic routes to produce alkyl esters (12,13). However, esterification with the influence of 58 

homogeneous acid catalysts represents several disadvantages, such as corrosion of the equipment, 59 

difficulties in the purification of the product and the recovery of the catalysts. To this is added the 60 

high requirement of temperature and pressure in its operation (14).  61 

Due to the problems presented by the use of acid catalysts, Minami and Saka (15) analyzed 62 

non-catalytic supercritical conditions in the transesterification processes using supercritical methanol 63 

(critical T = 239 C, critical P = 8.09 MPa), where it was evidenced that transesterification occurs from 64 

the triglycerides of the oil and the FFA are simultaneously esterified. However, the operating 65 

parameters exceeded the critical conditions (350 C and 20 - 50 MPa), which generates an increase in 66 

operating costs and also, the product tends to degrade thermally. Therefore, according to Hussain et 67 
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al., esterification problems are minimized under subcritical conditions by employing non-catalytic 68 

esterification techniques (13).  69 

1.3. ANNs applied in FAME procurement 70 

For the prediction of certain complex non-linear processes that cannot be described with other 71 

methodologies because their results tend to be unstable, ANNs have become a tool for prediction due 72 

to their high accuracy and learning capacity (16).  73 

Santana et al. (17) point out that ANNs are superior to other types of modeling because they do not 74 

require assumptions about the nature of a phenomenon, as with simulators. In addition, ANNs 75 

recognize the mathematical procedure and achieve the learning of linear and non-linear interactions 76 

between the dependent and independent variables of the proposed process from an initial experience 77 

and also organize the information captured at the beginning of the training.  78 

Bourquin et al. (18) recognized the advantage of using an ANN in contrast to the response surface 79 

methodology (RSM) for analyzing the ejection force measurements exerted by the tablets. All 80 

determined ejection properties were mainly influenced by the concentration of magnesium stearate 81 

and silica aerogel, while the other factors showed much lower effects; these important relationships 82 

can only be recognized from the ANN model, while the RSM model ignored them. 83 

ANNs are fault-tolerant since they can continue to process information, retaining certain parts of the 84 

network, even if destroyed, thanks to the redundancy of data formation. They are dynamic, and their 85 

insertion is straightforward with current technology (17). They provide a better quality of adjustment 86 

to the experiment due to the great flexibility caused by the various mathematical functions that this 87 

non-linear modeling has (19).  88 

ANNs have been used in producing FAME to such an extent that it is possible to verify its quality by 89 

analyzing its chemical composition. Kinematic viscosity, for example, is a predicted property that 90 

reveals the state of atomization that the fuel (FAME) will have, the fuel-air ratio and the combustion 91 

efficiency. The main indicator of this property is the length of the carbon chain of FAME; as the 92 

carbon chain increases, the kinematic viscosity will increase in direct proportion (20).  93 

Suresh et al. developed an ANN for producing FAME using the ultrasonication time, the added CuO 94 

loading and the methanol-oil molar ratio as input variables. The dependent variable was the FAME 95 

yield. The optimized parameters obtained by ANN to obtain the highest FAME yield (97.82%) were 96 

35 to 36 minutes in the ultrasonication stage, the catalyst loading was 2.07 wt%, and the methanol-oil 97 

molar ratio resulted in 29.87:1 (21). 98 

Garg & Jain (22) collected the necessary information for optimizing the process parameters of FAME 99 

production from the lipid composition of algae. The production was modeled using the 100 

Levenberg-Marquardt (LM) algorithm for ANN training and learning. In contrast, with the response 101 

surface method (RSM), the ANN presented a better performance in predicting the results. The 102 

performance parameter evaluated was the coefficient of determination (R2), which for ANN was 103 

0.999, while for RSM, it was 0.965.  104 

Oladipo et al. (23) developed an ANN for producing FAME from neem oil, jatropha and used 105 

cooking oils. The software used was MATLAB R2017a, and the ANN was trained with the LM 106 

algorithm. The statistical performance values of the ANN were: RMSE = 0.00256 and R2 = 0.996, so 107 

it was established that the ANN presents a high degree of reliability in its predictions.  108 

