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Abstract 

We propose BoTrNe, a theoretically simple but strong backbone 

architecture for various computer vision tasks such as image 

classification, object recognition, and instance segmentation that includes 

self-attention. Our method substantially improves on the baselines, on 

instance segmentation, and object recognition while simultaneously 

lowering the parameters, with little latency overhead, by simply 

substituting spatial convolutions with global self-attention in the last three 

bottleneck blocks of a ResNet. We also show how ResNet bottleneck 

blocked with self-attention may be regarded as Transformer blocks via the 

architecture of BoTrNe. BoTrNe obtains 46.2 % Mask AP and 51.8 % 

Box AP utilizing the Mask R-CNN framework on the COCO Instance 

Segmentation benchmark, exceeding the previous best reported single 

model and weighted linear results of ResNet tested on the COCO 

validation set. 

 

1. Introduction 

Image classification[1], object identification[2]–[4][5], and instance segmentation[6] have all 

benefited from deep convolutional backbone architectures[7]–[9]. The majority of well-known 

backbone designs use several layers of 3 x 3 convolutions. 

While the convolution process is capable of capturing local information, vision applications such as 

object recognition, instance segmentation, and key point detection require the modeling of long-

range relationships. E.g. Being able to gather and associate scene details from a large 

neighborhood, can be effective in understanding relationships across objects[10] in instance 

segmentation. Convolution-based architectures require the stacking of multiple layers[9], [11] in 

order to aggregate the regionally captured filter responses globally. Although adding more layers to 

these backbones[12] improves performance, an implied mechanism to simulate global dependencies 

may be a more reliable and flexible solution that does not require as many layers. 

Natural language processing (NLP) activities need the modeling of long-range relationships as well. 

Self-attention[13] is a mathematical primitive that learns a complex hierarchy of associative 

characteristics over lengthy sequences by combining paired entity connections with a feature 

addressing method. In NLP, this is now becoming a common technique in the format of 

Transformer blocks[13], with GPT[14] and BERT[15], [16] models serving as notable examples. 

Substitute spatial convolutional level with the multi-head self-attention (MHSA) level described in 

the Transformer[13] for a basic method to utilizing self-attention in vision (Figure 1). In the recent 
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past, this method has seen success on two apparently disparate approaches. On the one hand, 

models like SASA [17], AACN [18], SANet [19], Axial-SASA [20], and others suggest that spatial 

convolutions in ResNet bottleneck blocks [11] be replaced with various kinds of self-attention 

(global, local, axial, vector, etc). On the other hand, the Vision Transformer (VT) [21] suggests 

stacking Transformer blocks [13] that operate on non-overlapping patch linear projections. These 

methods seem to offer two distinct architectural classes. This isn't the case, as we show out. ResNet 

bottleneck modules with the MHSA layer, on the other hand, may be thought of as Transformer 

modules with a bottleneck architecture, with minor variations such as residual connections, 

normalization layer selection, and so on (Figure 3). ResNet bottleneck modules with the MHSA 

layer are referred to as Bottleneck Transformer (BoTrNe) modules as a result of this equivalency. 

 

Figure 1: ResNet and Bottleneck Transformer (BoTr) module 

When it comes to utilizing self-attention in vision, there are a few issues to consider: (1) In object 

identification and instance segmentation, picture sizes are considerably bigger (1024 x 1024) than 

in image classification (224 x 224). (2) Self-attention memory and processing scale exponentially 

with spatial dimensions [22], resulting in training and inference overheads. 

To address these issues, we propose the following design: (1) Use convolutions to effectively learn 

abstract and low-resolution feature maps from big pictures; (2) process and assemble the data 

contained in the feature maps acquired by convolutions using global (all2all) self-attention. A 

hybrid design like this [18] (1) can deal with big pictures efficiently by allowing convolutions 

perform the spatial down sampling and allowing attention work on lower resolutions; (2) can work 

with large images successfully by making convolutions do the geometric down sampling and 

allowing attention work on reduced resolutions. Here's a quick example of how to use this hybrid 

design in practice: Without making any additional modifications, just the last 3 bottleneck 