Teo SH et al. (24) evaluated and optimized the production of FAME using ANN and genetic 109 

algorithms. They used crude oil from Jatropha curcas, a high FFA oil, which, when combined with a 110 
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synthesized catalyst derived from eggshell waste, resulted in the formulation of FAME with a 111 

maximum yield (98%) through glycerolysis and transesterification reactions with methanol at 112 

atmospheric pressure.  113 

On the other hand, Hafiidz et al. (25) employed an ANN to optimize the production of FAME from 114 

the esterification of FFA from oleic acid, catalyzed by the ionic liquid 1-butyl-3-methylimidazolium 115 

hydrogen sulfate ([BMIM] [HSO4]) compound. As a result, FAME and O2 conversion yield using 116 

this technique was 81.2% and 80.6%, respectively. 117 

The objective of this study is to develop an ANN with the ability to predict the mole fractions of 118 

FAME from inedible oils (Karanja oil). The ANN will be developed from the simulation of the 119 

FAME production process proposed by (13), taking into account the operating conditions of the 120 

process. Future studies will be developed to incorporate the ANN into an industrial plant to optimize 121 

and continuously improve the processes. 122 

2. Materials and Methods 123 

Process Description 124 

The simulation of the process corresponding to the non-catalytic esterification of FFA was carried out 125 

using the DWSIM software, taking as a reference the study developed by (13). Figure 1 describes the 126 

process used for the production of FAME. 127 

 128 

Figure 1. Diagram of the non-catalytic esterification process of FFA simulated in the DWSIM 129 

program. 130 

Nomenclature: 1C: Feed 1; 2C: Feed 2; 3C: Oil; 4C: Stream 1; 5C: Stream 2; 6C: Stream 3; 7C: 131 

Reagents 1; 8C: Reagents 2; 9C: Methyl Oleate; 10C: Methanol+Water 1; 11C: Methanol+Water 2; 132 

12C: Methanol+Water 3; 13U: Pump 1; 14U: Mixer 1; 15U: Mixer 2; 16U: Pump 2; 17U: IC (heat 133 

exchanger); 18U: Reactor; 19U: Block R; 20E: Energy B1; 21E: Energy B2; 22E: Energy R. 134 

 Stream 3C (1050 kg/h), consisting of oxygen (60.7%) and triglycerides (TG), is pumped to a mixer 135 

(15U), which additionally receives a stream (5C), resulting from the mixing of two streams, the first 136 

containing methane mole fractions (1C) and the second consisting only of methane (2C). This 137 

mixture (7C) passes through a countercurrent heat exchanger (17U) operating at 26 kW in order to 138 

take advantage of the heat generated in the reaction (10C). After the heat exchanger, the mixture 139 

enters the conversion reactor (18U), where 99.85% O2 conversion occurs. Table 1 details the 140 

operating parameters and compositions of the streams used in the simulation process. 141 

 142 
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Table 1. Parameters of process operation   143 

Parameters 1C   2C 3C 11C 17U 18U 

Pressure (bar) 1 1 1  - - 

Temperature 

(°C) 

64,54   220 - - 

Molar flow  

(Kmol/s) 

155,33 2,81 2,02 158,03 - - 

Mass flow 

(Kmol/s) 

4976,96 90,11 1050 5146,63 - - 

Molar 

composition 

   
 

- - 

OOO - - 0,217 3,53E-04 - - 

O - - 0,607 0 - - 

m 0,99 1 - 0,99 - - 

             a 1,13E-4 - - 7,85E-03 - - 

M-O - - - 1,26E-03 - - 

          AAA - - 0,020 - - - 

           SSS - - 0,017 - - - 

           LLL  - - 0,108 - - - 

          PPP - - 0,028 - - - 

Heat exchange 

area (m
2
 ) 

- - - - 1 - 

Heat exchanged 

(kW) 

- - - - 26 - 

Outlet 

temperature 

(°C) 

 

- 

 

- 

 

- 

 

- 

 

- 

 

220 

Pressure drop  
(bar) 

 

- 

 

- 

 

- 

 

- 

 

- 

 

-13 

Job  

(kW) 

 

- 

 

- 

 

- 

 

- 

 

- 

 

2090,24 

Oleic Acid 

Conversion 

- - - - - 99,85 

OOO: triolein, O: oleic acid, m: methanol, a: water, M-O: methyl oleate, PPP: tripalmitin, SSS: 144 

tristearin, LLL: trilinolein, AAA: triaraquidine. - shows values that have been obtained thanks to the 145 

execution of the program or simply do not correspond to that section.  146 

Source: (13) 147 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 
 

 

735 

 

 

Vol. 72 No. 1 (2023) 

http://philstat.org.ph 

 

 

2.2. Methodology 148 

Figure 2 summarizes the methodological procedure used for the design of the ANN. The first step is 149 

to simulate the non-catalytic esterification process of FFA in DWSIM based on the operating 150 

parameters of Table 1, the simulation is validated, and a sensitivity analysis is performed to 151 

establish the dependent and independent variables of the process. Then, the database used for the 152 

ANN’s design, training and validation is constructed. Finally, a statistical analysis is performed to 153 

determine the reliability of the prediction system of the resulting mole fractions of the FAME 154 

production process. 155 

 156 

Figure 2. Methodological scheme for the design and validation of the NNA 157 

2.3. Simulation in DWSIM 158 

 Santos & Van Gerven (26) consider that simulators such as Aspen Plus, Aspen Hysysys, UniSim, 159 

CHEMCAD, and DWSIM, among others, are capable of modeling a plant at an industrial level and 160 

that through them, a series of physical and chemical changes can be proposed without the need to 161 

invest large amounts of money in training, configuration or optimization projects. Furthermore, 162 

Madeiros (27) states that DWSIM (CAPE-OPEN compatible) has an easy-to-use graphical interface 163 

and can simulate processes in steady or dynamic states. In addition, it allows for performing 164 

sensitivity analyses, which provide a deep understanding of the process behavior up to the point of 165 

reaching its optimal state. 166 

 For the simulation in DWSIM of the non-catalytic esterification process of free fatty acids that 167 

compose the Karanja oil, the operating parameters established in Table 1 were taken into account, 168 

using Raoult’s Law as a thermodynamic package, which was adequately adjusted to the non-catalytic 169 

esterification process of FFA. Raoult’s Law is widely used in solutions that assume ideal behavior 170 

and contain liquid and vapor phases (28). 171 

Sensitivity Analysis  172 

The following were analyzed as independent variables: the mole fraction of water in stream 1C (1C- 173 

Xa), the mole fraction of oleic acid in stream 3C (3C- Xo), the pressure drop in the reactor (-p) and the 174 

conversion percentage (%C) within the configuration of the chemical reaction, because they are those 175 

variables that exert a significant influence on the responses of the dependent variables which are: the 176 
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mole fractions of methyl oleate (9C-XM-O), methanol (9C-Xm), triolein (9C-Xooo) and trilinolein 177 

(9C-XLLL), this for the 9C stream. The most important mole fractions within the 10C matter line are 178 

those of methanol (10C- Xm) and water (10C- Xa).  179 

Table 2 establishes the operating limits of the independent variables used as inputs to the ANN: 180 

 181 

Table 2. Operating limits for ANN inputs. 182 

 183 

2.3. Design and training of the ANN 184 

Figure 3 details the design of the ANN, which was created using the MATLAB Neural Network 185 

Toolbox, version R2017b. The structure of the ANN consists of an input layer of 4 neurons 186 

corresponding to the independent variables established in the sensitivity analysis: (1C- Xa), (3C- Xo), 187 

(-p), (%C). The ANN has a hidden layer with 30 neurons and 6 neurons in the output layer, which are 188 

the dependent variables of the non-catalytic esterification process: (9C-XM-O), (9C-Xm), 189 

(9C-Xooo), (9C-XLLL), (10C- Xm), (10C- Xa).  190 

 191 

 192 

Figure 3. Schematic of the designed ANN 193 

Based on the guide proposed by Chen et al. (29), for learning, training and validation of the network, 194 

70% of the total data pairs were used, while 30% were used to perform a test to evaluate its learning 195 

level. ANN training adjusts the weights of the connections between neurons so that the ANN makes 196 

appropriate predictions for the target output data. Validation measures the ANN’s prediction errors to 197 