modules of a ResNet should be replaced with BoTr blocks. To put it another way, take a ResNet 

and only use MHSA layers for the last three 3 3 convolutions (Fig 1, Table 1). With no 

hyperparameter changes and low overheads for training and inference, this simple modification 

improves the mask AP by 1.2 percent on the COCO instance segmentation benchmark [23] over our 

conventional baseline that utilizes ResNet-50 in the Mask R-CNN framework [24]. Given its links 

to the Transformer via the BoTr blocks, we'll refer to this basic instantiation as BoTrNe from here 
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on. Despite the fact that its design is not new, we think its simplicity and efficiency make it a 

valuable reference backbone architecture worth examining. 

Without any bells and whistles like Cascade R-CNN [25], FPN modifications [26]–[28], 

hyperparameter modifications [28], etc., we show substantially better results on instance 

segmentation using BoTrNe. (1) Implementation gains across different training configurations 

(Section 4.1), data augmentations (Section 4.2), and ResNet family backbones (Section 4.4); (2) 

Considerable boost from BoTrNe on small objects (+2.4 Mask AP and +2.6 Box AP); (3) 

Implementation gains over non-Local layers (Section 4.6); (4) Gains that scale well with larger 

images (Section 4.6); (5) Gains that scale well with larger images resulting. 

Finally, after observing that BoTrNe do not produce significant improvements in a smaller size 

training regime, we scale BoTrNe, drawing inspiration from the teaching and scaling methods in 

[12], [17], [28]–[31]. On TPU-v3 hardware, we develop a family of BoTrNe models that reach top-

1 accuracy of up to 84.7 percent on the ImageNet validation set while being up to 1.64x quicker 

than the renowned EfficientNet methods in terms of computation time. We believe that by 

demonstrating good results with BoTrNe, self-attention will become a frequently utilized primitive 

in forthcoming vision systems. 

1. Background study 

Figure 2 shows a categorization of deep learning systems that use self-attention for vision. We'll 

look at (1) Transformer vs. BoTrNe; (2) DETR vs. BoTrNe; and (3) Non-Local vs. BoTrNe in this 

part. 

Transformer connection: One important lesson in this work is that ResNet restriction 

modules with Multi-Head Self-Attention (MHSA) levels may be regarded as Transformer 

modules with a restriction structure, as the article's title implies. Figure 3 depicts this, and we refer 

to this module as the Bottleneck Transformer (BoTr). We would like to point out that the 

architecture of the BoTr module is not our work. Rather, we draw attention to the connection 

amongst MHSA ResNet bottleneck module and the Transformer in the hopes of bettering our 

knowledge of architectural design spaces [30] for computer vision self-attention. Apart from the 

ones previously apparent in the diagram (residual connections and module borders), there are a few 

other differences: (1) Normalization: Transformers utilize Layer Normalization [32], whereas BoTr 

modules utilize Batch Normalization [33], which is common in ResNet bottleneck modules [11]. 

(2) Non-Linearities: Transformers just use non-linearity in the FFN modules, whereas the ResNet 

structure allows for three non-linearities in the BoTr modules. (3) Output projections: In a 

Transformer, the MHSA module has an output projection, whereas the MHSA layer (Fig 4) in a 

BoTr module (Fig 1) does not; (4) We have used  the SGD with momentum optimizer, which is 

commonly used in computer vision [11], [24], [34], whereas Transformers are typically trained with 

the Adam optimizer [21], [35]. 

Detection Transformer (DETR) Connection: Instead of utilizing an R-CNN, DETR is a detection 

framework which utilizes a Transformer to conduct implicit region suggestions and object 

localization [3], [4], [24]. Both DETR and BoTrNe utilize self-attention to enhance object 

recognition and occurrence segmentation performance.  The distinction is that DETR employs 

Transformer modules outside of the backbone design in order to eliminate region suggestions and 
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non-maximal inhibition for the sake of simplicity. The aim of BoTrNe, on the other hand, is to offer 

a backbone framework that utilizes Transformer-like components for instance segmentation and 

detection. We are unconcerned with the detection architecture (be it DETR or R-CNN). We conduct 

our tests using the Mask [24] and Faster R-CNN [4] systems, and we leave the integration of 

BoTrNe as the DETR framework's backbone to future study. We think there may be an opportunity 

to solve the lack of gain on tiny items observed in DETR by using BoTrNe, which has shown 

excellent gains on small objects. 