Operating Limits  

Parameter Mole fraction a Mole fraction 
O 

Pressure drop Conversion 
Rate 

Description  
    
 Current 1C 

    Current 3C 

 

(bar) 

In the reactor 

(%) 
Chemical 
reaction 
properties 

*Range 0 a 1 0 a 1 -1 a -35 0 a 100 
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evaluate its performance. Finally, testing evaluates ANN prediction using pairs of data not used in the 198 

training process (30). 199 

3. Results and Discussion 200 

3.1. Validation of the simulation 201 

To validate the simulation performed in DWSIM, the results were compared with the work developed 202 

by Hussain & Kumar (13) in AspenPlus; the outputs of the most relevant mole fractions of the 9C and 203 

10C stream and the temperature of the 12C stream were taken into account. Table 3 shows the 204 

comparison of the results obtained. The calculated percentage errors (%E) are below 6%, indicating 205 

the reliability of the simulated process. 206 

 207 

Table 3. Simulation validation 208 

Conversion Reactor 

Currents Mole 

fractions 

ASPEN 

PLUS 

DWSIM E (%) 

-13 

10C Xm 0.99 0.99 0% 

  Xa 7.85E-03 7.88E-03 0.38% 

9C XM-O 0.481 0.504 4.78% 

 Xm 0.17 0.16 5.88% 

 XOOO 0.179 0.184 2.79% 

  XLLL 0.103 0.097 5.82% 

Heat Exchanger  

Currents Temperature 

(°C) 

ASPEN 

PLUS 

  

DWSIM 

  E 

(%) 

-13 

12C Hot Fluid 210.5 209.9 0,28% 

 209 

3.2. Sensitivity Analysis 210 

The sensitivity analysis enabled it to detect four independent variables that representatively affect the 211 

six dependent variables. To determine the influence of the independent variables, the analysis was 212 

performed on the dependent variable of greatest interest (9C-XM-O). For example, Figure 4 shows 213 

the change of the variable 9C-XM-O for the 1C-Xa stream (composed of water and methanol); the 214 

change is inversely proportional as the amount of water in the 1C-Xa stream increases, the methanol 215 

fraction decreases, and this generates that the esterification reaction is limited by the amount of 216 

methanol present in the medium. On the other hand, Figure 5 shows that the dependent variable 217 

9C-XM-O is directly proportional to independent 3C-Xo, because the production of FAME depends 218 

on the amount of methyl oleate.  219 

 220 

Pressure drop is also a sensitive variable to the process; as seen in Figure 6, there is an inversely 221 

proportional correlation between the independent variable -p, and the dependent variable 9C-XM-O. 222 
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Using this analysis, it was possible to know the behavior of the process and to delimit the optimum 223 

pressure ranges within the conversion reactor so as not to impair the esterification. Finally, in Figure 224 

7 it can be seen that the conversion percentage strongly influences the esterification process, 225 

presenting a directly proportional relationship. As the conversion percentage increases in the reactor, 226 

the production of FAME increases. 227 

 228 

 229 

 230 

 231 

Figure 4. Impact of the variable 1C-Xa on the variable 9C-X.M-O 232 

 233 

Figure 5. Incidence of the variable 3C- Xo on the variable   9C-XM-O. 234 

 235 

Figure 6. Incidence of the variable -p versus the variable 9C-X.M-O 236 
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 237 

Figure 7. Incidence of the variable %C on the variable 9C-XM-O. 238 

3.3. ANN topology 239 

The hidden neurons of the intermediate layer were determined through an experimental trial by 240 

varying the number of neurons and the training algorithm, evaluating the ANN performance with 241 

quantitative performance indicators (MSE and R). Table 4 summarizes the tests performed for the 242 

performance parameters. Bayesian networks (BR) discard the validation phase due to the robustness 243 

of this type of backpropagation network, which can discard the data designated for validation and 244 

take advantage of them in the relevant stages, such as training and learning. However, using the BR 245 

algorithm with 60 neurons, abnormal behavior is detected in training MSE since the error is 246 

deficient, indicating that the ANN is probably not learning but memorizing the data. In this sense, it 247 

is essential to find a balance (MSE and R values) between training and testing so that the ANN has 248 

a good prediction capacity. 249 

 250 

Table 4. R and MSE values in the experimental trials. 251 

 252 

 253 

LM: *Levenberg-Marquardt; BR: Bayesian regularization. 254 

 255 

The training with the Bayesian Regularization (BR) algorithm is ideal for processing very noisy or 256 

complicated data; it works from the understanding of the parameters in the form of probabilities so 257 

that the weights of the network result from a set of probabilities that help to reduce prediction errors, 258 

offering an excellent generalized model (31) . Furthermore, Feng et al. (32) indicate that the BR 259 

algorithm is adaptive and can identify soft or sparse forces without any initial contextualization. In 260 

addition, the BR algorithm avoids the problem of overfitting and data memorization (33).  261 

 262 

Testing Algorithm 

# of 

neurons 
Indicators Train Validation Test 

1 
LM* 60 

MSE 2,01-06 5,43E-03 1,10E-02 

 R 0,99 9,59E-01 9,29E-01 

2 
BR 30 

MSE 4,11*E-06 - 3,56*E-03 

 R 9,99*E-01 - 9,76*E-01 

3 
BR 60 

MSE 6,85E-13 - 1,76E-03 

 R 9,99E-01 - 9,87E-01 
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The ANN was designed with MATLAB NNTOOL, and it is composed of three (4) input neurons, a 263 

hidden layer with 30 neurons and six (6) output neurons. According to the study developed by 264 

Abiodum et al. (34), a hidden layer may be sufficient for prediction in most ANN applications. 265 

 266 

3.3.1 ANN training and testing 267 

The MSE values for the training and testing phase are 4.11E-06 and 3.56E-06, respectively, 268 

indicating that the ANN performs adequately and that the predictions are made with sufficient 269 

accuracy. Figure 8 shows the mean square error (MSE) evolution during the training phase, with a 270 

final MSE of 0.0036. The MSE performance function for the training data (train) is very close to zero, 271 

indicating that the predictive capability of the network is very good. 272 

 273 

 274 

Figure 8. ANN training performance (MSE) 275 

 276 

On the other hand, as seen in Fig.9, there is no dispersion between the outputs and targets of the ANN 277 

in both the training and test phases. The R values for the training and testing phase are 0.999 and 278 

0.976, respectively, which indicates that the outputs and targets have an acceptable correlation. 279 

Therefore, for validating the ANN, the decision was made that the R-value should be in the range of 280 

0.95 to 1 and the MSE lower than 0.025. 281 

 282 

 283 

 284 

Figure 9. Regression coefficient R for ANN training and testing 285 
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3.4. ANN model prediction 286 

Figures 10 - 11, 12 - 13 and 14 - 15 correspond to the resulting mole fraction plots of both the liquid 287 

stream (XM-O, Xm, XOOO, XLLL) and the gaseous stream (Xm, Xa), comparing the data collected 288 

from the DWSIM simulations or actual values (blue line) and the data predicted by ANN (red line). 289 

Based on the observations in the figures, it can be interpreted that there is no significant difference 290 

between the predicted and actual data for each of the output variables. Furthermore, the lag or 291 

presence of outliers between the two curves is minimal.  292 

 293 

 294 

Figure 10. M-O mole fraction of the liquid stream, actual (DWSIM) vs. predicted (ANN)  295 

 296 

Figure 11. Mole fraction of m of the liquid stream, actual (DWSIM) vs. predicted (ANN)  297 

 298 
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 299 

Figure 12. OOO mole fraction of the liquid stream, actual (DWSIM) vs. predicted (ANN) 300 

 301 

Figure 13. LLL mole fraction of the liquid stream, actual (DWSIM) vs. predicted (ANN) 302 

 303 

 304 

Figure 14. Mole fraction of m of the gaseous stream, actual (DWSIM) vs predicted (ANN) 305 
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 306 

Figure 15. Water mole fraction of the gaseous stream, actual (DWSIM) vs. predicted (ANN) 307 