 

Figure 2: Deep learning architectures for object detection 

Non-Local Neural Network Connection: The Transformer and the Non-Local-Means technique 

[36] are linked by Non-Local (NL) Nets [37]. They enhance video detection and instance 

segmentation by inserting NL blocks into the last one (or) two module groups (s4,s5) of a ResNet. 

BoTrNe is a hybrid architecture that uses convolutions and global self-attention, similar to NL-Nets 

[37], [38]. (1) Multiple heads, value projection, and location encodings in MHSA; (2) NL 

modules use a bottleneck with a channel factor mitigation of 2 (instead of 4 in BoTr blocks that 

adopt the ResNet framework); (3) NL module are embedded as additional blocks into a ResNet 

backbone rather than replacing existing convolution In Section 4.6, we compare BoTrNe, NL-Net, 

and an NL-like variant of BoTrNe, in which we inject BoTr modules in the same way as NL blocks 

rather than replacing them. 

2. Methodology  

Multi-Head Self-Attention (MHSA) levels that perform global (all2all) self-attention across a 2D 

featuremap replace the last three spatial (3x3) convolutions in a ResNet (Fig 4). A ResNet usually 

contains four stages [s2, s3, s4, s5] (or module groups) with strides of [4,8,16,32] relative to each 

other. For the input resolutions (224 x 224 (for classification) and 640 x 640 (for detection 

experiments in SASA [17]) examined in these studies, approaches that utilize self-attention across 

the backbone [18], [21] are viable.  

Our aim is to utilize attention in more realistic circumstances of high-performance instance 

segmentation techniques, where larger-resolution pictures (1024 x 1024) are usually used. Given 

that self-attention across n entities needs O(n
2
d) space and computation [13], we think that 

incorporating self-attention at the lowest pixel density featuremaps in the backbone, i.e. the residual 
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modules in the s5 stack, is the simplest configuration that conforms to the aforementioned criteria. 

In a ResNet backbone, the s5 stack usually consists of three blocks, each with one spatial 3 x3 

convolution. The BoTrNe architecture is based on substituting them with MHSA layers. In s5, the 

first block utilizes a 3 x 3 convolution of stride 2, whereas the other two use stride 1. We employ a 

2 x 2 mean with a stride 2 for the first BoTr block as all2all attention is not really a strided 

operation. Table 1 details the BoTrNe design, whereas Figure 4 depicts the MHSA layer. 

 

Figure 3: Architecture of canonical and bottleneck transformer 

Relative Position Encoding: Transformer-based designs usually employ position encoding to 

make the attention operation position aware [13]. Relative-width-aware position encodings have 

recently been shown to be more suitable for vision tasks [17], [18]. This is due to attention taking 

into consideration not just content information but also relative widths between features at various 

places, allowing for efficient information association between objects while maintaining positional 

awareness. The 2D relative location self-attention technique from [17], [18] is used in BoTrNe. 

Stage S1 S2 S3 S4 S5 

Output 512 x 512 256 x 256 128 x 

128 

64 x 64 32 x 32 

ResNet-

50 

7 x 7, 64, 

stride 2 

3 x 3 max 

pool, stride 2 

1 x1, 64 

3 x 3, 64 

1 x 1, 

256 

1 x 1, 

128 

3 x 3, 

128 

1x 1, 512 

1 x 1, 256 

3 x 3, 256 

1 x 1, 

1024 

1 x1, 

512 

3 x 3, 

512 

1 x1, 

2048 

BoTrNe-

50 

7 x 7, stride 2 3 x 3 max 

pool, stride 2 

1 x1, 64 

3 x 3, 64 

1 x 1, 

256 

1 x 1, 

128 

3 x 3, 

128 

1 x 1, 256 

3 x 3, 256 

1 x 1, 

1024 

1 x1, 

512 

3 x 3, 

512 
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1x 1, 512 1 x1, 

2048 

Table 1: Architecture comparision of BoTrNe-50 with ResNet-50 

3. Experiment 

The advantage of BoTrNe for object identification and graphics segmentation are investigated. On 

the COCO dataset [23], we conduct a comprehensive ablation analysis of different design options. 

The usual COCO metrics are reported, including APbb (averaged across IoU thresholds), APbb50, 

APbb75, and APmk; APmk50, APmk75 for box and mask, respectively. We train with the COCO 

train set and publish results with the COCO val (or minival) set, as described in Detectron [34]. The 

Google Cloud GPU detection codebase was used in our tests. We use the same codebase for all of 

the baselines and ablations. Our training infrastructure utilizes the Google Colab GPU, which has 

4 cores and 8 GB of memory per core unless otherwise stated. We use a batch size of 32 to train 

with the bfloat16 accuracy and cross-replica batch normalization [24], [33], [34], [39].  

Backbone Rs50 BoTr50 Rs50 BoTr 

50 

Rs50 BoTr50 Rs50 BoTr50 

Iterations 12                12 24              24 36                 36 72             72 

AP
bb

 39               39.4 41.2            42.8 42.1              43.6 42.8              43.7 

AP
mk

 35                 35.3 36.9              38 37.7              38.9  37.9              38.7 

Table 2: Comparison of Rs50 with BoTr50 under 1x(12 iterations), 3x(36 iterations), 6x(72 

iterations). 

3.1 With Mask RCNN, BoTrNe outperforms ResNet on COCO Instance Segmentation: 

We'll look at the most basic and frequently used configuration: a ResNet-50 backbone with a 

Feature Pyramid Network. We utilize pictures with a resolution of 1024 x 1024 and a multi-scale 

delay of [0.8, 1.25] (adjusting the image size between 820 and 1280 to match the Detectron default 

of 800 x 1300). We compare the ResNet-50 (Rs50) and BoTr ResNet-50 (BoTRs50) as backbone 

designs for various training regimens in this setting: 1x: 12 iterations, 2x: 24 iterations, 3x: 36 

iterations, 6x: 72 iterations, all with the same hyperparameter for both backbones across all training 

schedules (Table 2). With the exception of the 1x schedule, we can plainly see that BoTRs50 is a 

considerable improvement over Rs50 (12 epochs). This indicates that in order to demonstrate 

substantial progress over Rs50, BoTRs50 need more training time. We can also observe that the 

BoTRs50 improvement in the 6x schedule (72 iterations) is less than in the 3x schedule (32 

iterations). This indicates that training with the standard scale jitter for a long time is harmful. This 

is addressed by using a greater aggressive scale jitter (Section 4.2). 

Backbone Rs50 BoTr50 Rs50 BoTr50 Rs50 BoTr50 

Delay 0.8 ,1.25        0.8,1.25 0.5, 2           0.5, 2 0.1, 2.0         0.1, 2.0 

AP
bb

 42.8                   43.7 43.7              45.3 43.8               45.9 

AP
mk

 37.9                   38.7 39.1               40.5 39.2               40.7  

Table 3: Comparing Rs50 and BoTr50 on multi-scale delay 
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3.2 BoTrNe benefits more from Scale latency than ResNet: 

We observed in Section 4.1 that training for a longer period of time (72 iterations) decreased the 

gains for BoTRs50. Increasing the amount of multi-scale latency, which has been shown to enhance 

the performance of identification and segmentation systems [40], is one approach to solve this. 

Table 3 shows that BoTRs50 performs significantly better than Rs50 for multi-scale latency of [0.5, 

2.0], while also revealing significant gains ( + 2.2 percent on APbb and + 1.6 percent on APmk) for 

scale latency of [0.1, 2.0], implying that BoTrNe (self-attention) benefits more from additional 

augmentations such as multi-scale latency than ResNet (pure convolutions). 