3.5. ANN model verification 308 

The ANN predictive was tested with a set of 30 random input data unknown by the ANN. The results 309 

show an overlap between the experimental data and the predictions. This indicates that ANN has an 310 

excellent predictive capacity for the dependent variables. The Figure shows the prediction of the 311 

variables under study by the ANN for the experimental data that were not considered in the network 312 

learning process. 313 

 314 

Figure 16. Comparison between actual and predicted outputs of each stream. Liquid stream-9C: a) 315 

Mole fraction M-O, b) Mole fraction m, c) Mole fraction OOO, d) Mole fraction LLL. Gaseous 316 

stream-10C: a) Mole fraction m, b) Mole fraction a. 317 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 
 

 

744 

 

 

Vol. 72 No. 1 (2023) 

http://philstat.org.ph 

 

 

 The research used the function ANOVA to validate the ANN statistically. Table 5 shows the 318 

results from ANOVA. For all cases, P-values (probability value in statistical significance tests) is 319 

greater than 0.05, indicating no statistically significant difference between the means of the 320 

observations and the predictions. These statistical tests reveal that the ANN constructed is statistically 321 

valid for predicting the mole fractions of methyl olein, methanol, triolein, water and trilinoline, with a 322 

confidence level of 95%. 323 

 324 

Table 5. ANOVA 325 

Source Sum of squares  DOF Mean square F- value P- value 

M-O mole fraction of the 9C stream 

Inter 

groups 

0,00386988 1 0,00386988 0,08 0,7837 

Intra 

groups 

2,9522 58 0,0509   

Total 

(Corr.) 

2,95607 59    

Mole fraction of m of the current 9C 

Inter 

groups 

0,00721209 1 0,00721209 0,66 0,4196 

Intra 

groups 

0,632883 58 0,0109118   

Total 

(Corr.) 

0,640095 59    

Mole fraction of OOO of the 9C current 

Inter 

groups 

0,0328439 1 0,0328439 0,69 0,4082 

Intra 

groups 

2,74497 58 0,0473271   

Total 

(Corr.) 

2,77782  59    

LLL mole fraction of the current 9C 

Inter 

groups 

0,00828621 1 0,00828621 0,72 0,3999 

Intra 

groups 

0,668125 58 0,0115194   

Total 

(Corr.) 

0,676411  59    

Mole fraction of m of the current 10C 

Inter 

groups 

2,61662E-7 1 2,61662E-7 0,00 0,9987 

Intra 

groups 

5,97879 58 0,103083   
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 326 

4. Conclusions 327 

In this paper, an ANN capable of predicting the mole fractions derived from a non-catalytic 328 

esterification process of FFA to obtain FAME was structured, taking as a starting point a set of 130 329 

pairs of data processed in DWSIM. The ANN input variables were; the mole fraction of an of stream 330 

1C (1C- Xa), the mole fraction of O of stream 3C (3C- Xo), the percentage conversion of the chemical 331 

reaction (%C) and the pressure drop in the reactor (-p), which resulted in the prediction of 6 output 332 

variables; the mole fraction of M-O (9C-XM-O), the mole fraction of m (9C-Xm), the mole fraction 333 

of OOO (9C-XOOO) and the mole fraction of LLL (9C-XLLLL) of the liquid stream 9C, the mole 334 

fraction of m (10C-Xm) and the mole fraction of a (10C- Xa) of the gaseous stream 10C.  335 

 336 

The network was trained with the Bayesian regularization algorithm, and its design consists of 30 337 

neurons with a running performance of MSE = 4.11*E-06 and R = 0.99. A statistical comparison 338 

analysis (ANOVA) between the experimental data (DWSIM) and the values predicted by the neural 339 

network was also used to validate the ANN. Statistical tests (P-value > 0.05) show that the ANN 340 

accurately predicts the mole fractions at the outputs with a 95% significance level. According to the 341 

results, this tool can be handy for large-scale FAME production, taking advantage of the FFA 342 

composition in commercial or domestic waste oils. For instance, real operating parameters of the 343 

described process must be used as input, apply them in situ and verified the predictions at the control 344 

points (outputs of the ANN). 345 

 346 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 347 

title, Table S1: title, and Video S1: title. 348 
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