 

Figure 4: Detail architecture of BoTr module with MHSA layer 

3.3 Performance is Boosted by Relative Position Encodings 

Relative position encodings [41] are used by BoTrNe . We provide an argument for the use of 

relative position encodings by comparing individual benefits from content-content interaction (qkT 

) and content-position interaction (qrT ), where q, k, and r denote query, key, and relative position 

encodings, respectively. The canonical setting is used for the ablations (Table 4). We could see that 

the gains from qrT and qkT are complementary, with qrT being the more important. For example, 

qkT alone contributes to 0.6 percent APbb and 0.6 percent APmk improvement over the Rs50 

baseline, whereas qrT alone contributes to 1.0 percent APbb and 0.7 percent APmk improvement 

over the R50 baseline. The improvements on both APbb and APmk are cumulative when combined 

(qkT + qrT ). ( 1.5 percent and 1.2 percent respectively). We can also observe that absolute position 

encodings (qrT abs) do not offer as much benefit as relative position encodings. This indicates that 

incorporating relative position encodings into systems like DETR [10] may be a promising future 

research path. 
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3.4 Comparison with Non-Local Neural Networks:  

What is the difference between BoTrNe and Non-Local Neural Networks? Between the pre-final 

and final bottleneck modules of a ResNet backbone, NL operations are introduced into the s4 stack. 

This increases the number of parameters in the model, while BoTrNe reduces the number of 

parameters (Table 5). We add ablations to the NL mold, where we present BoTr module in the same 

way as the NL module. We also do an ablation using two BoTr module, one in each of the s4,s5 

stacks. Table 7 summarizes the findings. Adding an NL increases APbb by 1.0 and APbb by 0.7, 

while inserting a BoTr module increases APbb by +1.6 and APmk by +1.2, demonstrating that the 

BoTr module design is superior than the NL. Furthermore, BoT-R50 (which replaces rather than 

adds new blocks) yields +1.5 APbb and + 1.2 APmk, which is comparable to adding another BoTr 

module and superior to adding one more NL module. 

 

3.5 Examining BoTrNe model on ImageNet: 

While the design of BoTrNe was driven by the need for segmentation and identification, it is 

reasonable to wonder whether the architectural design of BoTrNe aids in improving picture 

recognition accuracy on the ImageNet [42] benchmark. Incorporating Non-Local modules to 

ResNets and training them with canonical parameters does not offer significant improvements, 

according to previous research [5], [43]. When comparing BoTrRs-50 to ResNet-50, we get a 

comparable result when both models are trained using the canonical ImageNet hyperparameters 

[30]: 100 iterations, batch size 1024, weight decay 1e-4, conventional ResNet data augmentation, 

and cosine learning rate schedule (Table 9). On ImageNet, BoT50 does not offer substantial 

improvements over Rs50, although it does have the advantage of reducing parameters while 

maintaining similar computation (M.Adds). 

 

Taking use of the picture sizes often employed for image categorization is a straightforward way to 

address this lack of benefit. We typically deal with considerably lower picture sizes (224 x 224) in 

image classification than we do in object recognition and segmentation (1024 x 1024). As a result, 

the featuremaps used by the BoTr modules are considerably smaller (e.g. 14 x 14, 7 x 7) than those 

used in instance segmentation and detection (e.g. 64 x 64, 32 x 32). The BoTrNe architecture in the 

c5 block group may be modified to universally utilize a stride of 1 in the last MHSA layers with the 

same number of parameters and without a substantial increase in computation. This design is 

known as BoTrNe-F1 (F1 denotes the first stride in the last module group). This architecture is 

comparable in concept to the Vision Transformer (VT) [21] hybrid models, which utilize a ResNet 

up to stage c4 before stacking Transformer blocks. The major difference between hybrid VT 

models and the BoTrNe-F1 models is that BoTr modules are used instead of standard Transformer 

modules (other changes include the normalization layer, optimizer, and so on, as stated in the 

Background study comparison to Transformer) (Sec. 2). 

 

Backbone Att. Type Ap
bb

 Ap
mk

 

Rs50  42.1 37.7 

BoTr50 qk
T
 42.7 38.3 

BoTr50 qr
T

relative 43.1 38.4 
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BoTr50 qk
T
 + qr

T
relative 43.6 38.9 

BoTr50 qk
T 

+ qr
T

abs 42.5 38.1 

Table 4: Relative position encoding analysis 

Backbone AP
bb

 AP
mk

 

Rs50 

BoTr50 

42.1 

43.6 

37.7 

38.9 

Rs101 

BoTr101 

43.3 

45.5 

38.4 

40.4 

Rs152 

BoTr152 

44.2 

46.0 

39.1 

40.6 

Table 5: Comparing different ResNet architectures with BoTr architectures 

 

3.6 Analysis under standard environment:  

This design is initially evaluated for the 100-iteration setting, as well as Rs50 and BoT50. In the 

normal configuration, we find that BoT-F1-50 improves by 0.9 percent over Rs50 (Table 9). 

However, this gain comes at the expense of additional computation (m.adds). Nonetheless, the 

boost is a hopeful indication that we can build models that scale well with bigger pictures and better 

training circumstances, which have been increasingly popular since EfficientNets [7]. 

 

Backbone Res AP
bb

 AP
mk

 

Rs50 

BoTr50 

BoTr50 

1280 

1024 

1280 

44.0 

45.9 

46.1 

39.5 

40.7 

41.2 

Rs101 

BoTr101 

BoTr101 

1280 

1024 

1280 

46.4 

47.4 

47.9 

41.2 

42.0 

42.4 

Table 6: Comparing different ResNet architectures with BoTr architectures while training for 72 

iterations 

Backbone Change in background AP
bb

 AP
mk

 

Rs50  42.1 37.7 

Rs50 + NL 

Rs50 + BoTr [s4] 

Rs50 + BoTr 

[s4,s5] 

+1 NL module in s4 

+1 BoTr module in s4 

+2 BoTr module in 

s4,s5 

43.1 

43.7 

44.9 

38.4 

38.9 

39.7 

BoTr50 Substitution in s5 43.6 38.9 

Table 7: Table 6: Comparing different ResNet architectures with BoTr architectures while training 

for 36 epochs 

Backbone AP
bb

 AP
bb

50 AP
bb

75 AP
mk

 AP
mk

50 AP
mk

75 

BoTr152 49.5 71.0 54..2 43.7 68.2 47.4 

BoTr200 49.7 71.3 54.6 44.4 68.9 48.2 

Table 8: BoTr with 152 and 200 layers when trained for 72 epochs 
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Backbone M.Adds Parameters Top 1% accuracy 

Rs50 3.86 G 25.5M 76.8 

BoTr50 3.79G 20.8M 77 

BoTr-F1-50 4.27G 20.8M 77.7 

Table 9: Analysis of Rs50 and BoTr50 and BoTr-F1-50 on ImageNet on 100 epochs 

Backbone Top 1% accuracy Top 5% accuracy 

Rs50 77.7 93.9 

BoTr50 78.3 94.2 

BoTr-F1-50 79.1 94.4 

Table 10: Analysis of Rs50 and BoTr50 and BoTr-F1-50 on ImageNet on 200 epochs 

3.7 Effect of longer training and larger data 

Our instance segmentation studies revealed that regularization, such as increasing dataset (in the 

case of segmentation, greater multi-scale delay) and prolonged training, benefits BoTrNe and self-

attention more. When training with a better setup, such as 200 iterations, batch size 4096, weight 

decay 8e-5, RandAugment (2 levels, magnitude 10), and label smoothing of 0.1, it's reasonable to 

anticipate that the benefits from BoTr and BoTr-F1 would increase. When compared to the baseline 

Rs50, the benefits for both BoTr50 (+ 0.6 percent ) and BoTr-F1-50 (+ 1.4 percent ) are 

considerably more significant in this scenario (Table 10). 

 

4. Conclusion:  

The use of self-attention in the design of visual backbone systems is an interesting subject. We 

believe that our work contributes to a better knowledge of architecture in this area. Self-attention 

frameworks for self-supervised learning in computer vision [44]; and expanding to much bigger 

datasets such as JFT, YFCC, and Instagram are all promising areas for future research. A key future 

goal is to compare and include alternatives to self-attention, such as lambda-layers [45]. 
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